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Abstract This paper considers the fed-batch culture in microbial fermentation process, which consists

of batch and continuous culture. The goal is to explore the properties of a novel model which can

describe the characteristics of multistage for the population growth of microorganisms in nonlinear

switch dynamic system. The improved model is developed based on the experimental data to describe

the delayed, developmental and stationary stages well for the phases of batch culture. Then the

existence, uniqueness and boundedness of solutions to the nonlinear multistage switch system and the

Lipschitz continuity and differentiability of solutions with respect to the initial state is discussed as

well. Finally, a numerical simulation is employed for the nonlinear multistage switch system.

Keywords Bioconversion, fed-batch culture, Klebsiella pneumoniae, nonlinear multistage switch sys-

tem.

1 Introduction

1,3-propanediol (1,3-PD) is an important chemical raw material that can be used as a
monomer to synthesize polyesters and polyurethanes. Microbial fermentation has provided a
new perspective to produce bulk chemicals such as 1,3-PD. Due to the advantages of relative
mild conditions, environmentally friendly use, ease of operation and use of renewable resources,
microbial fermentation of 1,3-PD has received considerable attention[1, 2]. The experimental
investigations showed that the fermentation of glycerol by Klebsiella pneumoniae is a complex
bioprocess, since the microbial growth is subjected to multiple inhibitions of substrate and
products, such as glycerol, 1,3-PD, acetate and ethanol[3]. There are three common methods
of microbial fermentation: batch culture, continuous culture, and fed-batch culture. In batch
culture, the bacteria and substrate are added into the bioreactor. Then, bacteria grows under
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proper conditions (temperature, pH, etc.) as the time goes on and the substrate is consumed
simultaneously. Typically, the growth of the bacteria includes three phases, i.e., lag, exponential,
stationary phases. The batch fermentation is stopped when the source is sufficiently consumed
and the product is collected. In continuous culture, the fresh medium flows into the fermentor
continuously, and part of the medium in the reactor is withdrawn from the fermenter at the
same flow rate of the inlet flow. Fed-batch culture is a production technique between batch and
continuous fermentation and is so called as a semi-continuous system with relative operational
simplicity and superior industrial feasibility.

In recent years, nonlinear impulsive, switch and hybrid dynamic systems were respectively
proposed for describing the fed-batch culture[4–7]. The researches about the fermentation in-
clude the quantitative description of the cell growth kinetics under multiple inhibitions, the
metabolic overflow kinetics of substrate consumption and product formation as well as the op-
timal control of feeding strategy of glycerol in fed-batch culture[8–12]. However, the previous
theoretical work was based on Monod kinetics and some of its modifications, which can only
be used under very restrictive conditions such as a steady state chemostat[13–15]. Modeling and
simulation of microbial cell growth is important both theoretically and practically. Although
the Monod model has been the most widely used for the prediction of cell growth, it only fits
the exponential growth phase of the growth, without any inhibition[16]. Since the fed-batch
culture of glycerol bioconversion to 1,3-PD begins with batch culture and this process will be
repeated several times. Therefore, it is a vital factor to describe the characteristics of multistage
for the population growth of microorganisms. In view of the errors between observations and
numerical simulation results, the author proposed a two-stage dynamic system to formulate the
fermentation process in batch culture[17]. Then, they establish a parameter identification model
to identify parameters in the system. Numerical results show that the two-stage system can
describe the factual fermentation better. So, in this paper, based on the idea of [17], we pro-
pose a novel model to describe the batch culture phases in the fed-batch fermentation process.
Subsequently, we do some theoretical and numerical analysis to guide the practice.

The rest of the paper is organized as follows. In Section 2, a nonlinear multistage switch
dynamic system of fed-batch culture is proposed. The existence, uniqueness, boundedness and
regularity of solutions to the nonlinear multistage switch system are proved in Section 3. In
Section 4, we present a numerical example to show that the errors can be decreased by using
nonlinear multistage switch dynamic system. Discussions and conclusions are present in the
Section 5.

2 Nonlinear Multistage Switch Dynamic System

In view of the mechanism of bio-dissimilation of glycerol to 1,3-PD, the following assump-
tions are hold.

A1 The concentrations of reactants are uniform in reactor, while time delay and non-uniform
space distribution are ignored; and
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A2 During the process of fed-batch culture, the substrates added to the reactor only include
glycerol and alkali; and

A3 The feed rate of glycerol and speed of adding alkali are uniform at various time intervals.

