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Abstract This paper studies the optimization problem with both investment and proportional rein-

surance control under the assumption that the surplus process of an insurance entity is represented by

a pure diffusion process. The company can buy proportional reinsurance and invest its surplus into a

Black-Scholes risky asset and a risk free asset without restrictions. The authors define absolute ruin

as that the liminf of the surplus process is negative infinity and propose absolute ruin minimization as

the optimization scenario. Applying the HJB method the authors obtain explicit expressions for the

minimal absolute ruin function and the associated optimal investment strategy. The authors find that

the minimal absolute ruin function here is convex, but not S-shaped investigated by Luo and Taksar

(2011). And finally, from behavioral finance point of view, the authors come to the conclusion: It is

the restrictions on investment that results in the kink of minimal absolute ruin function.

Keywords Absolute ruin probability, dynamic investment control, HJB equation, proportional rein-

surance.

1 Introduction

optimization problem is always playing a powerful role in the field of actuarial science. Some
related results in this area can be found in [1–5], etc. In particular, [3] considered the optimiza-
tion problem under a diffusion approximation risk model with both investment and proportional
reinsurance control under investment constrains, where they defined absolute ruin as the event
that the liminf of the surplus process is negative infinity and obtained explicit expressions for
the S-shaped minimal absolute ruin function and its associated optimal investment-reinsurance
strategy by applying the HJB method. We wonder what results in the S-shaped function, and
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whether the minimal absolute ruin probability function is still S-shaped without investment re-
strictions. We try to consider the problem from behavior finance point of view (see [6] and [7])
and conjecture that if we not impose restrictions on investment the minimum absolute ruin
function will not remain at a high level of risk for a long time, just like Figures 2–4 in [3], that
is, minimum absolute ruin function is not concave, but convex.

Motivated by [3], [4], and above conjecture, we consider a diffusion approximation model
where the surplus is modeled by a Brownian motion with drift:

dRt = μ0dt + σ0dB
(0)
t , R0 = x.

We assume that the company can buy non cheap proportional reinsurance. The dynamics
of the surplus with reinsurance is given by

dRa
t = [μ0 − (1 − a(t))λ]dt + a(t)σ0dB

(0)
t , R0 = x,

where 0 ≤ a(t) ≤ 1 is called the risk exposure, and λ > μ0.
Suppose that the insurer is allowed to invest dynamically its surplus in a financial market

consisting of a risky asset and a risk free asset. Now for t ≥ 0, let β(t) is the amount of the
surplus invested in a risky asset which is governed by Black-Scholes dynamics:

dSt = St(μ1dt + σ1dB
(1)
t ),

where μ1, σ1 > 0 are constants, and {B(1)
t : t ≥ 0} is a standard Brownian motion. Rt − β(t) is

then invested in the risk-free asset with dynamics:

dPt = rPtdt,

where r is a constant rate for borrowing and lending satisfying 0 < r < μ1.
Under an investment-reinsurance control policy π := {(a(t), β(t))}t≥0, the dynamics of the

surplus becomes

dRπ
t = [μ0 − (1 − a(t))λ + rRπ

t + (μ1 − r)β(t)]dt + a(t)σ0dB
(0)
t + σ1β(t)dB

(1)
t (1)

with R0 = x.
Here, we assume that {B(0)

t : t ≥ 0} and {B(1)
t : t ≥ 0} are two correlated Brownian motions,

and denote their correlation coefficient by ρ, i.e., E[B(0)
t B

(1)
t ] = ρt, which is different from the

one in [3] where {B(0)
t : t ≥ 0} and {B(1)

t : t ≥ 0} are independent.
We define absolute ruin like that in [3], that is,

Oπ = {ω ∈ Ω : lim inf
t→∞ Rπ

t = −∞}



146 BI XIUCHUN · ZHANG SHUGUANG

and the probability of absolute ruin, called value function, under policy π is

Vπ(x) = P (Oπ |R0 = x) =: Px(Oπ). (2)

The objective is to find the optimal value function

V (x) = inf
π∈Π

Vπ(x) (3)

with boundary conditions
V (−∞) = 1, V (∞) = 0. (4)

and the optimal policy π∗ such that

Vπ∗(x) = V (x). (5)

The resulting optimization problem is an infinite time horizon control problem, which we
will solve using dynamic programming techniques (see [8] and [9]).

