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Abstract This paper mainly studies observability and detectability for continuous-time stochastic

Markov jump systems. Two concepts called W-observability and W-detectability for such systems are

introduced, which are shown to coincide with various notions of observability and detectability reported

recently in literature, such as exact observability, exact detectability and detectability. Besides, by

introducing an accumulated energy function, some efficient criteria and interesting properties for both

W-observability and W-detectability are obtained.

Keywords Continuous-time stochastic system, detectability, Markov jump, observability.

1 Introduction

Since a lot of practical systems can be described by stochastic models, stochastic control
theory has attracted considerable interest and made great progress in a variety of the scientific
and engineering fields over the past several decades. The study for stochastic systems has
become an important research issue in the area of modern control theory and a great deal of
control problems that have been studied well in deterministic systems are extended to stochastic
systems, which include detectability and observability[1−10], stability and stabilization[2,3,10−14],
H2/H∞ control problem[15] and LQ optimal control[16]. In particular, as one of the most basic
dynamics models, stochastic Markov jump systems[4,5,8−12] have intimate connection with some
practical systems which are vulnerable to component failures or repairs, abrupt changes in
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structure. Therefore, stochastic Markov jump systems can be used to represent some investment
portfolio models and random failure processes in manufacturing industry and some networked
control systems with packet dropout, which have been researched extensively.

On the other hand, observability and detectability are most essential and significant notions
in modern control theory which play an important role in study of Kalman filtering prob-
lem, LQ optimal control, H2/H∞ optimal control and to some extent. In [2], Zhang, et al.
generalized the classic notion of complete observability of deterministic systems to stochastic
systems and gave the concept of exact observability, for which a necessary and sufficient con-
dition called stochastic Popov-Belevitch-Hautus (PBH) criterion was developed by employing
the spectrum technique. Moreover, it was shown that exact observability can be applied to
study the stochastic stability based on the generalized Lyapunov equations (GLEs). Similarly,
Damm[1], Zhang, et al.[3] extended the notion of detectability for deterministic systems to
stochastic systems and gave the concepts of detectability and exact detectability, respectively.
Some stochastic PBH criteria for detectability and exact detectability were also derived. Re-
cently, a new mathematic approach, called the H-representation[17], was introduced to study
the GLEs arising in stochastic control. Based on this method, several equivalent conditions can
be obtained efficiently for stochastic stabilization, observability and detectability. Additionally,
it is need to emphasize that there are still many different notions of detectability for stochastic
systems reported in recently literature, such as MS-detectability, W-detectability and uniform
detectability[4−7,18−20]. It is interesting that although many control problems for stochastic
systems can be treated analogously to that of deterministic systems, there are still some con-
cepts that are essentially different from each other. The notion of detectability is such case.
For instance, although MS-detectability and exact detectability are equivalent to the notion of
detectability in deterministic systems, exact detectability is weaker than MS-detectability in
stochastic systems. The latter is dual to the notion of mean square stabilization. It should be
pointed out that compared with other concepts of detectability, exact detectability seems to be
served as the usual detectability concept for deterministic systems.

In [6, 7], Li, et al. used the concepts of W-detectability and W-observability to de-
rive some unified treatments for various detectability and observability in both continuous-
and discrete-time stochastic systems, which motivated us to generalize these two concepts to
discrete-time[9] and continuous-time stochastic Markov jump systems and discuss the relation-
ships between exact observability[2] and W-observability[4]; detectability[1], exact detectability[3]

and W-detectability[4], respectively, to find out a similar unified treatment in the framework of
stochastic Markov jump systems.

The objective of this paper is to study the notions of observability and detectability for
continuous-time stochastic Markov jump systems and give an unified treatment for various
notions of observability and detectability as done in [6, 7, 9]. In this paper, we extend the
notions of W-observability and W-detectability to continuous-time stochastic Markov jump
systems for the first time. These definitions adopt the following ideas:

(a) W-observability implies that both stable and unstable models could be reflected by the
measurement output;
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(b) W-detectability implies that any unstable model could be reflected by the measurement
output.

The above ideas come from the standard concepts of observability and detectability for linear
systems[18]. Moreover, it will be shown that W-observability is equivalent to exact observabil-
ity. Likewise, W-detectability allows us to unify different concepts of detectability and exact
detectability in the same framework. Besides, by defining an accumulated energy function,
some efficient W-observability and W-detectability criteria and good properties for stochastic
Markov jump systems can be derived. It is expected that the results of this paper will be useful
in stochastic stability analysis, stochastic LQ optimal control problem and stochastic H2/H∞
control problem.

The outline of this paper is organized as follows. Section 2 introduces some notations and
makes some important preliminaries which will be used throughout this paper. Additionally,
we introduce the notions of asymptotical mean square stability and give some necessary and
sufficient conditions for the stability of continuous-time stochastic Markov jump systems di-
rectly. In Section 3, the definition of W-observability of continuous-time stochastic Markov
jump systems is presented, for which one efficient criterion is given. Then, an equivalent the-
orem among W-observability and exact observability is derived. In Section 4, W-detectability
is defined, which is shown to coincide with detectability and exact detectability, and one cri-
terion for W-detectability is also presented. Section 5 presents a simple numerical example to
illustrate the main results of this paper and Section 6 concludes this paper with some remarks.