The fed-batch culture of glycerol bioconversion to 1,3-PD begins with batch fermentation,
then glycerol and alkali are discontinuously added to the reactor in order to keep the concen-
tration of glycerol and pH value in a given range. Therefore, under the assumptions (A1)–(A3),
the whole fermentation process includes batch culture in the early stage and later fed-batch
culture. Mass balances of biomass, substrate and products in fed-batch cultures are written as
follows[17]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = μx1(t),

ẋ2(t) = −q2x1(t),

ẋi(t) = qix1(t), i = 3, 4, 5,

⎫
⎪⎪⎬

⎪⎪⎭

:= f1(x(t), u(t)), t ∈ [0, tg),

ẋ1(t) = μe−a1(t−tg)x1(t),

ẋ2(t) = −q2e−a2(t−tg)x1(t),

ẋi(t) = qie−ai(t−tg)x1(t), i = 3, 4, 5,

⎫
⎪⎪⎬

⎪⎪⎭

:= f2(x(t), u(t)), t ∈ [tg, tf ],

xi(0) = x0i, xi(t+g ) = xi(tg), i = 1, 2, 3, 4, 5,

where x1(t), x2(t), x3(t), x4(t) and x5(t) are biomass, glycerol, 1,3-PD, acetate and ethanol
concentrations at time t in the reactor, respectively; tg ∈ (0, tf ) is the moment after which the
system reaches the stationary phase; xi(t+g ), i = 1, 2, 3, 4, 5, denote the right limit of concentra-
tions of the corresponding reactants at time tg; [0, tg) is the time interval of developmental and
growth periods and [tg, tf ] is the one of stationary phases; ai, i = 1, 2, 3, 4, 5, are the stationary
factors. The values of tg and ai, i = 1, 2, 3, 4, 5, are given as follows[17].

tg = 4.33, a1 = 1.804, a2 = 0.23, a3 = 0.551, a4 = 0.12, a5 = 0.

For the batch culture, the specific growth rate of cells μ, specific consumption rate of sub-
strate q2 and specific formation rate of products qi, i = 3, 4, 5, are expressed by the following
equations on the basis of [17].

μ = μm

(
x2(t)

x2(t) + ks

) 5∏

i=2

(

1 − xi(t)
x∗

i

)ni

, (1)

q2 = m2 +
μ

Y2
, (2)

qi = mi + μYi, i = 3, 4, 5. (3)

In the feeding stage of fed-batch culture, glycerol and alkali are continuously added at
constant flow rates, which can be described by the dynamic system of continuous culture. Mass
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balances of biomass, substrate and products in continuous culture are given below[18].
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = (μ − D)x1(t),

ẋ2(t) = D(Cs0 − x2(t)) − q2x1(t),

ẋi(t) = qix1(t) − Dxi(t), i = 3, 4, 5,

t ∈ Ic, (4)

where D is referred to the dilution rate and Cs0 is the initial glycerol concentration in feed. Ic

denotes the time interval of the continuous culture.
For the continuous culture, the specific growth rate of cells μ, specific consumption rate of

substrate q2 and specific formation rate of products qi, i = 3, 4, 5, are expressed by the following
equations[4, 5].

μ = μm

(
x2(t)

x2(t) + ks

) 5∏

i=2

(

1 − xi(t)
x∗

i

)

, (5)

q2 = m2 +
μ

Y2
+ Δ2

x2(t)
x2(t) + k2

, (6)

qi = mi + μYi + Δ2
x2(t)

x2(t) + ki
, i = 3, 4, (7)

q5 = q2

(
b1

c1 + μx2(t)
+

b2

c2 + μx2(t)

)

. (8)

Under anaerobic conditions at 37oC and pH=7.0, the maximum specific growth rate of
cells μm = 0.67h−1, and Monod saturation constant ks = 0.28mmol/L. The critical concen-
trations of biomass, glycerol, 1,3-PD, acetate and ethanol for cell growth are x∗

1 = 10g/L,
x∗

2 = 2039mmol/L, x∗
3 = 939.5mmol/L, x∗

4 = 1026mmol/L and x∗
5 = 360.9mmol/L, respec-

tively. b1, b2, c1, c2, mi, Yi, Δi, ki, i = 2, 3, 4, are parameters given in [2, 4, 5]. Since
the concentrations of biomass, glycerol and products are restricted in a certain range accord-
ing to the practical production, we consider the properties of the system on a subset of R

5,
W := {x ∈ R

5 | x1 ∈ [0.001, x∗
1], x2 ∈ [100, x∗

2], x3 ∈ [0, x∗
3], x4 ∈ [0, x∗

4], x5 ∈ [0, x∗
5]}.

