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Abstract This paper studies the optimal investment problem for an insurer and a reinsurer. The

basic claim process is assumed to follow a Brownian motion with drift and the insurer can purchase

proportional reinsurance from the reinsurer. The insurer and the reinsurer are allowed to invest in

a risk-free asset and a risky asset. Moreover, the authors consider the correlation between the claim

process and the price process of the risky asset. The authors first study the optimization problem of

maximizing the expected exponential utility of terminal wealth for the insurer. Then with the optimal

reinsurance strategy chosen by the insurer, the authors consider two optimization problems for the

reinsurer: The problem of maximizing the expected exponential utility of terminal wealth and the

problem of minimizing the ruin probability. By solving the corresponding Hamilton-Jacobi-Bellman

equations, the authors derive the optimal reinsurance and investment strategies, explicitly. Finally, the

authors illustrate the equality of the reinsurer’s optimal investment strategies under the two cases.

Keywords Hamilton-Jacobi-Bellman equation, optimal reinsurance and investment strategies, pro-

portional reinsurance, ruin probability, utility maximization.

1 Introduction

Since insurance companies are allowed to invest in the financial market, lots of researches
study the investment problem for an insurer. Among these researches, the main investment
objectives are ruin probability minimization and expected utility maximization. For example,
Hipp and Plum[1] considered the optimal investment problem for an insurer whose risk pro-
cess modelled as a compound Poisson process in the sense of minimizing the ruin probability.
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Schmidli[2] used a claim process that followed a Brownian motion with drift and obtained the
optimal reinsurance strategy to minimize the ruin probability. Promislow and Young[3] dis-
cussed the problem of ruin probability minimization subject to both proportional reinsurance
and investment strategies. Li and Wu[4] investigated the upper bound for finite-time ruin prob-
ability of an insurer in a Markov-modulated market. Liang and Guo[5] focused on the optimal
proportional reinsurance and investment problem in the Sparre Andersen model and derived
the explicit expression of the ruin probability or its lower bound when the claim sizes were ex-
ponentially. Yang and Zhang[6] studied an insurer’s investment problem of exponential utility
maximization with jump-diffusion risk process. Wang[7] obtained the optimal investment strat-
egy for an insurer who was allowed to invest in multiple risky assets in the sense of maximizing
the exponential utility of his/her reserve at a future time. Cao and Wan[8] considered the opti-
mal reinsurance and investment problem of maximizing the expected utility of terminal wealth
and gave the results for exponential and power utility functions. Bai and Guo[9] discussed the
optimal excess-of-loss reinsurance and multidimensional portfolio selection problem. Liang, et
al.[10] derived the optimal proportional reinsurance and investment strategies in a stock market
with Ornstein-Uhlenbeck process. Liang and Bayraktar[11] investigated the optimal reinsurance
and investment problem in an unobservable Markov-modulated compound Poisson risk model,
where the intensity and jump size distribution were not known but had to be inferred from
the observations of claim arrivals. Besides the objectives of ruin probability minimization and
expected utility maximization, Bai and Zhang[12], Bi, et al.[13], Zeng and Li[14], Li and Li[15]

studied the optimal reinsurance and investment problem for an insurer under the mean-variance
criterion. Moreover, some researchers introduced stochastic volatility models into the optimal
reinsurance and investment problem, see, Gu, et al.[16], Lin and Li[17], Liang, et al.[18], Gu, et
al.[19], Li, et al.[20], Zhao, et al.[21] and the references therein.

However, large numbers of articles only consider the optimization problem for an insurer.
Actually, the management of the reinsurer is also meaningful. Thus, we focus on the optimal
investment problem for an insurer and a reinsurer. In our model, the basic claim process is
assumed to follow a Brownian motion with drift. The insurer can purchase proportional reinsur-
ance from the reinsurer and both the insurer and the reinsurer are allowed to invest in a risk-free
asset and a risky asset. Moreover, we consider the correlation between the claim process and the
price process of the risky asset. The effect of the net profit on proportional reinsurance is also
taken into account. Firstly, we consider the optimization problem of maximizing the insurer’s
expected exponential utility of terminal wealth. By solving the corresponding Hamilton-Jacobi-
Bellman (HJB) equation, we derive the optimal reinsurance and investment strategies of the
insurer, explicitly. Then according to the insurer’s optimal reinsurance strategy, the reinsurer
chooses the optimal investment strategy, i.e., the reinsurer increases his/her wealth via invest-
ment. Here, we consider two optimal investment problems for the reinsurer: The problem of
maximizing the expected exponential utility of terminal wealth and the problem of minimizing
the ruin probability. Furthermore, we obtain the optimal investment strategies of the reinsurer.
Finally, since Browne[22], Bai and Guo[23] both found that maximizing the expected exponen-
tial utility of terminal wealth and minimizing the ruin probability produced strategies with the
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same type for zero interest rate. We examine the equality of the reinsurer’s optimal investment
strategies under the two cases. The model we study in this paper has some practical meaning.
In reality, the insurer usually plays a leading role. If the optimal reinsurance strategy of the
insurer is smaller than that of the reinsurer, the reinsurer will accept the optimal reinsurance
strategy chosen by the insurer, while in the opposite case, the reinsurer may not have enough
economic strength to undertake the optimal reinsurance strategy chosen by the insurer, then
the reinsurer will try to make more profits from investment, all of which can be described by
our model.