2 Notations and Preliminaries

In this paper, let AT, Tr(A) and rank(A) denote the transpose, the trace and the rank of
the matrix A, respectively. I is the identity matrix and IB is the indicator function of the set
B. As usual, A ≥ 0 (> 0) means that A is a positive semidefinite (positive definite) matrix
and A ≥ B (> B) means that A − B ≥ 0 (> 0). Let ⊗ be the Kronecker product and σ(L)
represents the spectrum set of the linear operator or the matrix L. Let N denote the set of
nonnegative integers, i.e., N = {0, 1, · · · } and C

− the open left hand side complex plane. We
set R

+,0 to denote the interval [0,∞) in real plane and R
n refer to the linear space of all n-

dimensional real vectors with usual 2-norm ‖ · ‖. Let Rm×n be the space formed by all m × n

real matrices and Sn the space of all n × n symmetric matrices. We use Sn+ to denote the
space of all positive semidefinite matrices. Let R

N
m×n represent the linear space of all matrix

groups A = (A1, A2, · · · , AN ) with Ai ∈ Rm×n. In the meanwhile, S
N
n and S

N
n+ can also be

defined similarly. We can derive that S
N
n = {X = (X1, X2, · · · , XN ), Xi ∈ Sn, i = 1, 2, · · · , N}

is a Hilbert space with the inner product

〈U, V 〉 =
N∑

i=1

Tr(UT
i Vi), ∀U, V ∈ S

N
n .
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Without loss of generality, consider the following continuous-time stochastic Markov jump
system {

dx(t) = A(θ(t))x(t)dt + C(θ(t))x(t)dw(t), x(0) = x0,

y(t) = Q(θ(t))x(t), t ∈ R
+,0

(1)

where x(t) ∈ R
n and y(t) ∈ R

p are the system state and the measurement output, respectively.
x(0) = x0 is the given initial condition. Furthermore, we present the following assumptions.

(a) W = {w(t), t ∈ R
+,0} is an one-dimensional, standard Wiener process defined on the

complete filtered probability space (Ω ,F , {Ft}t≥0,P) with Ft = σ{θ(s), w(s)|0 ≤ s ≤ t}.
(b) Θ = {θ(t), t ∈ R

+,0} is a homogeneous continuous-time Markov process with right
continuous trajectories and its state space is a finite set defined by N = {1, 2, · · · , N}. In
addition, θ(0) = θ0 is the initial distribution. We also assume that

P (θ(t + Δt) = j|θ(t) = i) =

{
λijΔt + o(Δt), i �= j,

1 + λiiΔt + o(Δt), i = j,
(2)

where Λ = [λij ], i, j ∈ N is the stationary transition rate matrix with λij ≥ 0 (i �= j) and
0 ≤ λi = −λii =

∑
i�=j λij < ∞, o(Δt) refers to an infinitesimal of higher order w.r.t Δt.

(c) Wiener process W = {w(t), t ∈ R
+,0} is independent with Markov process Θ = {θ(t), t ∈

R
+,0} and the initial distribution θ(0) = θ0.

Define the following matrix groups A, C ∈ R
N
n×n and Q ∈ R

N
p×n

A = (A1, A2, · · · , AN ), C = (C1, C2, · · · , CN ), Q = (Q1, Q2, · · · , QN ), (3)

where Ai = A(θ(t) = i), Ci = C(θ(t) = i) and Qi = Q(θ(t) = i) (i ∈ N). For convenience,
System (1) will be described as [A, C; Q|Λ] hereinafter.

Besides, define matrices Xi(t), Yi(t) (t ∈ R
+,0, i ∈ N) and their corresponding matrix groups

X(t), Y (t) as follows

Xi(t) = E[x(t)xT(t)I{θ(t)=i}], Yi(t) = E[y(t)yT(t)I{θ(t)=i}], (4)

X(t) = (X1(t), X2(t), · · · , XN(t)) ∈ S
N
n , Y (t) = (Y1(t), Y2(t), · · · , YN (t)) ∈ S

N
p . (5)

At first, we introduce the following differential equations Xi(t) and Yi(t) satisfying, which can
be used to investigates the notions of detectability and observability below.

Lemma 2.1 (see [8]) For system [A, C; Q|Λ], Xi(t) and Yi(t) (i ∈ N) satisfy the following
differential equations

⎧
⎪⎪⎨

⎪⎪⎩

Ẋi(t) = AiXi(t) + Xi(t)AT
i + CiXi(t)CT

i +
N∑

j=1

λjiXj(t), Xi(0) = x0x
T
0 I{θ0=i},

Yi(t) = QiXi(t)QT
i , t ∈ R

+,0.

(6)

Definition 2.2 For system [A, C; Q|Λ], Lyapunov operator L(·) = (L1,L2, · · · ,LN ) from
S

N
n to S

N
n is defined as follows

Li(X) = AiXi + XiA
T
i + CiXiC

T
i +

N∑

j=1

λjiXj, ∀X = (X1, X2, · · · , XN) ∈ S
N
n , i ∈ N. (7)
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The spectrum set of operator L(·) is defined by σ(L) = {λ ∈ C : L(X̂) = λX̂, X̂ ∈ S
N
n , X̂ �= 0}.

Remark 2.3 From Lemma 2.1 and Definition 2.2, for any t ∈ R
+,0, we have Ẋ(t) =

L(X(t)). Besides, it is easy to check that the following linear operator L∗(·) = (L∗
1,L∗

2, · · · ,L∗
N )

L∗
i (X) = AT

i Xi + XiAi + CT
i XiCi +

N∑

j=1

λijXj, ∀X = (X1, X2, · · · , XN) ∈ S
N
n , i ∈ N (8)

is the adjoint operator of L(·) with the inner product 〈U, V 〉 =
∑N

j=1 Tr(UT
i Vi) for any U, V ∈

S
N
n . As discussed in [1], it follows σ(L) = σ(L∗).

Definition 2.4 (see [1]) A linear operator T (·) : H → H is called to be resolvent positive
if there exists a scalar α0 ∈ R such that for any α ≥ α0, the resolvent operator (αE − T )−1 is
positive, i.e.,

(αE − T )−1(H+) ⊆ H+,

where E is the identity operator and H is a finite-dimensional space, ordered by the closed
solid, pointed convex cone H+.

Remark 2.5 According to [1], linear operator L(·) is resolvent positive. Denote ρ(L) =
max{Re(λ) : λ ∈ σ(L)}. Then, there exists a nonzero Z ∈ S

N
n+ such that L(Z) = ρ(L)Z.