Under the assumptions (A1)–(A3), the continuous process of adding glycerol and alkali
is embedded into the dynamic system of continuous culture and hence the multistage switch
system of fed-batch culture can be obtained. Let x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t))T ∈ R

5

be the state variable; ξ := (x01, x02, x03, x04, x05)T denote the initial state vector; I := [0, T ] be
the time interval of the whole fermentation process; ti is the moment of starting the glycerol
flow, at which the fermentation process switches to continuous culture from batch culture; t′i
denotes the moment of ending the flow of glycerol from the beginning of time ti, at which the
fermentation process switches into batch culture from continuous culture, and 0 = t′0 < t1 <

t′1 < · · · < t′n < tn+1 = T, i ∈ Λn := {1, 2, · · · , n}. Let Ii := [ti−1, t
′
i] be the time interval of

batch culture, for the batch culture, based on the analysis in [17], we need to separate Ii into
two sub-intervals to describe the different stages of batch culture.

Ii = [ti−1, t
′
i] := [ti−1, t

g
i−1] ∪ [tgi−1, t

′
i]. (9)
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I ′i := [ti, t′i] be the time interval of continuous culture, i ∈ Λn. Thus, based on System (1), the
fed-batch culture can be formulated as the following nonlinear multistage switch system

ẋ(t) = f(x(t), u(t)), t ∈ I, (10)

x(0) = ξ, (11)

where, for each i ∈ Λn,

f(x(t), u(t)) :=

⎧
⎪⎪⎨

⎪⎪⎩

f1(x(t), u(t)), t ∈ [ti−1, t
g
i−1],

f2(x(t), u(t)), t ∈ [tgi−1, t
′
i],

f3(x(t), u(t)), t ∈ Ii.

(12)

where

f3(x(t), u(t)) : =
[
(μ − u(t))x1(t), u(t)(x20 − x2(t)) − q2x1(t), q3x1(t) − u(t)x3(t),

q4x1(t) − u(t)x4(t), q5x1(t) − u(t)x5(t)
]T ∈ R

5, (13)

u(t) :=

⎧
⎪⎨

⎪⎩

(ρvi + ui)(t − ti)
∑i−1

j=1 ρ(Fj + vj) + (ρvi + ui)(t − ti) + ρV0

, t ∈ I ′i,

0 t ∈ Ii.

Here ui(g/s) and vi(ml/s) are flow rates of adding glycerol and alkali in I ′i , respectively. Fj and
Vj are the volumes of glycerol and alkali added at tj before ti, respectively, i ∈ Λn. V0 is the
initial volume of fermentation broth and ρ is the density of glycerol in feed. u(t) ∈ U ⊂ L2[0, T ]
is the dilution rate. The L2[0, T ] norm ‖u‖2 is defined by ‖u‖2 =

√〈u, u〉2 and the inner
product 〈u, v〉2 is defined as 〈u, v〉2 �

∫ T

0
u(t)v(t)dt.

3 Existence, Uniqueness, Boundedness and Regularity Properties

In this section, we study the existence, uniqueness and boundedness of solutions to system
(10)–(11). Here, we will denote the solution of (10)–(11) corresponding to the initial condition
ξ ∈ R

5 by xξ(·).
In order to overcome the discontinuities of the system, the Skorohod topology is induced and

a specific form of λ is constructed to prove the main results in [19]. In this paper, the dynamic
system is a switch system which is alternately switched among functions f j , j = 1, 2, 3. When
we discuss properties of the multistage dynamic system (10)–(11), the properties of the system
at the switch times require extra attention. Similar to those done in [19], we can obtain our
desired results at the switch times of the system. Therefore, for the following propositions
and theorems, we only need to consider the properties of each function f j, j = 1, 2, 3, in their
corresponding stages.