The paper proceeds as follows. In Section 2, we introduce the formulation of the model.
Section 3 provides the optimal proportional reinsurance and investment problem of maximizing
expected exponential utility of terminal wealth for an insurer. In Section 4, with the optimal
proportional reinsurance which has been obtained in Section 3, we derive the optimal investment
strategies for a reinsurer in the sense of maximizing the expected exponential utility of terminal
wealth and minimizing the ruin probability. Then we illustrate the equality between the two
results. Section 5 concludes the paper.

2 Model Formulation

Consider a filtered complete probability space (Ω ,F , {Ft}t∈[0,T ], P ) satisfying the usual
condition, where {Ft}t∈[0,T ] is a filtration with F = FT , and T is a fixed and finite time
horizon. All stochastic processes introduced below are supposed to be adapted processes in this
space.

In this paper, we model the claim process C(t) according to a Brownian motion with drift
as

dC(t) = adt − bdW0(t), (1)

where a and b are positive constants. W0(t) is a standard Brownian motion defined on
(Ω ,F , {Ft}t∈[0,T ], P ). Suppose that the premium is paid continuously at a constant rate
c = (1 + θ)a with the safety loading of the insurer θ > 0. According to Equation (1), the
surplus process of an insurer is given by

dR(t) = cdt − dC(t) = aθdt + bdW0(t).

We assume that the insurer can purchase proportional reinsurance to reduce the underlying
insurance risk and p(t) represents the proportion reinsured at time t. Considering the propor-
tional reinsurance, the surplus processes of the insurer and the reinsurer are

dR1(t) = (θ − ηp(t))adt + b(1 − p(t))dW0(t),

dR2(t) = ηp(t)adt + bp(t)dW0(t),

where η > θ represents the safety loading of the reinsurer. The net profit of the insurer is
(1 + θ)a− (1 + η)p(t)a− (1− p(t))a and that of the reinsurer is (1 + η)p(t)a− p(t)a. Since the
net profits of the insurer and the reinsurer are positive, p(t) satisfies 0 ≤ p(t) ≤ θ

η < 1.
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We consider a financial market consisting of a risk-free asset with the price process S0(t)
given by

dS0(t) = rS0(t)dt, S0(0) = 1

and a risky asset with the price process S(t) described by

dS(t) = S(t) (μdt + σdW (t)) ,

where r is the interest rate, μ, σ denote the appreciation rate and volatility of the risky asset’s
price process. W (t) is another standard Brownian motion defined on (Ω ,F , {Ft}t∈[0,T ], P ) and
cov[W0(t), W (t)] = ρ0t. As usual, we assume that μ > r.

Suppose that the insurer and the reinsurer are allowed to invest their surplus in the financial
market. Let π1(t), π2(t) represent the amounts invested in the risky asset by the insurer and
the reinsurer at time t, respectively. Corresponding to the reinsurance and investment, the
surplus processes of the insurer and the reinsurer X(t) and Y (t) are

dX(t) = [rX(t) + π1(t)(μ − r) + (θ − ηp(t))a]dt + π1(t)σdW (t) + b(1 − p(t))dW0(t), (2)

dY (t) = [rY (t) + π2(t)(μ − r) + ηp(t)a]dt + π2(t)σdW (t) + bp(t)dW0(t). (3)

(p(t), π1(t)) and π2(t) are said to be admissible if they are {Ft}t∈[0,T ]-progressively mea-
surable and satisfy (p(t), π1(t)) ∈ Π1, π2(t) ∈ Π2, where Π1 = {(p(t), π1(t)) : 0 ≤ p(t) ≤
θ
η , E[

∫ T

0
(π1(t))2dt] < ∞} and Π2 = {π1(t) : E[

∫ T

0
(π2(t))2dt] < ∞}.

3 Maximizing the Utility Function for the Insurer

Suppose that the insurer has a utility function U1(x) which is strictly concave and contin-
uously differentiable on (−∞,∞). In this section, we try to find a strategy (p(t), π1(t)) that
maximizes the expected utility of the insurer’s terminal wealth, i.e.,

max
(p,π1)∈Π1

E[U1(X(T ))].

The corresponding HJB equation associated with the optimization problem is

Vt + sup
(p,π1)∈Π1

{

[rx + π1(μ − r) + a(θ − ηp)]Vx

+
1
2

[
σ2π2

1 + b2(1 − p)2 + 2σπ1b(1 − p)ρ0

]
Vxx

}

= 0 (4)

with V (T, x) = U1(x) and Vt, Vx, Vxx denote partial derivatives of the first and second orders
with respect to (w.r.t.) t and x.

The first order maximizing condition for the optimal investment strategy is

π∗
1 = −μ − r

σ2
· Vx

Vxx
− bρ0(1 − p)

σ
. (5)

Putting Equation (5) into HJB equation (4), after simplification, we have

Vt+rxVx+aθVx−apηVx− bρ0(1 − p)(μ − r)
σ

Vx+
b2(1 − p)2(1 − ρ2

0)
2

Vxx− (μ − r)2

2σ2
· V 2

x

Vxx
= 0 (6)
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with V (T, x) = U1(x).
Differentiating w.r.t. p(t) in Equation (6) gives

p0 = 1 +
aση − bρ0(μ − r)

b2σ(1 − ρ2
0)

· Vx

Vxx
. (7)

If 0 ≤ p0(t) ≤ θ
η , the optimal reinsurance proportion p∗(t) coincides with p0(t). If p0(t) ≤ 0,

we simply let p∗(t) be 0. And if p0(t) ≥ θ
η , we set p∗(t) = θ

η .
Assume that the insurer has an exponential utility function U1(x)

U1(x) = − 1
m1

e−m1x, m1 > 0, (8)

which has a constant absolute risk aversion parameter m1 and plays an important role in
insurance mathematics and actuarial practice.