For the sake of discussion, we introduce another linear operator vec(·) as follows

vec(A) =

⎡

⎢⎢⎢⎢⎢⎢⎣

vec(A1)

vec(A2)
...

vec(AN )

⎤

⎥⎥⎥⎥⎥⎥⎦
, vec(Aj) =

⎡

⎢⎢⎢⎢⎢⎢⎣

A
(1)
j

A
(2)
j

...

A
(n)
j

⎤

⎥⎥⎥⎥⎥⎥⎦
, j ∈ N,

where A = (A1, A2, · · · , AN ) ∈ R
N
m×n, Aj = (A(1)

j , A
(2)
j , · · · , A

(n)
j ) and A

(k)
j ∈ R

m is the k-th
column vector of Aj . Using the operator vec(·), for any U, V ∈ S

N
n , we have

〈U, V 〉 =
N∑

i=1

Tr(UT
i Vi) = vecT(U)vec(V ). (9)

Moreover, let ζ = n2N and define vector χ(t) = vec(X(t)). Taking operator vec(·) on both
sides of Ẋ(t) = L(X(t)) with vec(AXB) = (BT ⊗ A)vec(X), we have

χ̇(t) = A χ(t), (10)

where A = diag(A1 ⊗ In + In ⊗A1 +C1 ⊗C1, A2 ⊗ In + In ⊗A2 + C2 ⊗C2 · · · , AN ⊗ In + In ⊗
AN +CN ⊗CN )+(ΛT⊗In2) ∈ Rζ×ζ . Therefore, System (1) is reduced to a simple linear system
(10), which will be used to investigate the concepts of stability, observability, detectability for
system [A, C; Q|Λ].
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Definition 2.6 System [A, C; Q|Λ] is said to be asymptotically mean square stable, if for
any x0 ∈ R

n and the initial distribution θ0, limt→∞ E‖x(t)‖2 = 0.

According to [2], we can get that system [A, C; Q|Λ] is asymptotically mean square stable,
iff one of the following statements holds.

(a) σ(L) ⊆ C
−; (b) σ(A ) ⊆ C

−; (c) ρ(L) < 0.
Generally speaking, for system [A, C; Q|Λ], we can compute the matrix A and its spectrum set
σ(A ) firstly. Then judge its asymptotical mean square stability based on the item (c) as above.

In order to derive the criteria for W-observability and W-detectability, we define the norm
‖X(t)‖E = E‖x(t)‖2 and introduce the following accumulated energy function

Wh(X(0)) =
∫ h

0

〈X(τ), QTQ〉dτ, ∀h ≥ 0, (11)

where X(0) = (X1(0), X2(0), · · · , XN (0)) ∈ S
N
n+ and QTQ = (QT

1 Q1, Q
T
2 Q2, · · · , QT

NQN ).

Remark 2.7 Notice that the function (11) has the physical interpretation of the accu-
mulated energy of the output process y(t). Indeed, for any h ≥ 0, we have

Wh(X(0)) =
∫ h

0

〈X(τ), QTQ〉dτ =
∫ h

0

N∑

i=1

Tr(XT
i (τ)QT

i Qi)dτ

=
∫ h

0

N∑

i=1

Tr(Yi(τ))dτ

=
∫ h

0

E

[ N∑

i=1

Tr(y(τ)yT(τ))Iθ(τ)=i

]
dτ

=
∫ h

0

E‖y(τ)‖2dτ

=
∫ h

0

‖Y (τ)‖Edτ,

where X(τ) = (X1(τ), X2(τ), · · · , XN(τ)) ∈ S
N
n+, Xi(τ) = E[x(τ)xT(τ)I{θ(τ)=i}] and Yi(τ) =

E[y(τ)yT(τ)I{θ(τ)=i}] (i ∈ N, 0 ≤ τ ≤ T ).

Define a series of matrix group S(t) = (S1(t), S2(t), · · · , SN (t)) ∈ S
N
n+ (t ∈ R

+,0) satisfying
the following coupled-Riccati equations

Ṡi(t) = QT
i Qi+L∗

i (S(t)) = QT
i Qi+AT

i Si(t)+Si(t)Ai +CT
i Si(t)Ai+

N∑

j=1

λjiSj(t), i ∈ N (12)

with the initial condition S(0) = 0. Together with the linear operator L∗(·), we have Ṡ(t) =
QTQ + L∗(S(t)). In what follows, we give some good properties for matrix group S(t) which
will be used in the proof of the main results.
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Lemma 2.8 For any h ≥ 0, S(t) and X(0) satisfy the following equation

W h(X(0)) = 〈X(0), S(h)〉. (13)

Proof Let α(t) = vec(S(t)) and β = vec(QTQ). Using χ̇(t) = A χ(t) and χ(0) = χ0 =
vec(X(0)), we have χ(t) = eA tχ0. It is easily straightforward to check that for any h ≥ 0,

Wh(X(0)) =
∫ h

0

〈X(τ), QTQ〉dτ =
∫ h

0

χT(τ)βdτ

=
∫ h

0

(eA τχ0)Tβdτ

= χT
0

∫ h

0

eA Tτβdτ. (14)

On the other hand, by taking operator vec(·) on both sides of (12), we can get

α̇(t) = vec(Ṡ(t)) = vec(QTQ + L∗(S(t))) = β + A Tα(t), (15)

where A T = diag(AT
1 ⊗ In + In ⊗AT

1 +CT
1 ⊗CT

1 , AT
2 ⊗ In + In ⊗AT

2 +CT
2 ⊗CT

2 , · · · , AT
N ⊗ In +

In ⊗ AT
N + CT

N ⊗ CT
N ) + (Λ ⊗ In2) ∈ Rζ×ζ . Then, since α(0) = vec(S(0)) = 0, for any h ≥ 0, it

follows that

α(h) =
∫ h

0

eA T(h−τ)βdτ =
∫ 0

h

eA Tlβd(h − l) =
∫ h

0

eA Tlβdl. (16)

Combining (10) with (16), we can derive

〈X(0), S(h)〉 = χT
0 α(h) = χT

0

∫ h

0

eA Tlβdl. (17)

Compared (14) with (17), we can derive Wh(X(0)) = 〈X(0), S(h)〉 = χT
0 α(h) conclusively.