Techniques and approaches for solving our problems are motivated by [2, 3] and [4].
We suppose that all random variables are defined in a complete probability space (Ω ,F , P )

endowed with filtration {Ft}t≥0 and that the two standard Brownian motions B(0)(·) and
B(1)(·) are adapted to {Ft}t≥0. A strategy π is said to be admissible if π := {(a(t), β(t))}t≥0

is Ft-progressively measurable, and satisfies 0 ≤ a(t) ≤ 1 and the integrability condition that
∫ t

0
β(s)ds < ∞ almost surely for all t ≥ 0. Denote the set of all admissible strategies by Π . We

allow the company to short the risky asset and borrow money for investing long in the risky
asset.

The article is structured as follows. In Section 2, after formulating the problem, we give
corresponding Hamilton-Jacobi-Bellman equation and the verification theorem. The solution
to HJB equation is given in Section 3. In Section 4, we give some conclusions.

2 The Hamilton-Jacobi-Bellman Equation and Verification Theorem

We will give the HJB equation and verification theorem in this section.
Firstly, we consider the case rx ≥ λ − μ0. It is obvious that the surplus of the insurance

company will never vanish in the case, because the interest obtained by investing all the surplus
on the risk-free bond can cover the shortfall between the premiums received and the amount
needed to pay to the reinsurance company which covers 100% of each claim. That is, if π = (0, 0)
then V π(x) = 0, and ruin never occurs. So π∗ = (a∗, β∗) = (0, 0) and V π∗

(x) = 0 in this case.
Set

x∗ =
λ − μ0

r
, (6)

and rewrite boundary conditions (4) as

V (−∞) = 1, V (x∗) = 0. (7)
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For any C2 function W , write

Lπ(W )(x) = {[μ0 − (1 − a)λ + rx + β(μ1 − r)]W ′(x) + Q(a, β)W ′′(x)},

where
Q(a, β) =

1
2
(a2σ2

0 + β2σ2
1 + 2aβρσ0σ1).

We start with the associated Hamilton-Jacobi-Bellman (HJB) equation for the optimal value
function V on (−∞, x∗).

Theorem 2.1 Assume that V defined by (3) is twice continuously differentiable on (−∞, x∗).
Then V satisfies the following Hamilton-Jacobi-Bellman equation:

inf
0≤a≤1,β∈R

Lπ(V )(x) = 0,

or equivalently,

0 = inf
0≤a≤1,β∈R

{[μ0 − (1 − a)λ + rx + β(μ1 − r)]V ′(x) + Q(a, β)V ′′(x)} (8)

with boundary conditions (7).

The proof of Theorem 2.1 is standard (see Chapter IV in [8] or [5]).
Notice that, for Brownian motions B

(0)
t and B

(1)
t with correlation coefficient ρ, there exists

another Brownian motion B
(2)
t , which is independent of B

(0)
t , such that

B
(1)
t = ρB

(0)
t +

√
1 − ρ2B

(2)
t .

Hence (1) becomes

dRπ
t = [μ0 − (1 − a)λ + rRπ

t + (μ1 − r)β]dt + (aσ0 + βρσ1)dB
(0)
t + βσ1

√
1 − ρ2dB

(2)
t .

Thus, it is easy to prove that the Lemmas 2.1–2.4, and Lemma 3.1 in [3] are applicable in our
risk system, so is the Theorem 3.1. The following verification theorem, which is parallel to
Theorem 3.1 in [3], is essential in solving the associated stochastic control problem.