By applying stochastic control theory, we can derive the optimal reinsurance and invest-
ment strategies and the corresponding value function when maximizing the insurer’s expected
exponential utility of terminal wealth, which are given in the following theorem. Details are
shown in Appendix.

Theorem 3.1 When maximizing the expected exponential utility of terminal wealth, the
optimal reinsurance and investment strategies and the corresponding value function of the in-
surer are as follows:

1) If aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
> 1 and erT > [aση−bρ0(μ−r)]η

b2m1σ(1−ρ2
0)(η−θ)

, the optimal reinsurance and investment
strategies are

p∗(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θ

η
, 0 ≤ t < t0,

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t), t0 ≤ t < t1,

0, t1 ≤ t ≤ T,

π∗
1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ − r

σ2m1
e−r(T−t) − bρ0(η − θ)

ση
, 0 ≤ t < t0,

e−r(T−t)

σ2

[
μ − r

m1
− aρ0ση − bρ2

0(μ − r)
m1b(1 − ρ2

0)

]

, t0 ≤ t < t1,

μ − r

σ2m1
e−r(T−t) − bρ0

σ
, t1 ≤ t ≤ T,

and the value function is given by Equation (34).
2) If aση−bρ0(μ−r)

b2m1σ(1−ρ2
0)

> 1 and aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
≤ erT ≤ [aση−bρ0(μ−r)]η

b2m1σ(1−ρ2
0)(η−θ)

, the optimal reinsurance
and investment strategies are

p∗(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t), 0 ≤ t < t1,

0, t1 ≤ t ≤ T,



INVESTMENT PROBLEM FOR INSURER AND REINSURER 1331

π∗
1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−r(T−t)

σ2

[
μ − r

m1
− aρ0ση − bρ2

0(μ − r)
m1b(1 − ρ2

0)

]

, 0 ≤ t < t1,

μ − r

σ2m1
e−r(T−t) − bρ0

σ
, t1 ≤ t ≤ T,

and the value function is given in Equation (38).
3) If aση−bρ0(μ−r)

b2m1σ(1−ρ2
0)

> 1 and erT < aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
, the optimal reinsurance and investment

strategies are

p∗(t) = 0, 0 ≤ t ≤ T,

π∗
1(t) =

μ − r

σ2m1
e−r(T−t) − bρ0

σ
, 0 ≤ t ≤ T,

and the value function is given by Equation (39).
4) If η−θ

η < aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
≤ 1 and erT > [aση−bρ0(μ−r)]η

b2m1σ(1−ρ2
0)(η−θ)

, the optimal reinsurance and
investment strategies are

p∗(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ

η
, 0 ≤ t < t1,

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t), t1 ≤ t ≤ T,

π∗
1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ − r

σ2m1
e−r(T−t) − bρ0(η − θ)

ση
, 0 ≤ t < t1,

e−r(T−t)

σ2

[
μ − r

m1
− aρ0ση − bρ2

0(μ − r)
m1b(1 − ρ2

0)

]

, t1 ≤ t ≤ T,

and the value function is given in Equation (40).
5) If η−θ

η < aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
≤ 1 and erT ≤ [aση−bρ0(μ−r)]η

b2m1σ(1−ρ2
0)(η−θ)

, the optimal reinsurance and
investment strategies are

p∗(t) = 1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t), 0 ≤ t ≤ T,

π∗
1(t) =

e−r(T−t)

σ2

[
μ − r

m1
− aρ0ση − bρ2

0(μ − r)
m1b(1 − ρ2

0)

]

, 0 ≤ t ≤ T,

and the value function is given by Equation (43).
6) If aση−bρ0(μ−r)

b2m1σ(1−ρ2
0)

≤ η−θ
η , the optimal reinsurance and investment strategies are

p∗(t) =
θ

η
, 0 ≤ t ≤ T,

π∗
1(t) =

μ − r

σ2m1
e−r(T−t) − bρ0(η − θ)

ση
, 0 ≤ t ≤ T,

and the value function is given in Equation (44).

The proof can be seen in the appendix.
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4 Optimal Investment Problems for the Reinsurer Under Two Cases

In reality, the insurer usually plays a leading role. Through the similar method, we can also
derive the optimal reinsurance strategy of the reinsurer. If the optimal reinsurance strategy of
the insurer is smaller than that of the reinsurer, the reinsurer will accept the optimal reinsurance
strategy chosen by the insurer, while in the opposite case, the reinsurer may not have enough
economic strength to undertake the optimal reinsurance strategy chosen by the insurer, then
the reinsurer will try to make more profits from investment. In this section, with the optimal
reinsurance strategy of the insurer, we consider two optimization problems for the reinsurer:
The problem of maximizing the expected exponential utility of terminal wealth and the problem
of minimizing the ruin probability.