Lemma 2.9 Let S(t) = (S1(t), S2(t), · · · , SN (t)) ∈ S
N
n+ be the solution of the matrix

differential equations (12). Then, for any h1 ≥ h2 ≥ 0, S(h1) ≥ S(h2) holds.

Proof From Lemma 2.8, for any X(0) ∈ S
N
n+, it follows that for any h1 ≥ h2 ≥ 0,

Wh1(X(0)) = 〈X(0), S(h1)〉 ≥ 〈X(0), S(h2)〉 = W h2(X(0)) ≥ 0, (18)

from which we have 〈X(0), S(h1) − S(h2)〉 ≥ 0. Thus, S(h1) ≥ S(h2) due to the arbitrariness
of X(0).

3 Observability

In this section, the notion of W-observability is defined, which is shown to be equivalent
with exact observability of stochastic systems. Besides, an efficient W-observability criterion is
also derived. To this end, we give the following definition firstly.
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Definition 3.1 System [A, C; Q|Λ] is said to be W-observable, if for each x0 ∈ R
n and

the initial distribution θ(0) = θ0, there exist scalars Nd ≥ 0 and γ > 0 such that WNd(X(0)) ≥
γ‖X(0)‖E.

Lemma 3.2 For system [A, C; Q|Λ], the following statements are equivalent:
(a) Wh(X(0)) = 〈X(0), S(h)〉 = χT

0 α(h) = 0 for some h > 0;
(b) χT

0

[
dk

dtk α(t)|t=0

]
= 0 for k = 1, 2, · · · , ζ;

(c) χT
0 (A T)k−1β = 0 for k = 1, 2, · · · , ζ;

(d) χT
0 α(t) = 0 for any t ∈ R

+,0.

Proof (a) ⇒(b). From Lemma 2.8, we have that W t(X(0)) = 〈X(0), S(t)〉 = χT
0 α(t) ≥

0 (∀t ∈ R
+,0). If there exists a h > 0 such that Wh(X(0) = 0, it follows from Lemma 2.9 that

0 ≤ χT
0 α(t) = 〈X(0), S(t)〉 ≤ 〈X(0), S(h)〉 = χT

0 α(h) = 0, t ∈ [0, h]. (19)

Therefore, we have that W t(X(0)) = 〈X(0), S(t)〉 = χT
0 α(t) = 0 for all t ∈ [0, h], which leads

to

χT
0

[
dk

dtk
α(t)

∣∣∣∣
t=0

]
= 0, k ∈ N. (20)

(b)⇒ (a). This result is trivial.
(b)⇔ (c). Using the equation (15) and α(0) = 0 recursively, we can get

dk

dtk
α(t)

∣∣∣∣
t=0

=
dk−1

dtk−1

[
d

dt
α(t)

]∣∣∣∣
t=0

=
dk−1

dtk−1

[
β + A Tα(t)

]∣∣∣∣
t=0

= · · · = (A T)k−1β. (21)

Then, for each integer 1 ≤ k ≤ ζ,

χT
0

[
dk

dtk
α(t)

∣∣∣∣
t=0

]
= 0 ⇔ χT

0 (A T)k−1β = 0.

(c)⇒(d). Assume that χT
0 (A T)k−1β = 0 holds for k = 1, 2, · · · , ζ. Using the Caylay-

Hamilton theorem and the equation (16), for any t ∈ R
+,0,

α(t) =
∫ t

0

eA Tτβdτ =
∫ t

0

ζ∑

k=1

δk(τ)(A T)k−1βdτ

=
ζ∑

k=1

(A T)k−1β

∫ t

0

δk(τ)dτ

=
ζ∑

k=1

δ̂k(t)(A T)k−1β, (22)

where δk(t) and δ̂k(t) =
∫ t

0
δk(τ)dτ are some bounded scalar functions. Then, from item (c),

for any t ∈ R
+,0,

χT
0 α(t) =

ζ∑

k=1

δ̂k(t)[χT
0 (A T)k−1β] = 0. (23)

(d)⇒(a). This result is trivial.
Based on Lemma 3.2, we can get the following criterion for W-observability.
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Theorem 3.3 System [A, C; Q|Λ] is W-observable iff there exists a scalar h > 0 such that
S(h) > 0, i.e. Si(h) > 0, (i ∈ N).

Proof Sufficiency. If there exists a scalar h > 0 such that S(h) = (S1(h), S2(h), · · · , SN(h)) >

0, by the accumulated energy equation (11) with (12), we have

W h(X(0)) = 〈X(0), S(h)〉 =
N∑

i=1

Tr(XT
i (0)Si(h))

≥ λmin(Si(h))
N∑

i=1

Tr(Xi(0))

= λmin(Si(h))
N∑

i=1

Tr(x0x
T
0 )I{θ0=i}

= λmin(Si(h))‖X(0)‖E, (24)

which indicates that system [A, C; Q|Λ] is W-observable with Nd = h and γ = λmin(Si(h)).
Necessity. By Definition 3.1, if system [A, C; Q|Λ] is W-observable, there exist scalars Nd ≥ 0

and γ > 0 such that WNd(X(0)) ≥ γ‖X(0)‖E. In view of Lemma 2.8, we can write

γ‖X(0)‖E ≤ WNd(X(0)) = 〈X(0), S(Nd)〉 =
N∑

i=1

Tr(XT
i (0)Si(Nd))

=
N∑

i=1

(xT
0 Si(Nd)x0)I{θ0=i}. (25)

Owing to the arbitrariness of x0 ∈ R
n and the initial distribution θ0, we have S(Nd) > 0.