Theorem 2.2 Let W ∈ C2 be a decreasing solution on (−∞, x∗) to HJB equation (8)
subject to the boundary conditions (7). Then the value function V given by (3) coincides with
W on (−∞, x∗). Furthermore, let π∗ = (a∗(x), β∗(x)) fulfill

0 = {[μ0 − (1 − a∗)λ + rx + β∗(μ1 − r)]W ′(x) + Q(a∗, β∗)W ′′(x)}, (9)

for all −∞ < x < x∗. Then the policy π∗(·) of the following feedback form π∗(s) = (a∗(Rπ∗
s ),

β∗(Rπ∗
s )), where Rπ∗

s is the solution to (1.1), is the optimal policy. That is, W (x) = V (x) =
Vπ∗(x).
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3 A Solution to the HJB Equation

Set
D = {x : −∞ < x < x∗}. (10)

In this section we seek a decreasing C2 solution on D to HJB equation (8) with boundary
condition (7) automatically extending this solution to (−∞,∞) by setting V (x) = 0 for x ≥ x∗

and the corresponding minimizing function π∗ = (a∗, β∗).
Differentiating (8) with respect to a and β, and letting the derivatives equal zero, we can

get

a(x) = −λV ′(x) + βρσ0σ1V
′′(x)

σ2
0V

′′(x)
, (11)

and
β(x) = − (μ1 − r)V ′(x) + aρσ0σ1V

′′(x)
σ2

1V ′′(x)
. (12)

Solve (11) and (12), and we can get

a(x) = −λσ1 − ρσ0(μ1 − r)
σ2

0σ1(1 − ρ2)
V ′(x)
V ′′(x)

=: −A
V ′(x)
V ′′(x)

, (13)

and
β(x) =

ρλσ1 − σ0(μ1 − r)
σ0σ2

1(1 − ρ2)
V ′(x)
V ′′(x)

=: B
V ′(x)
V ′′(x)

, (14)

where

A :=
λσ1 − ρσ0(μ1 − r)

σ2
0σ1(1 − ρ2)

, B :=
ρλσ1 − σ0(μ1 − r)

σ0σ2
1(1 − ρ2)

. (15)

The expressions above will be used to find the minimizers of the HJB equation.
We seek the solution in two cases:
1) λσ1 − ρσ0(μ1 − r) > 0;
2) λσ1 − ρσ0(μ1 − r) ≤ 0.

3.1 The Case λσ1 − ρσ0(μ1 − r) > 0

In this case, we have a(x) > 0 when V ′′(x) > 0; and a(x) < 0 when V ′′(x) < 0. So define
sets

D1 = {−∞ < x < x∗ : V ′′(x) > 0, 0 < a(x) < 1},
D2 = {−∞ < x < x∗ : V ′′(x) > 0, a(x) ≥ 1},
D3 = {−∞ < x < x∗ : V ′′(x) < 0},

which form a partition of D. Notice that if V (x) solves HJB equation (8), then the minimizers
in the equation are a∗(x) = a(x) on D1; and a∗(x) = 1 on D2 ∪D3. Thus we have the following
lemma:
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Lemma 3.1 Suppose V is a decreasing and twice continuously differentiable function on
D, then the following conclusions are true.

(i) If V is a solution to

(μ0 − λ + rx)
V ′(x)
V ′′(x)

− C

(
V ′(x)
V ′′(x)

)2

= 0, (16)

where
C :=

1
2σ2

0σ
2
1(1 − ρ2)

[λ2σ2
1 + σ2

0(μ1 − r)2 − 2ρλσ0σ1(μ1 − r)] > 0. (17)

Then V solves HJB equation (8) on D1 and the converse of this statement also holds.
(ii) If V is a solution to

1
2
σ2

0(1 − ρ2) +
(

μ0 + rx − ρσ0(μ1 − r)
σ1

)
V ′(x)
V ′′(x)

− (μ1 − r)2

2σ2
1

(
V ′(x)
V ′′(x)

)2

= 0, (18)

then V solves HJB equation (8) on D2 ∪ D3 and vice-versa.

Proof (i) Recall HJB equation (8) and

Lπ(V )(x) =
{

[μ0 − (1 − a)λ + rx + β(μ1 − r)]V ′(x) +
1
2
Q(a, β)V ′′(x)

}

, (19)

which is a quadratic function of a and β. Since A > 0, V ′(x) < 0 and V ′′(x) > 0, hence
a(x) defined in (13) is positive on D1, and π(x) = (a(x), β(x)) minimizes the right hand side
of equation (19). And we can get Lπ(x)(V )(x) = 0 from (16). So V , which satisfies (16)
solves HJB equation (8) on D1. Conversely, suppose V (x) solves the HJB equation (8), then
π∗(x) = π(x) = (a(x), β(x)) is the minimizer on D1. Hence Lπ(x)(V )(x) = 0, from which we
get (16).