4.1 Maximizing the Expected Exponential Utility of Terminal Wealth

In this subsection, we will find the optimal investment strategy in the case of maximizing
the reinsurer’s expected exponential utility of terminal wealth. Suppose that the reinsurer has
a utility function U2(y) which is strictly concave and continuously differentiable on (−∞,∞).
The objective of this problem is to find the optimal value function

max
π2∈Π2

E[U2(Y (T ))].

The corresponding HJB equation is

Ht + sup
π2∈Π2

{

[ry + π2(μ − r) + ap∗η]Hy +
1
2
[σ2π2

2 + b2(p∗)2 + 2σπ2bp
∗ρ0]Hyy

}

= 0 (9)

with H(T, y) = U2(y), where Ht, Hy, Hyy denote partial derivatives of the first and second
orders w.r.t. t and y.

The first order maximizing condition for the optimal investment strategy of the reinsurer is

π∗
2 = −μ − r

σ2
· Hy

Hyy
− bp∗ρ0

σ
. (10)

Plugging Equation (10) into HJB equation (9) yields

Ht + ryHy + aηp∗Hy − bρ0p
∗(μ − r)
σ

Hy +
b2(p∗)2(1 − ρ2

0)
2

Hyy − (μ − r)2

2σ2
· H2

y

Hyy
= 0 (11)

with H(T, y) = U2(y).
Suppose that the reinsurer also has an exponential utility function U2(y)

U2(y) = − 1
m2

e−m2y, m2 > 0. (12)

Following the exponential utility function described by Equation (12), we assume that the
solution to Equation (11) has the following form

H(t, y) = − 1
m2

e−m2yer(T−t)+g(t) (13)
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with the boundary condition given by g(T ) = 0.
Then

Ht = (m2ryer(T−t) + gt)H, Hy = −m2er(T−t)H, Hyy = m2
2e

2r(T−t)H,

where gt denotes the derivative of g(t) w.r.t. t.
Now we try to find the solution to Equation (11) and recover π∗

2(t) from derivatives of
H(t, y) for different reinsurance proportion.

If p∗(t) = p0(t), Equation (11) is simplified into

Ht + ryHy +
[

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t)

]

aηHy

−
[

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t)

]

· bρ0(μ − r)Hy

σ

+
[

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t)

]2
b2(1 − ρ2

0)Hyy

2
− (μ − r)2

2σ2
· H2

y

Hyy
= 0, (14)

if p∗(t) = 0, Equation (11) becomes

Ht + ryHy − (μ − r)2

2σ2
· H2

y

Hyy
= 0, (15)

and if p∗(t) = θ
η , Equation (11) is transformed into

Ht + ryHy + aθHy − bρ0θ(μ − r)
ση

Hy +
b2θ2(1 − ρ2

0)
2η2

Hyy − (μ − r)2

2σ2
· H2

y

Hyy
= 0. (16)

The procedures of solving Equations (14)–(16) are similar to those for an insurer in Section 3,
so we omit them here.

From the above analysis, we propose the optimal investment strategies of the reinsurer
who aims to maximize the expected exponential utility of terminal wealth with the optimal
reinsurance strategy of the insurer in the following theorem.

Theorem 4.1 According to the optimal reinsurance strategy chosen by the insurer, the
optimal investment strategy of the reinsurer in the sense of maximizing the expected exponential
utility of terminal wealth is given as follows:

1) If the optimal reinsurance proportion of the insurer is p∗(t) = p0(t), then

π∗
2(t) =

e−r(T−t)

σ2

[
μ − r

m2
+

aρ0ση − bρ2
0(μ − r)

m1b(1 − ρ2
0)

]

− bρ0

σ
.

2) If p∗(t) = 0, we have

π∗
2(t) =

μ − r

σ2m2
e−r(T−t).

3) If p∗(t) = θ
η , the reinsurer’s optimal investment strategy is

π∗
2(t) =

μ − r

σ2m2
e−r(T−t) − bρ0θ

ση
.
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Proof 1) If p∗(t) = p0(t), from Equations (10) and (13), we obtain

π∗
2 = −μ − r

σ2
· Hx

Hxx
− bp∗ρ0

σ

= −μ − r

σ2
· e−r(T−t)

−m2
− bρ0

σ
·
[

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t)

]

=
e−r(T−t)

σ2

[
μ − r

m2
+

aρ0ση − bρ2
0(μ − r)

m1b(1 − ρ2
0)

]

− bρ0

σ
.

2) If p∗(t) = 0, according to Equations (10) and (13), we derive

π∗
2 = −μ − r

σ2
· Hx

Hxx
− bp∗ρ0

σ
= −μ − r

σ2
· e−r(T−t)

−m2
=

μ − r

σ2m2
e−r(T−t).

3) If p∗(t) = θ
η , from Equations (10) and (13), we have

π∗
2 = −μ − r

σ2
· Hx

Hxx
− bp∗ρ0

σ
= −μ − r

σ2
· e−r(T−t)

−m2
− bρ0θ

ση
=

μ − r

σ2m2
e−r(T−t) − bρ0θ

ση
.

The proof is completed.