Lemma 3.1 Suppose ξ ∈ R
5. Then, given any absolutely continuous function y : I → R

5,
there exists a solution xξ(·) ∈ Cb(I, R5) such that, for all t ∈ I,

‖xξ(t) − y(t)‖ ≤ eKε(y, ξ),



NONLINEAR MULTISTAGE SYSTEM IN FED-BATCH CULTURE 585

with K > 0, and

ε(y, ξ) := ‖y(0) − ξ‖ +
∫ 1

0

‖ẏ(t) − f(y(t), u(t))‖dt.

Proof See Picard Lemma 5.6.3 in [20].

Proposition 3.2 For each j = 1, 2, 3, the function f j(x, u) defined in (12) satisfies that

i) f j(·, ·) is twice continuously differential,

ii) f j(·, ·) satisfies linear growth conditions in x, that is, there exists a constant K ′ ∈ (0,∞)
such that for all x ∈ W and u ∈ U ,

‖f j(x, u)‖ ≤ K ′(‖x‖ + 1).

Proof i) It is easy to verify that the function f j(·, ·), j = 1, 2, 3, is twice continuously
differentiable by the corresponding definitions.

ii) Since u(t) = 0 for all t ∈ Ii, we only need to prove the case of j = 3. For any u ∈ U , it
follows from (13) that

‖f3(x, u)‖ =

[
5∑

i=1

(f3
i (x, u))2

]1/2

≤
5∑

i=1

∣
∣
∣f3

i (x, u)
∣
∣
∣.

Setting K1 := μm + ρmax, L2 := |m2| + |1/Y2| + |Δ2| and K2 := max{L2 + ρmax, ρmaxCs0}, we
can obtain that

|f3
1 (x, u)| = |(μ − u(t))x1| ≤ |μ + u(t)||x1| ≤ (μm + ρmax)‖x‖ ≤ K1(1 + ‖x‖),

|f3
2 (x, u)| = |u(t)(Cs0 − x2(t)) − q2x1| ≤ |u(t)||Cs0 − x2(t)| + |q2||x1| ≤ K2(1 + ‖x‖).

Similarly, let

Li := mi + μmYi + Δi, i = 3, 4,

L5 := C2

(
b1

c1
+

b2

c2

)

,

Ki := ρmax + Ci, i = 3, 4, 5.

Thus, for i = 3, 4, 5, we have

|f3
i (x, u)| = |qix1 − u(t)xi| ≤ Li|x1| + ρmax|xi| ≤ Ki(1 + ‖x‖).

Finally, set K ′ := max{K1, K2, · · · , K5}, then we can obtain that

‖f3(x, u)‖ ≤ K ′(‖x‖ + 1).

The proof is completed.
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Proposition 3.3 For each j = 1, 2, 3, the function f j(x, u) defined in (12) satisfies that
there exists a constant K ≥ 1 such that for all x1, x2 ∈ W , and u1, u2 ∈ U , the following three
relations hold:

‖f j(x1, u1) − f j(x2, u2)‖ ≤ K(‖x1 − x2‖ + ‖u1 − u2‖2),

‖f j
x(x1, u1) − f j

x(x2, u2)‖ ≤ K(‖x1 − x2‖ + ‖u1 − u2‖2),

‖f j
u(x1, u1) − f j

u(x2, u2)‖ ≤ K(‖x1 − x2‖ + ‖u1 − u2‖2).

Proof Let x2 = x1 +Δx and u2 = u1 +Δu. It follows from the Mean Value Theorem that,
for each j = 1, 2, 3,

‖f j(x2, u2) − f j(x1, u1)‖ =
∥
∥
∥
∥

∂f j

∂x
(x1 + θ1Δx, u)Δx

∥
∥
∥
∥ +

∥
∥
∥
∥

∂f j

∂u
(x1, u + θ2Δu)Δu

∥
∥
∥
∥

≤
∥
∥
∥
∥

∂f j

∂x
(x1 + θ1Δx, u)

∥
∥
∥
∥‖Δx‖ +

∥
∥
∥
∥

∂f j

∂u
(x1, u1 + θ2Δu)

∥
∥
∥
∥‖Δu‖.

The continuous differentiability of the function f j implies the existence of positive constants
M1 and M2 such that

∥
∥
∥
∥

∂f j

∂x
(x1 + θ1Δx, u)

∥
∥
∥
∥ ≤ M1,

∥
∥
∥
∥

∂f j

∂u
(x1, u1 + θ2Δu)

∥
∥
∥
∥ ≤ M2.