(ii) Firstly, we find that Lπ(V )(x), as a quadratic function of a, gets its minimum value at
a∗(x) = 1 on D2, since its coefficient of quadratic term is positive and the symmetry axis of its
imagine a(x) ≥ 1. In this case,

β∗(x) = − (μ1 − r)V ′(x)
σ2

1V ′′(x)
+

ρσ0

σ1
.

Substituting π∗(x) = (a∗(x), β∗(x)) into Equation (19), and combining with (18), one can get
that V (x) solves the HJB equation (8).

Secondly, on D3, a(x) < 0 under the conditions of V ′′(x) < 0 and A > 0. Hence Lπ(V )(x),
as a quadratic function of a, achieves its minimum value at a∗(x) = 1 on D3, when β∗(x) =
− (μ1−r)V ′(x)

σ2
1V ′′(x)

+ ρσ0
σ1

. By substituting them into Equation (19) and combining with (18) one can
derive that V (x) solves the HJB equation (8).

Conversely, if V (x) is a solution of the HJB equation (8), we find that a minimizer of
Lπ(V )(x) is

π∗(x) = (a∗(x), β∗(x)) =
(

1,− (μ1 − r)V ′(x)
σ2

1V ′′(x)
+

ρσ0

σ1

)

on D2 ∪ D3. So Lπ∗(x)(V )(x) = 0, which is (18). Now the proof is finished.
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We proceed with solving HJB equation (8) and derive explicit expressions for V (x) in each
of the cases of a associated with D1, D2 and D3.

Firstly, from Lemma 3.1 (i), for any x ∈ D1 we get

V ′′(x)
V ′(x)

= − C

λ − μ0 − rx
=: f(x) < 0. (20)

The corresponding a(x) is given by

a(x) =
A

C
(λ − μ0 − rx) > 0, (21)

and the condition a(x) ∈ (0, 1) is necessary from Lemma 3.1 (i), which implies

x > x0 :=
λ − μ0

r
− C

rA
. (22)

So D1 = (x0, x
∗). Then we get the solution of (20) with boundary conditions V (x∗) = 0 is

V1(x) = c1(λ − μ0 − rx)
C
r +1, x0 < x < x∗, (23)

which is a solution to HJB equation (8) on (x0, x
∗), where c1 is a constant to be determined

later. In this case, we can obtain

π∗(x) = (a∗(x), β∗(x)) =
(

A(λ − μ0 − rx)
C

,
B(λ − μ0 − rx)

C

)

. (24)

Secondly, for λσ1 − ρσ0(μ1 − r) > 0, we find an expression for the solution to (8) on D2,
when

a∗(x) = 1, β∗(x) = − (μ1 − r)V ′(x)
σ2

1V ′′(x)
− ρσ0

σ1
. (25)

If V (x) solves (18) on D2, then V satisfies

V ′(x)
V ′′(x)

=
(μ0 + rx − ρσ0θ) −

√
Δ

θ2
=:

1
g(x)

< 0, (26)

where
θ :=

μ1 − r

σ1
> 0, Δ := (μ0 + rx − ρσ0θ)

2 + σ2
0(1 − ρ2)θ2.

Thus, a(x) = −Ag(x) ≥ 1 is equivalent to x ≤ x0 (see appendix for details), which means
D2 = {−∞ < x ≤ x0}. Hence the solution to (26), with boundary condition V (−∞) = 1, is

V2(x) = 1 − c2

∫ x

−∞
exp

{

−
∫ x0

u

g(t)dt

}

du, −∞ < x ≤ x0, (27)

where c2 is a constant to be determined later. In addition, the method for solving equation
(26) is motivated in [5].



MINIMIZING THE RISK OF ABSOLUTE RUIN 151

In this case, it can be shown that a(x) ≥ 1 on (−∞, x0]. Thus, (27) solves (8) on (−∞, x0],
and (25) becomes

π∗(x) = (a∗(x), β∗(x)) =
(

1,− μ1 − r

σ2
1g(x)

− ρσ0

σ1

)

. (28)

We learn from the above that D3 = ∅.
In order to determining the free constants c1 and c2, we apply a smooth fit at x0 by setting

V1(x0) = V2(x0), V ′
1(x0) = V ′

2(x0).