4.2 Minimizing the Ruin Probability

In this subsection, we want to find the reinsurer’s optimal investment strategy in the sense
of minimizing the ruin probability with the optimal reinsurance strategy of the insurer. Let
τπ2 = inf{t : Y (t) < 0} be the first time when the surplus process of the reinsurer becomes
negative. Since the underlying risk model is a Brownian motion with drift, it is known that
τπ2 = inf{t : Y (t) = 0} with probability 1. Denote the ruin probability, given the initial reserve
y, by

φπ2(y) = P (τπ2 < ∞|Y0 = y),

and the minimum ruin probability by

φ(y) = inf
π2

φπ2(y).

φ(y) is convex and decreasing on y ∈ (0,∞). Our goal is to find the minimum ruin probability
φ(y) and the optimal investment strategy π∗

2(t) such that φ(y) = φπ∗
2 (y).

To solve the above problem, we consider the following HJB equation

min
π2∈Π2

{

[ry + π2(μ − r) + ap∗η]φy +
1
2
[σ2π2

2 + b2(p∗)2 + 2σπ2bp
∗ρ0]φyy

}

= 0 (17)

with the boundary conditions φ(0) = 1 and φ(∞) = 0.
Assume that there exists a solution φ satisfying φy < 0, φyy > 0 on the interval y ∈ (0,∞)

and φ(0) = 1, φ(∞) = 0. Differentiating w.r.t. π2(t) in Equation (17), we obtain

π∗
2 = −μ − r

σ2
· φy

φyy
− bρ0p

∗

σ
. (18)
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Introducing Equation (18) into HJB equation (17), after simplification, we have

ryφy + ap∗ηφy − bρ0p
∗(μ − r)
σ

φy +
b2(p∗)2(1 − ρ2

0)
2

φyy − (μ − r)2

2σ2
· φ2

y

φyy
= 0 (19)

with φ(0) = 1, φ(∞) = 0.
From the surplus process of the reinsurer (3), we find that when p∗(t) = 0, π2(t) = 0 and

y ≥ 0, the ruin of the reinsurer will not occur, that is φ(y) = 0. So in the following part, we
derive the explicit expressions for φ(y) in the cases that p∗(t) = p0(t) and p∗(t) = θ

η .
If p∗(t) = p0(t), Equation (19) is simplified into

ryφy + aηφy − bρ0(μ − r)
σ

φy − (aση − bρ0(μ − r))2

m1b2σ2(1 − ρ2
0)

e−r(T−t)φy

+
[

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t)

]2
b2(1 − ρ2

0)φyy

2
− (μ − r)2

2σ2
· φ2

y

φyy
= 0 (20)

with the boundary conditions φ(0) = 1 and φ(∞) = 0. Set h1(y) = φy

φyy
, from Equation (20)

we derive

(μ − r)2

2σ2
h1(y)2 −

[

ry + aη − bρ0(μ − r)
σ

− (aση − bρ0(μ − r))2

m1b2σ2(1 − ρ2
0)

e−r(T−t)

]

h1(y)

−
[

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t)

]2
b2(1 − ρ2

0)
2

= 0.

Let

N1 = ry + aη − bρ0(μ − r)
σ

− (aση − bρ0(μ − r))2

m1b2σ2(1 − ρ2
0)

e−r(T−t)

and due to φy < 0, φyy > 0, we obtain

h1(y) =
σ2N1 − σ2

√
N2

1 + b2(μ−r)2(1−ρ2
0)(p0)2

σ2

(μ − r)2
(21)

and then we derive

φ(y) = c1 + c2

∫ y

0

exp
(∫ z

0

1
h1(s)

ds

)

dz.

In terms of the boundary conditions φ(0) = 1, φ(∞) = 0, we have c1 = 1 and

c2 = − 1
∫ ∞

0
exp

(∫ z

0
1

h1(s)
ds

)
dz

.

If p∗(t) = θ
η , Equation (19) is transformed into

ryφy + aθφy − bρ0θ(μ − r)
ση

φy +
b2θ2(1 − ρ2

0)
2η2

φyy − (μ − r)2

2σ2
· φ2

y

φyy
= 0 (22)

with the boundary conditions φ(0) = 1 and φ(∞) = 0. Similarly, set h2(y) = φy

φyy
and we obtain

(μ − r)2

2σ2
h2(y)2 −

[

ry + aθ − bρ0θ(μ − r)
ση

]

h2(y) − b2θ2(1 − ρ2
0)

2η2
= 0.
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Let
N2 = ry + aθ − bρ0θ(μ − r)

ση

and due to φy < 0, φyy > 0, we derive

h2(y) =
σ2N2 − σ2

√
N2

2 + b2θ2(μ−r)2(1−ρ2
0)

σ2η2

(μ − r)2
(23)

and

φ(y) = c3 + c4

∫ y

0

exp
(∫ z

0

1
h2(s)

ds

)

dz.

Considering the boundary conditions φ(0) = 1, φ(∞) = 0, we have c3 = 1 and

c4 = − 1
∫ ∞

0
exp

(∫ z

0
1

h2(s)
ds

)
dz

.

Finally, the following theorem summarizes the above analysis.

Theorem 4.2 According to the optimal reinsurance strategy chosen by the insurer, the
optimal investment strategy of the reinsurer in the sense of minimizing the ruin probability is
as follows:

1) If the optimal reinsurance proportion of the insurer is p∗(t) = p0(t), then

π∗
2(y) = −μ − r

σ2
h1(y) − bρ0σ

[

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t)

]

,

where h1(y) is given in Equation (21).
2) If p∗(t) = 0, we have π∗

2(y) = 0.
3) If p∗(t) = θ

η , the reinsurer’s optimal investment strategy is

π∗
2(y) = −μ − r

σ2
h2(y) − bρ0θ

ση
,

where h2(y) is given by Equation (23).