Due to the difficulty of determining the appropriate scalar h > 0, it is not convenient to use
Theorem 3.2 in practical applications. To overcome this difficulty, we construct the following
observable matrix Oi and give a rank criterion for W-observability. Define the matrix group
O(k) = (O1(k), O2(k), · · · , ON (k)) ∈ S

N
n+ (k ∈ N) and the observable matrix Oi ∈ Rnζ×n

Oi = [OT
i (0)

...OT
i (1)

... · · ·
...OT

i (ζ − 1)]T, i ∈ N, (26)

where O(k) satisfying the difference equation O(k + 1) = L∗(O(k)) with O(0) = QTQ. There-
fore, Oi(k) satisfies the following equation

Oi(k + 1) = L∗
i (O(k)) = AT

i Oi(k) + Oi(k)Ai + CT
i Oi(k)Ci +

N∑

j=1

λijOj(k). (27)

Lemma 3.4 Define the matrix group O(k) (k ∈ N) and S(t) (t ∈ R
+,0) as above. Then

O(k) =
dk+1

dtk+1
S(t)

∣∣∣∣
t=0

. (28)
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Proof We derive this result by induction. When k = 0, for each i ∈ N , from (12), we have

d

dt
Si(t)

∣∣∣∣
t=0

= [QT
i Qi + L∗

i (S(t))]|t=0 = QT
i Qi + L∗

i (S(0)) = QT
i Qi = Oi(0).

Assume the equation (28) is true for k = n, i.e.,

Oi(n) =
dn+1

dtn+1
S(t)

∣∣∣∣
t=0

, ∀i ∈ N,

we show that the equation (28) is also true for k = n + 1. It follows from (27) that

Oi(n + 1) = L∗
i (O(n))

= AT
i Oi(n) + Oi(n)Ai + CT

i Oi(n)Ci +
N∑

j=1

λijOj(n)

= AT
i

(
dn+1

dtn+1
Si(t)

∣∣∣∣
t=0

)
+

(
dn+1

dtn+1
Si(t)

∣∣∣∣
t=0

)
Ai + CT

i

(
dn+1

dtn+1
Si(t)

∣∣∣∣
t=0

)
Ci

+
N∑

j=1

λij

(
dn+1

dtn+1
Sj(t)

∣∣∣∣
t=0

)

=
dn+1

dtn+1

[
AT

i Si(t) + Si(t)Ai + CT
i Si(t)Ci +

N∑

j=1

λijSj(t)
]∣∣∣∣

t=0

=
dn+1

dtn+1

[
d

dt
Si(t)

]∣∣∣∣
t=0

=
dn+2

dtn+2
Si(t)

∣∣∣∣
t=0

. (29)

This proof is completed by inductive hypothesis.
Below, based on the observable matrix Oi we give the rank criterion for W-detectability of

system [A, C; Q|Λ] as follows, which is easy to verify.

Proposition 3.5 For system [A, C; Q|Λ], assume the matrix group S(t) and the observ-
ability matrix Oi (i ∈ N) are defined as above. The following statements are equivalent:

(a) S(h) > 0 for some h > 0;
(b) S(t) > 0 for any t > 0;
(c) The observable matrix Oi has full column rank for each i ∈ N .

Proof (b)⇒(a). This result is trivial.
(a)⇒(b). We show this result by contradiction. Assume there exists a scalar t∗ > 0 such that

the matrix group S(t∗) = (S1(t∗), S2(t∗), · · · , SN(t∗)) ∈ S
N
n+ is not strictly positive definite.

Without loss of generality, we assume that Sj(t∗) (j ∈ N) is not strictly positive definite.
Thus, there exists a nonzero x0 ∈ R

n such that xT
0 Sj(t∗)x0 = 0. Define the matrix group

X∗ = (X∗
1 , X∗

2 , · · · , X∗
N ) ∈ S

N
n+ with

X∗
i =

{
x0x

T
0 I{θ∗

0=i} = 0, i �= j,

x0x
T
0 I{θ∗

0=j} = x0x
T
0 , i = j.

(30)
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By Lemmas 2.8 and 3.2, we can derive

W t∗(X∗) = 〈X∗, S(t∗)〉 =
N∑

i=1

Tr((X∗
i )TSi(t∗)) = Tr((X∗

j )TSj(t∗)) = xT
0 Sj(t∗)x0 = 0,

which is equivalent to W t(X∗) = 0 for any t ≥ 0. Therefore, there does not exist a scalar h > 0
such that S(h) > 0, which is contradictory to the item (a).

(b)⇒(c). We show this by contradiction. Without loss of generality, we assume the matrix
Oj (j ∈ N) is not of full column rank. Then there exists a nonzero x0 ∈ R

n such that

xT
0 Ojx0 = xT

0

⎡

⎢⎢⎢⎢⎢⎢⎣

Oj(0)

Oj(1)
...

Oj(ζ − 1)

⎤

⎥⎥⎥⎥⎥⎥⎦
x0 = 0.