Solving the above equations for c1 and c2 results in

c1 =
c2

(C + r)(λ − μ0 − rx0)
C
r

, (29)

c2 =
(∫ x0

−∞
exp

{

−
∫ x0

u

g(t)dt

}

du +
λ − μ0 − rx0

C + r

)−1

. (30)

Summarizing the above results, we obtain the following theorem.

Theorem 3.2 If λσ1 > ρσ0(μ1 − r), then the minimum absolute ruin function V (x) is a
decreasing C2 function on (−∞, x∗) given by

V (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − c2

∫ x

−∞
exp

{

−
∫ x0

u

g(t)dt

}

du, −∞ < x ≤ x0,

c1(λ − μ0 − rx)
C
r +1, x0 < x < x∗,

0, x ≥ x∗.

The corresponding minimizing function π∗(x) is given by

π∗(x) = (a∗(x), β∗(x)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

1,− μ1 − r

σ2
1g(x)

− ρσ0

σ1

)

, −∞ < x ≤ x0,

(
A(λ − μ0 − rx)

C
,
B(λ − μ0 − rx)

C

)

, x0 < x < x∗,

(0, 0), x ≥ x∗,

where x0 is defined by (22), c1 and c2 are defined by (29) and (30), respectively, A, B are
defined by (15) and C by (17).

Remark 3.3 It is not difficult to check that V is a C2 function on (−∞, x∗). Further, from
Lemma 3.1, V solves the HJB equation (8), and the results can be obtained by the verification
theorem.

Remark 3.4 As we can see from the above results the minimum absolute ruin function
V (x) is convex, but not S-shaped here.
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3.2 The Case λσ1 − ρσ0(μ1 − r) ≤ 0

In this case, we have a(x) ≤ 0 when V ′′(x) > 0; and a(x) ≥ 0 when V ′′(x) < 0. So we define
sets

DV 4 = {−∞ < x < x∗ : V ′′(x) > 0},
DV 5 = {−∞ < x < x∗ : V ′′(x) < 0, a(x) ≥ 1},
DV 6 = {−∞ < x < x∗ : V ′′(x) < 0, 1/2 ≤ a(x) < 1},
DV 7 = {−∞ < x < x∗ : V ′′(x) < 0, 0 ≤ a(x) < 1/2},

which form a partition of the interval (−∞, x∗). Notice that if V (x) solves HJB equation (8),
then the minimizers in the equation are a∗(x) = 0 on DV 4 ∪DV 5 ∪DV 6; and a∗(x) = 1 on DV 7.
Thus we have the following lemma:

Lemma 3.5 Suppose V (x) ∈ C2 is a decreasing function on D.
(i) If V (x) ∈ C2 is a solution to

(μ0 − λ + rx)
V ′(x)
V ′′(x)

− (μ1 − r)2

2σ2
1

(
V ′(x)
V ′′(x)

)2

= 0, (31)

then V solves HJB equation (8) on DV 4 ∪ DV 5 ∪DV 6, and vice-versa.
(ii) If V (x) ∈ C2 is a solution to

1
2
σ2

0(1 − ρ2) +
(

μ0 + rx − ρσ0(μ1 − r)
σ1

)
V ′(x)
V ′′(x)

− (μ1 − r)2

2σ2
1

(
V ′(x)
V ′′(x)

)2

= 0, (32)

then V solves HJB equation (8) on DV 7. Conversely, if V (x) ∈ C2 is a decreasing solution to
the HJB equation (8), then V (x) solves (32) on DV 7.