Proof 1) If p∗(t) = p0(t), according to Equations (18) and (21), we obtain

π∗
2 = −μ − r

σ2
· φy

φyy
− bp∗ρ0

σ

= −μ − r

σ2
h1(y) − bρ0σ

[

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t)

]

.

2) From Equation (3), we find that if p∗(t) = 0, π2(y) = 0 and y ≥ 0, the ruin of the
reinsurer will not occur, so π∗

2(y) = 0.
3) If p∗(t) = θ

η , according to Equations (18) and (23), we derive

π∗
2 = −μ − r

σ2
· φy

φyy
− bp∗ρ0

σ

= −μ − r

σ2
h2(y) − bρ0θ

ση
.

The proof is completed.
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4.3 The Equality of the Reinsurer’s Optimal Investment Strategies Under the
Two Cases

Browne[22], Bai and Guo[23] both found that with zero interest rate, the insurer’s opti-
mal investment strategy that maximized the expected exponential utility of terminal wealth
also minimized the ruin probability. We now examine the equality of the reinsurer’s optimal
investment strategies under these two cases when there is no risk-free asset.

For the reason that when reinsurance proportion p∗(t) = 0, π∗
2(y) = 0 for y ≥ 0 and the

minimum ruin probability is φ(y) = 0. Thus, this subsection only shows the equality of the
reinsurer’s optimal investment strategies when p∗(t) = p0(t) and p∗(t) = θ

η .
If r = 0, for p∗(t) = p0(t), the optimal investment strategy of the reinsurer in the sense of

maximizing the expected exponential utility of terminal wealth is

π∗
2(t) =

μ

σ2m2
− bρ0p

0(t)
σ

(24)

and that of minimizing the ruin probability is

π∗
2(t) = − μ

σ2
h1 − bρ0p

0(t)
σ

, (25)

where

p0(t) = 1 − aση − bρ0μ

b2m1σ(1 − ρ2
0)

, N1 = aη − bρ0μ

σ
− (aση − bρ0μ)2

m1b2σ2(1 − ρ2
0)

,

h1 =
σ2N1 − σ2

√
N2

1 + b2μ2(1−ρ2
0)(p0)2

σ2

μ2
.

Let m2 = − 1
h1

, we see that Equations (24) and (25) are equivalent.
For p∗(t) = θ

η , the optimal investment strategy of the reinsurer in the sense of maximizing
the expected exponential utility of terminal wealth and minimizing the ruin probability are

π∗
2(t) =

μ

σ2m2
− bρ0θ

ση
, (26)

π∗
2(t) = − μ

σ2
h2 − bρ0θ

ση
, (27)

where

N2 = aθ − bρ0θμ

ση
, h2 =

σ2N2 − σ2
√

N2
2 + b2θ2(μ−r)2(1−ρ2

0)

σ2η2

(μ − r)2
.

Let m2 = − 1
h2

, we find that Equations (26) and (27) are equivalent.
For r �= 0, there is no equality between the reinsurer’s optimal investment strategies under

the two cases. Because if r �= 0, the optimal investment strategy which considers maximizing
the expected exponential utility of terminal wealth is related to the time t, on the other hand,
the optimal investment strategy that minimizes the ruin probability is related to the wealth of
the reinsurer.
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5 Conclusion

In this paper, we focus on the optimal reinsurance and investment problem for an insurer
and a reinsurer. In our model, the basic claim process is assumed to follow a Brownian motion
with drift. The insurer can purchase proportional reinsurance from the reinsurer and both the
insurer and the reinsurer are allowed to invest in a risk-free asset and a risky asset. Moreover,
we consider the correlation between the claim process and the price process of the risky asset.
The effect of the net profit on proportional reinsurance is also taken into account. Firstly, we
consider the optimization problem of maximizing the insurer’s expected exponential utility of
terminal wealth. By solving the corresponding HJB equation, we derive the optimal reinsurance
and investment strategies of the insurer, explicitly. Then according to the insurer’s optimal
reinsurance strategy, the reinsurer chooses the optimal investment strategy, i.e., the reinsurer
increases his/her wealth via investment. We consider two optimal investment problems for the
reinsurer: the problem of maximizing the expected exponential utility of terminal wealth and
the problem of minimizing the ruin probability. Furthermore, we obtain the optimal investment
strategies of the reinsurer. Finally, we find that, with zero interest rate, the optimal strategies
of the reinsurer under two cases are equivalent.
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Appendix

Proof of Theorem 3.1 According to the exponential utility function described by Equation
(8), we try to obtain the solution to Equation (6) in the following way

V (t, x) = − 1
m1

e−m1xer(T−t)+f(t) (28)

with the boundary condition given by f(T ) = 0.
Then

Vt = (m1rxer(T−t) + ft)V, Vx = −m1er(T−t)V, Vxx = m2
1e2r(T−t)V,
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where ft denotes the derivative of f(t) w.r.t. t.
From Equations (7) and (28), the corresponding p0(t) is given by

p0(t) = 1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t). (29)

If aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
> 0, Equation (29) shows that p0(t) ∈ [0, θ

η ] is equivalent to

t ≤ t1 = T − 1
r

ln
aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
,

t ≥ t0 = T − 1
r

ln
[aση − bρ0(μ − r)]η

b2m1σ(1 − ρ2
0)(η − θ)

.