Define the matrix group X∗ = (X∗
1 , X∗

2 , · · · , X∗
N ) ∈ S

N
n+ as (30) and let χ∗

0 = vec(X∗). Em-
ploying the inner product (9) and Lemma 3.2, for k = 1, 2, · · · , ζ, we have

(χ∗
0)

T

[
dk

dtk
α(t)

∣∣∣∣
t=0

]
= vecT(X∗)vec

[
dk

dtk
S(t)

∣∣∣∣
t=0

]

= vecT(X∗)vec[O(k − 1)]

= 〈X∗, O(k − 1)〉

=
N∑

i=1

Tr((X∗
i )TOi(k − 1))

=
N∑

i=1

[xT
0 Oi(k − 1)x0]I{θ∗

0=i} = xT
0 Oj(k − 1)x0 = 0. (31)

Thus, for any t ≥ 0,

W t(X∗) = (χ∗
0)

Tα(t) = 〈X∗, S(t)〉 =
N∑

i=1

Tr(X∗
i Si(t)) = xT

0 Sj(t)x0 = 0. (32)

This equation indicates that S(t) is not strictly positive definite which is a contradiction.
(c)⇒(b). We prove this by contradiction. Similar to the proof above, we assume there exists

a scalar t∗ > 0 such that the matrix group S(t∗) = (S1(t∗), S2(t∗), · · · , SN (t∗)) is not strictly
positive definite. Assume Sj(t∗) (j ∈ N) is not positive definite, and there exists a nonzero
x0 ∈ R

n such that xT
0 Sj(t∗)x0 = 0. Then, by Lemma 3.2 and the equations (30)–(31), we can

get that for each k = 1, 2, · · · , ζ

W t∗(X∗) = (χ∗
0)

Tα(t∗) = 0 ⇔ (χ∗
0)

T

[
dk

dtk
α(t)

∣∣∣∣
t=0

]
= xT

0 Oj(k − 1)x0 = 0, (33)

where X∗ = (X∗
1 , X∗

2 , · · · , X∗
N ) ∈ S

N
n+ and χ∗

0 = vec(X∗) are defined as above. Thus, the
matrix Oj is not of full column rank, which is a contradiction.
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In [2], Zhang, et al. introduced the notion of exact observability and extended PBH criterion
of deterministic systems to stochastic systems. Below, we generalize this notion to continuous-
time stochastic Markov jump systems and derive the main result of this section.

Definition 3.6 System [A, C; Q|Λ] is said to be exactly observable, if

y(t) = 0 a.s., 0 ≤ t ≤ T, ∀T > 0 ⇒ x0 = 0. (34)

Theorem 3.7 For system [A, C; Q|Λ], the following statements are equivalent:
(a) System [A, C; Q|Λ] is W-observable in the sense of Definition 3.1.
(b) System [A, C; Q|Λ] is exactly observable in the sense of Definition 3.6.
(c) There exists some h > 0 such that S(h) is positive definite.
(d) S(t) > 0 for any t > 0.
(e) The matrix Oi has full column rank for each i ∈ N .
(f) (Stochastic PBH Criterion) There does not exist nonzero Z = (Z1, Z2, · · · , ZN ) ∈ S

N
n+

such that
L(Z) = λZ, (Q1Z1, Q2Z2, · · · , QNZN) = 0, λ ∈ C. (35)

Proof Clearly, (a) ⇔ (c) follows from Theorem 3.3 and (c) ⇔ (d) ⇔ (e) follows from
Proposition 3.5. (b) ⇔ (f) is Theorem 3.1 in [8]. Below, we will show (a) ⇔ (b).

(b) ⇒ (a). Since y(t) = 0 a.s., 0 ≤ t ≤ T, ∀T > 0 ⇒ x0 = 0 is equivalent to that for any
x0 �= 0 there exists a t∗ ∈ [0, T ] such that y(t∗) �= 0. It follows from the continuity of y(t) that
there exists a sufficient small scalar ε > 0 such that y(t) �= 0, ∀t ∈ (t∗ − ε, t∗ + ε) ⊆ [0, T ]. By
Remark 2.7, we have

WT(X(0)) =
∫ T

0

‖Y (τ)‖Edτ ≥
∫ t∗+ε

t∗−ε

‖Y (τ)‖Edτ > 0. (36)

If we set

γ0 =

∫ t∗+ε

t∗−ε
‖Y (τ)‖Edτ

‖X(0)‖E
,

then the equation (36) indicates that there exist scalars Nd = T > 0 and γ0 > 0 such that
WNd(X(0)) ≥ γ0‖X(0)‖E, i.e., system [A, C; Q|Λ] is W-observable.

(a) ⇒ (b). Assume that y(t) = 0 a.s., 0 ≤ t ≤ T, ∀T > 0. Then, by Remark 2.7, we have

WT(X(0)) =
∫ T

0

‖Y (τ)‖Edτ = 0. (37)

We conclude from Definition 3.1 that X(0) = 0, which is equivalent to x0 = 0. This proof is
completed.

Remark 3.8 From Theorem 3.7, the notions of W-observability and exact observability
are equivalent in the framework of continuous-time stochastic Markov jump systems. For sim-
plicity, system [A, C; Q|Λ] is said to be observable if it satisfies one of these definitions above.
On the other hand, the item (e) of Theorem 3.7 provides an efficient rank criterion to check
the observability of [A, C; Q|Λ] by the column rank of the matrix Oi, which is analogous to the
rank criterion for observability in linear system theory.
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4 Detectability

In this section, we will study the properties of W-detectability, exact detectability and
detectability and unify those different notions in the framework of continuous-time stochastic
Markov jump systems. Moreover, we derive an efficient W-detectability criterion for such
systems. First of all, we introduce the following definition.

Definition 4.1 System [A, C; Q|Λ] is said to be W-detectable, if there exist scalars Nd,
td ≥ 0, 0 ≤ δ < 1, γ > 0 such that WNd(X(0)) ≥ γ‖X(0)‖E whenever ‖X(td)‖E ≥ δ‖X(0)‖E.

Remark 4.2 This definition of W-detectability is based on the standard concept of de-
tectability in linear time-varying systems that any unstable model could be reflected by the
output process[18]. Whereas, by Definition 3.1, W-observability requires that both stable and
unstable models could be reflected by the output process. Thus, W-observability is a special
case of W-detectability with δ = 0 in the sense of Definition 4.1.

Lemma 4.3 For the matrix group S(k) and X(0) defined as above, the following state-
ments are equivalent:

(a) W h(X(0)) = 0 for some h > 0;
(b) W t(X(0)) = 0 for any t ≥ 0;
(c) W t(X(l)) = 0 for any t, l ≥ 0.