The proof of Lemma 3.2 is similar to that of Lemma 3.1.
Next, we will identify the regions of DV 4, DV 5, DV 6 and DV 7, and derive explicit expressions

for V (x) in each of the cases of a associated with DV i, i = 4, 5, 6, 7.
Suppose V (x) solves HJB equation (8) on DV 4, when

π∗(x) = (a∗(x), β∗(x)) =
(

0,−μ1 − r

σ2
1

V ′(x)
V ′′(x)

)

. (33)

We get by (31) that

V ′′(x)
V ′(x)

=
(μ1 − r)2

2σ2
1

1
rx − (λ − μ0)

=: h(x) < 0, (34)

for every x ∈ D. In this case, a(x) = −A V ′(x)
V ′′(x) ≤ 0, since A ≤ 0 under the condition λσ1 −

ρσ0(μ1 − r) ≤ 0. Hence DV 4 = D. Then DV 5 = DV 6 = DV 7 = ∅.
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We proceed to solve (34) with boundary conditions (7) to get

V3(x) = c3

∫ x∗

x

exp

{

−
∫ x∗

u

h(t)dt

}

du, −∞ < x ≤ x∗, (35)

where

c3 =

(∫ x∗

−∞
exp

{

−
∫ x∗

u

h(t)dt

}

du

)−1

. (36)

Then (33) becomes

π∗(x) = (a∗(x), β∗(x)) =
(

0, 2
λ − μ0 − rx

μ1 − r

)

.

Summarizing the above results, we give the following theorem.

Theorem 3.6 If λσ1 − ρσ0(μ1 − r) ≤ 0, then the minimum absolute ruin function V (x)
is a decreasing C2 function on (−∞, x∗) given by

V (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c3

∫ x∗

x

exp

{

−
∫ x∗

u

h(t)dt

}

du, −∞ < x < x∗,

0, x ≥ x∗.

The corresponding minimizing function π∗(x) is given by

π∗(x) = (a∗(x), β∗(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

(

0, 2
λ − μ0 − rx

μ1 − r

)

, −∞ < x < x∗,

(0, 0), x ≥ x∗,

where c3 is defined by (36).

Remark 3.7 We can see from Theorem 3.2 that under another conditions of given pa-
rameters, the minimum absolute ruin function V (x) is still convex, but not S-shaped.

4 Conclusion

In conclusion, we find that the minimum absolute ruin function is convex, not a S-shaped
just like that in [3]. Why? For this phenomenon, we can explain it from behavior finance point
of view (see [6] and [7]). The (Cumulated) Prospect Theory, developed by Kahneman and
Tversky, demonstrates that people make decisions based on gains and losses (relative to some
reference point) in wealth. The investors are risk averse when the final wealth is above the
reference point; in contrast, they are risk seeking when the final wealth is below the reference
point. The insurers are risky seeking when the surplus is below their reference points, and they
will short risk asset in large amounts, or borrow from the bank in large amounts for investing
long in the risky asset. After doing so, the minimum absolute ruin function will not remain at
a high level of risk for a long time, that is, minimum absolute ruin function is not concave, but
convex when the surplus is below a critical level. Thus, it is the restrictions on investment that
results in the kink of minimum absolute ruin function in [3].
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Appendix

Recall x0 defined by (22)

x0 :=
λ − μ0

r
− C

rA
,

where
A :=

λσ1 − ρσ0(μ1 − r)
σ2

0σ1(1 − ρ2)
> 0,

and
C :=

1
2σ2

0σ
2
1(1 − ρ2)

[λ2σ2
1 + σ2

0(μ1 − r)2 − 2ρλσ0σ1(μ1 − r)] > 0.

Then

μ0 + rx0 =
λA − C

A
=

λ2σ2
1 − σ2

0(μ1 − r)2

2σ1(λσ1 − ρσ0(μ1 − r))
. (A.1)
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And rewrite (30),

V ′(x)
V ′′(x)

=
(μ0 + rx − ρσ0(μ1 − r)/σ1) −

√
Δ

(μ1−r)2

σ2
1

< 0,

where

Δ =
(

μ0 + rx − ρσ0(μ1 − r)
σ1

)2

+ σ2
0(1 − ρ2)

(μ1 − r)2

σ2
1

.

Thus,

a(x) = −A
V ′(x)
V ′′(x)

≥ 1

is equivalent to
μ0 + rx − ρσ0(μ1−r)

σ1
−√

Δ
(μ0−r)2

σ2
1

≤ − 1
A

, (A.2)

or

μ0 + rx ≤ λ2σ2
1 − σ2

0(μ1 − r)2

2σ1(λσ1 − ρσ0(μ1 − r))
= μ0 + rx0.

Now, we see that

a(x) = −A
V ′(x)
V ′′(x)

≥ 1

is equivalent to x ≤ x0.