Now we find the solution to Equation (6) and recover p∗(t), π∗
1(t) from derivatives of V (t, x).

Case 1 aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
> 1.

1) If erT > [aση−bρ0(μ−r)]η
b2m1σ(1−ρ2

0)(η−θ)
and t1 ≤ t ≤ T , we have p0(t) ≤ 0. So p∗(t) = 0 and Equation

(6) is transformed into

Vt + rxVx + aθVx − bρ0(μ − r)
σ

Vx +
b2(1 − ρ2

0)
2

Vxx − (μ − r)2

2σ2
· V 2

x

Vxx
= 0. (30)

When t0 ≤ t < t1, p0(t) ∈ [0, θ
η ], then p∗(t) = p0(t). Equation (6) becomes

Vt + rxVx + a(θ − η)Vx − (μ − r)2

2σ2
· V 2

x

Vxx
− [aση − bρ0(μ − r)]2

2σ2b2(1 − ρ2
0)

· V 2
x

Vxx
= 0. (31)

And when 0 ≤ t < t0, we obtain p0(t) ≥ θ
η . Let p∗(t) = θ

η , Equation (6) is simplified into

Vt + rxVx − bρ0(η − θ)(μ − r)
ση

Vx +
b2(η − θ)2(1 − ρ2

0)
2η2

Vxx − (μ − r)2

2σ2
· V 2

x

Vxx
= 0. (32)

Equations (30)–(32) can be solved by the same procedure and we demonstrate the procedure
with Equation (30) only. Introducing Vt, Vx, Vxx into Equation (30), we obtain

ft −
[

am1θ − bρ0m1(μ − r)
σ

]

er(T−t) +
b2m2

1(1 − ρ2
0)

2
e2t(T−t) − (μ − r)2

2σ2
= 0. (33)

Considering the boundary condition f(T ) = 1, the solution to Equation (33) is

f(t) =
[
am1θ

r
− bρ0m1(μ − r)

rσ

]

(1 − er(T−t)) − b2m2
1(1 − ρ2

0)
4r

(1 − e2r(T−t)) − (μ − r)2

2σ2
(T − t).

Similarly, we can derive the solutions to Equations (33) and (32), explicitly. Therefore, the
optimal reinsurance and investment strategies of the insurer are

p∗(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θ

η
, 0 ≤ t < t0,

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t), t0 ≤ t < t1,

0, t1 ≤ t ≤ T,
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π∗
1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ − r

σ2m1
e−r(T−t) − bρ0(η − θ)

ση
, 0 ≤ t < t0,

e−r(T−t)

σ2

[
μ − r

m1
− aρ0ση − bρ2

0(μ − r)
m1b(1 − ρ2

0)

]

, t0 ≤ t < t1,

μ − r

σ2m1
e−r(T−t) − bρ0

σ
, t1 ≤ t ≤ T.

Noting that V (t, x) is continuous at t = t0 and t = t1, we obtain

V (t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− 1
m1

e−m1xer(T−t)+f3(t), 0 ≤ t < t0,

− 1
m1

e−m1xer(T−t)+f2(t), t0 ≤ t < t1,

− 1
m1

e−m1xer(T−t)+f1(t), t1 ≤ t ≤ T,

(34)

where

f1(t) =
[
am1θ

r
− bρ0m1(μ − r)

rσ

]

(1 − er(T−t))

−b2m2
1(1 − ρ2

0)
4r

(1 − e2r(T−t)) − (μ − r)2

2σ2
(T − t), (35)

f2(t) =
am1(θ − η)

r
(er(T−t1) − er(T−t)) −

[
(aση − bρ0(μ − r))2

2σ2b2(1 − ρ2
0)

+
(μ − r)2

2σ2

]

(t1 − t)

+
[
am1θ

r
− bρ0m1(μ − r)

rσ

]

(1 − er(T−t1))

−b2m2
1(1 − ρ2

0)
4r

(1 − e2r(T−t1)) − (μ − r)2

2σ2
(T − t1), (36)

f3(t) =
bm1ρ0(η − θ)(μ − r)

rση
(er(T−t) − er(T−t0))

+
b2m2

1(θ − η)2(1 − ρ2
0)

4rη2
(e2r(T−t) − e2r(T−t0))

− (μ − r)2

2σ2
(t0 − t) +

am1(θ − η)
r

(er(T−t1) − er(T−t0))

−
[
(aση − bρ0(μ − r))2

2σ2b2(1 − ρ2
0)

+
(μ − r)2

2σ2

]

(t1 − t0)

+
[
am1θ

r
− bρ0m1(μ − r)

rσ

]

(1 − er(T−t1))

−b2m2
1(1 − ρ2

0)
4r

(1 − e2r(T−t1)) − (μ − r)2

2σ2
(T − t1). (37)

2) If aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
≤ erT ≤ [aση−bρ0(μ−r)]η

b2m1σ(1−ρ2
0)(η−θ)

and t1 ≤ t ≤ T , we find p0(t) ≤ 0. Therefore,

we let p∗(t) = 0. When 0 ≤ t < t1, we have p0(t) ∈ [0, θ
η ], so p∗(t) = p0(t), i.e., the optimal
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reinsurance and investment strategies of the insurer are

p∗(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t), 0 ≤ t < t1,

0, t1 ≤ t ≤ T,

π∗
1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−r(T−t)

σ2

[
μ − r

m1
− aρ0ση − bρ2

0(μ − r)
m1b(1 − ρ2

0)

]

, 0 ≤ t < t1,

μ − r

σ2m1
e−r(T−t) − bρ0

σ
, t1 ≤ t ≤ T.