Proof (a) ⇒ (c) Noticing that

W t(X(0)) = 〈X(0), S(t)〉 = χT
0 α(t) = 0, ∀t ≥ 0, (38)

which is the item (d) in Lemma 3.2, thus we have that (a) ⇔ (c).
(c) ⇒ (a). This result is obvious.
(b) ⇒ (c). Since W t(X(0)) = 0 for any t ≥ 0, it is easy to get that for any t, l ≥ 0,

W t+l(X(0)) = 0 holds. Notice that the accumulated energy function W t(X(0)) is a strictly
increasing function. Then, we can derive that

0 ≤ W t(X(l)) =
∫ t

0

〈X(τ + l), QTQ〉dτ =
∫ l+t

l

〈X(τ), QTQ〉dτ ≤ W l+t(X(0)) = 0. (39)

Therefore, W t(X(l)) = 0 for any t, l ≥ 0 which ends this proof.
Below, with the help of the accumulated energy function Wh(X) and the above Lemma 4.3,

we can get the following W-detectability criterion.

Theorem 4.4 System [A, C; Q|Λ] is W-detectable iff for each x0 ∈ R
n and the initial

distribution θ(0) = θ0, there exists some h > 0 such that

Wh(X(0)) = 0 ⇒ lim
t→∞ ‖X(t)‖E = 0. (40)

Proof Necessity. If system [A, C; Q|Λ] is W-detectable and there exists some h > 0 such
that Wh(X(0)) = 0 for each x0 ∈ R

n and θ(0) = θ0, by Lemma 4.3, we can get that for all
t, l ≥ 0, W t(X(l)) = 0 holds. Then, from Definition 4.1, it is easy to get that there exists a
scalar 0 ≤ δ < 1 such that for some scalar td ≥ 0 and each t ≥ 0, the inequality

‖X(t + td)‖E < δ‖X(t)‖E (41)
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holds. Otherwise, without loss of generality, if there exist scalars td ≥ 0 and 0 ≤ δ < 1 such that
‖X(td)‖E ≥ δ‖X(0)‖E, it follows from the definition of W-detectability that there exist scalars
Nd ≥ 0 and γ > 0 such that WNd(X(0)) ≥ γ‖X(0)‖E > 0 which contradicts WNd(X(0)) = 0.
Therefore, the inequality (41) is true. For arbitrary t = t∗ + mtd ∈ R

+,0 (0 ≤ t∗ < td, m ∈ N),
we can derive the following inequality recursively

‖X(t)‖E = ‖X(t∗ + mtd)‖E < δ‖X(t∗ + (m − 1)td)‖E < · · · < δm‖X(t∗)‖E . (42)

Taking limit on both sides of the above inequality (42), we have

lim
t→∞ ‖X(t)‖E ≤ lim

m→∞ max
0≤t∗<td

‖X(t∗ + mtd)‖E ≤ lim
m→∞ δm

(
max

0≤t∗<td

‖X(t∗)‖E

)
= 0, (43)

which yields
lim

t→∞E‖x(t)‖2 = lim
t→∞ ‖X(t)‖E = 0. (44)

Sufficiency. Denote Z = {X(0) : X(0) ∈ S
N
n+, ‖X(0)‖E = 1, Wh(X(0)) = 0}, where X(0)

is defined as above. Due to the statement

W h(X(0)) = 0 ⇒ lim
t→∞ ‖X(t)‖E = 0, (45)

it follows that limt→∞ ‖X(t)‖E = 0 for all X(0) ∈ Z. Thus, for each X(0) ∈ Z, there exist
some scalars 0 < δ < 1 and td > 0 such that ‖X(td)‖E < δ‖X(0)‖E = δ. Denote another set
M = {X(0) : X(0) ∈ S

N
n+, ‖X(0)‖E = 1, ‖X(td)‖ < δ} and the corresponding complement set

is M = {X(0) : X(0) ∈ S
N
n+, ‖X(0)‖E = 1, ‖X(td)‖ ≥ δ}. Since X(0) ∈ Z ⇒ ‖X(td)‖ < δ, we

have Z ⊆ M.
Below, we will show that system [A, C; Q|Λ] is W-detectable by contradiction. Assume

system [A, C; Q|Λ] is not W-detectable, i.e., for each Nd > 0 and γ > 0,

X(0) ∈ M ⇒ WNd(X(0)) < γ. (46)

Let Nd = h and choose a sequence X(i)(0) ∈ M (i = 1, 2, · · · ) such that Wh(X(i)(0)) < γi with
limi→∞ γi = 0. From the compactness of M, there exists some X∗(0) ∈ M and a subsequence
of X(i)(0) such that limk→∞ X(ik)(0) = X∗(0) ∈ M. Since the accumulated energy function
Wh(X) is continuous, we conclude

W h(X∗(0)) = lim
k→∞

Wh(X(ik)(0)) = 0. (47)

Therefore, X∗ ∈ Z ⊆ M, which is contradictory to X∗ ∈ M. In conclusion, system [A, C; Q|Λ]
is W-detectable.

The following equivalent notions of detectability and exact detectability for stochastic system
were introduced in [1, 3], respectively. Here, we generalize these definitions to system [A, C; Q|Λ]
and get the main result of this part.
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Definition 4.5 System [A, C; Q|Λ] is said to be detectable, if for each x0 ∈ R
n and the

initial distribution θ(0) = θ0,

E[yT(t)y(t)] = 0, ∀t ∈ R
+,0 ⇒ lim

t→∞ E[xT(t)x(t)] = 0. (48)

Definition 4.6 System [A, C; Q|Λ] is said to be exactly detectable, if for each x0 ∈ R
n

and the initial distribution θ(0) = θ0,

y(t) = 0 a.s., 0 ≤ t ≤ T, ∀T > 0 ⇒ lim
t→∞E‖x(t)‖2 = 0. (49)

Remark 4.7 It is worthwhile to point out that E[yT(t)y(t)] = 0, ∀t ≥ 0 is equivalent to
y(t) = 0 a.s. 0 ≤ t ≤ T, ∀T > 0. Thus, for system [A, C; Q|Λ], detectability in Definition 4.5 is
equivalent to exact detectability in Definition 4.6.