Similar to the above-mentioned derivations, we obtain the value function as follows

V (t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
m1

e−m1xer(T−t)+f2(t), 0 ≤ t < t1,

− 1
m1

e−m1xer(T−t)+f1(t), t1 ≤ t ≤ T,

(38)

where f1(t) and f2(t) are given by Equations (35) and (36).
3) If erT < aση−bρ0(μ−r)

b2m1σ(1−ρ2
0)

, we have p0(t) ≤ 0 for 0 ≤ t ≤ T . Thus the optimal reinsurance
and investment strategies of the insurer are

p∗(t) = 0, 0 ≤ t ≤ T,

π∗
1(t) =

μ − r

σ2m1
e−r(T−t) − bρ0

σ
, 0 ≤ t ≤ T,

and the value function is

V (t, x) = − 1
m1

e−m1xer(T−t)+f1(t), 0 ≤ t ≤ T, (39)

where f1(t) is given in Equation (35).
Case 2 η−θ

η < aση−bρ0(μ−r)
b2m1σ(1−ρ2

0)
≤ 1.

1) If erT > [aση−bρ0(μ−r)]η
b2m1σ(1−ρ2

0)(η−θ)
and t0 ≤ t ≤ T , we derive p0(t) ∈ [0, θ

η ]. So p∗(t) = p0(t).

When 0 ≤ t < t0, p0(t) ≥ θ
η . We have p∗(t) = θ

η , i.e., the optimal reinsurance and investment
strategies of the insurer are

p∗(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ

η
, 0 ≤ t < t1,

1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t), t1 ≤ t ≤ T,

π∗
1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ − r

σ2m1
e−r(T−t) − bρ0(η − θ)

ση
, 0 ≤ t < t1,

e−r(T−t)

σ2

[
μ − r

m1
− aρ0ση − bρ2

0(μ − r)
m1b(1 − ρ2

0)

]

, t1 ≤ t ≤ T.
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By similar derivations, we have

V (t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
m1

e−m1xer(T−t)+f5(t), 0 ≤ t < t1,

− 1
m1

e−m1xer(T−t)+f4(t), t1 ≤ t ≤ T,

(40)

where

f4(t) =
am1(θ − η)

r
(1 − er(T−t)) −

[
(aση − bρ0(μ − r))2

2σ2b2(1 − ρ2
0)

+
(μ − r)2

2σ2

]

(T − t), (41)

f5(t) =
bm1ρ0(η − θ)(μ − r)

rση
(er(T−t) − er(T−t1))

+
b2m2

1(η − θ)2(1 − ρ2
0)

4rη2
(e2r(T−t) − e2r(T−t1)) − (μ − r)2

2σ2
(t1 − t)

+
am1(θ − η)

r
(1 − er(T−t1)) −

[
(aση − bρ0(μ − r))2

2σ2b2(1 − ρ2
0)

+
(μ − r)2

2σ2

]

(T − t1). (42)

2) If erT ≤ [aση−bρ0(μ−r)]η
b2m1σ(1−ρ2

0)(η−θ)
, we derive p0(t) ∈ [0, θ

η ] for 0 ≤ t ≤ T , then the optimal
reinsurance and investment strategies of the insurer are

p∗(t) = 1 − aση − bρ0(μ − r)
b2m1σ(1 − ρ2

0)
e−r(T−t), 0 ≤ t ≤ T,

π∗
1(t) =

e−r(T−t)

σ2

[
μ − r

m1
− aρ0ση − bρ2

0(μ − r)
m1b(1 − ρ2

0)

]

, 0 ≤ t ≤ T,

and the value function is

V (t, x) = − 1
m1

e−m1xer(T−t)+f4(t), 0 ≤ t ≤ T, (43)

where f4(t) is given by Equation (41).
Case 3 aση−bρ0(μ−r)

b2m1σ(1−ρ2
0)

≤ η−θ
η .

For 0 ≤ t ≤ T , we obtain p0(t) ≥ θ
η . Therefore, the optimal reinsurance and investment

strategies of the insurer are

p∗(t) =
θ

η
, 0 ≤ t ≤ T,

π∗
1(t) =

μ − r

σ2m1
e−r(T−t) − bρ0(η − θ)

ση
, 0 ≤ t ≤ T.

Meanwhile, we can derive the optimal value function in the following form

V (t, x) = − 1
m1

e−m1xer(T−t)+f6(t), 0 ≤ t ≤ T, (44)

where

f6(t) = −bm1ρ0(η − θ)(μ − r)
rση

(1 − er(T−t))

−b2m2
1(η − θ)2(1 − ρ2

0)
4rη2

(1 − e2r(T−t)) − (μ − r)2

2σ2
(T − t). (45)

The proof of Theorem 3.1 is completed.