Theorem 4.8 For system [A, C; Q|Λ], the following statements are equivalent.
(a) System [A, C; Q|Λ] is W-detectable in the sense of Definition 4.1.
(b) System [A, C; Q|Λ] is detectable in the sense of Definition 4.5.
(c) System [A, C; Q|Λ] is exactly detectable in the sense of Definition 4.6.
(d) For each x0 ∈ R

n and the initial distribution θ(0) = θ0, there exists some h > 0 such
that

Wh(X(0)) = 0 ⇒ lim
t→∞ ‖X(t)‖E = 0.

(e) (Stochastic PBH Criterion) There does not exist nonzero Z = (Z1, Z2, · · · , ZN) ∈ S
N
n+

such that
L(Z) = λZ, (Q1Z1, Q2Z2, · · · , QNZN) = 0, Re(λ) ≥ 0. (50)

Proof It is obvious that (a) ⇔ (d) follows from Theorem 4.4 and (b) ⇔ (c) follows from
Remark 4.7. (c) ⇔ (e) is Theorem 3.2 in [8]. According to Remark 2.7 and Lemma 4.3, we
have that

W h(X(0)) = 0, (∃h > 0) ⇔ W t(X(0)) =
∫ t

0

E‖y(τ)‖2dτ = 0

⇔ ‖Y (t)‖E = E‖y(t)‖2 = 0, ∀t ≥ 0. (51)

Comparing (40) with (48), we have (b) ⇔ (d).

Remark 4.9 Compared with some results reported recently in literature, we have the
following remarks.

(a) If the matrix group C ≡ 0, system [A, C; Q|Λ] comes down to continuous-time Markov
jump linear system described in [5], i.e.,

⎧
⎨

⎩
dx(t) = A(θ(t))x(t)dt, x(0) = x0,

y(t) = Q(θ(t))x(t), t ∈ R
+,0.

(52)

W-observability and W-detectability criteria in this paper still hold for System (52).



OBSERVABILITY AND DETECTABILITY OF MARKOV SYSTEMS 845

(b) If the state space of Markov process be N = {1}, system [A, C; Q|Λ] is equivalent to
continuous-time stochastic system described in [7] and the main results of this paper still hold.

5 An Illustrative Numerical Example

In this section, we consider one simple continuous-time stochastic Markov jump system to
illustrate the some results above.

Example 5.1 Consider the following discrete-time stochastic Markov jump system [A, C;
Q|Λ] with n = 2, the finite state space N = {1, 2}, ζ = n2N = 8 and

Λ =

⎡

⎣−1 1
2
5 − 2

5

⎤

⎦ , A1 =

⎡

⎣−1 0

1 −2

⎤

⎦ , A2 =

⎡

⎣−1 0

2 −1

⎤

⎦ ,

C1 =

⎡

⎣1 −1

0 2

⎤

⎦ , C2 =

⎡

⎣1 −2

0 1

⎤

⎦ , Q1 =

⎡

⎣1 0

1 0

⎤

⎦ , Q2 =

⎡

⎣1 0

0 0

⎤

⎦ .

According to the equation (10), the matrix A can be computed as follows

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 −1 1 2
5 0 0 0

1 −2 0 −2 0 2
5 0 0

1 0 −2 −2 0 0 2
5 0

0 1 1 −1 0 0 0 2
5

1 0 0 0 − 7
5 −2 −2 4

0 1 0 0 2 − 7
5 0 −2

0 0 1 0 2 0 − 7
5 −2

0 0 0 1 0 2 2 − 7
5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is not hard to get the spectrum set σ(A ) = {0.5,−1,−2.4,−1.521,−2.312± 4.033i,−1.783±
2.628} � C

−. Thus system [A, C; Q|Λ] is unstable in mean square sense.
On the other hand, consider the matrix group O(k) = (O1(k), O2(k)) and the observable

matrix Oi (i = 1, 2). According to O(k + 1) = L∗(O(k)) with O(0) = QTQ. Therefore, Oi(k)
satisfies the following equation

O1(k + 1) = AT
1 O1(k) + O1(k)A1 + CT

1 O1(k)C1 + λ11O1(k) + λ12O2(k),

O2(k + 1) = AT
2 O2(k) + O2(k)A2 + CT

2 O2(k)C1 + λ21O1(k) + λ22O2(k).

Then, we can get a series of matrix group O(k) = (O1(k), O2(k)) as follows recursively,

O1(0) =

⎡

⎣2 0

0 0

⎤

⎦ , O1(1) =

⎡

⎣−3 −2

−2 3

⎤

⎦ , O1(2) =

⎡

⎣1.4 10

10 4.6

⎤

⎦ , · · · ,

O2(0) =

⎡

⎣1 0

0 1

⎤

⎦ , O2(1) =

⎡

⎣−0.6 0

0 2.6

⎤

⎦ , O2(2) =

⎡

⎣−0.36 5.6

5.6 −4.84

⎤

⎦ , · · ·
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Since rank[OT
1 (0)

...OT
1 (1)]T = 2 and rank[O1(0)] = 2, it is obvious that the observable matrix

Oi (i = 1, 2) has full column rank. Thus, system [A, C; Q|Λ] is observable based on Proposi-
tion 3.5, which indicates that [A, C; Q|Λ] is also detectable by Remark 4.2.

6 Conclusion

In this paper, the notions of observability and detectability for continuous-time stochastic
Markov jump systems have been introduced, which unify various observability and detectability
in the same framework such as W-observability and exact observability[2]; W-detectability,
detectability[1] and exact detectability[3]. Moreover, some efficient criteria for observability and
detectability and interesting properties have also been proposed.
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