Hence, letting K ′
1 := max{M1, M2, 1}, we can obtain that

‖f j(x2, u2) − f j(x1, u1)‖ ≤ K ′
1(‖x2 − x1‖ + ‖u2 − u1‖2).

The twice continuously differentiable of f j, j = 1, 2, 3, in Proposition 3.2 implies that ‖∂2f j/∂x2‖,
‖∂2f j/∂u2‖ and ‖∂2f j/∂x∂u‖ are all bounded. It is clear that we can prove that there exist
K ′

2, K
′
3 > 1, such that

‖f j
x(x1, u1) − f j

x(x2, u2)‖ ≤ K ′
2(‖x1 − x2‖ + ‖u1 − u2‖2),

‖f j
u(x1, u1) − f j

u(x2, u2)‖ ≤ K ′
3(‖x1 − x2‖ + ‖u1 − u2‖2).

Finally, letting K = max{K ′
1, K

′
2, K

′
3}, we can obtain the desired result.

Let Cb([0, T ], R5) denote the space of continuous bounded functions on [0, T ] with values in
R

5, equipped with the sup norm topology, that is, for z ∈ Cb([0, T ], R5), ‖z‖c = sup{‖z(t)‖, t ∈
[0, T ]}.

Theorem 3.4 For any ξ ∈ R
5, System (10)–(11) has a unique solution xξ(·) ∈ Cb(I, R5).

Proof First, it follows from Lemma 3.1 that the existence of solutions is proved. Subse-
quently, we will verify the uniqueness. Let xξ

1(t) and xξ
2(t) be two solutions of (10)–(11). For

all t ∈ I, we can conclude that

‖xξ
1(t) − xξ

2(t)‖ ≤
∫ t

0

‖f(xξ
1(s), u(s)) − f(xξ

2(s), u(s))‖ds

≤ K

∫ t

0

‖xξ
1(s) − xξ

2(s)‖ds.
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Bellman Gronwall inequality is applied to the above inequality, which implies that, for all t ∈ I,
‖xξ

1(t) − xξ
2(t)‖ = 0. Thus, the solution of (10)–(11) is unique.

Next, we explore the question of Lipschitz continuity of solutions relative to the initial
condition.

Theorem 3.5 For all ξ, ξ′ ∈ R
5 and all t ∈ I, there exists a constant L ∈ (0,∞) such

that

‖xξ(t) − xξ′
(t)‖ ≤ L‖ξ − ξ′‖.

Proof First, we let y(t) := xξ′
(t). Next, by Theorem 3.4, the solution of (10)–(11) is

unique, so we can deduce from Lemma 3.1 that, for all t ∈ I, ‖xξ(t) − xξ′
(t)‖ ≤ eKε(xξ′

(t), ξ).
Now we find that

ε(xξ′
(t), ξ) = ‖ξ − ξ′‖ +

∫ 1

0

‖f(xξ(t), u(t)) − f(xξ′
(t), u′(t))‖dt

≤ ‖ξ − ξ′‖ + K

∫ 1

0

|u(t) − u′(t)|dt.

By Schwartz inequality and Hölder inequality, we can have
∫ 1

0

|u(t) − u′|dt ≤
( ∫ 1

0

1dt

)1/2( ∫ 1

0

|u(t) − u′|2dt

)1/2

,

ε(xξ′
(t), ξ) ≤ ‖ξ − ξ′‖ + K‖u − u′‖2 ≤

√
2K‖ξ − ξ′‖.

Letting L :=
√

2KeK , we complete the proof.

Proposition 3.6 For any ξ ∈ R
5, the solution of System (10)–(11) satisfies that

‖xξ(·)‖ ≤ (1 + ‖ξ‖)eK′
,

with K ′ as in Proposition 3.2.

Proof Now, we prove the boundedness of solutions to System (10)–(11). By the definition
of solutions of differential equation, it suffices to show that the solutions of the following integral
equation:

xξ(t) = ξ +
∫ t

0

f(xξ(s), u(s))ds, t ∈ I (14)

are bounded. From the above equation (14) and Proposition 3.2, we can have that

‖xξ(t)‖ ≤ ‖ξ‖ +
∫ t

0

‖f(xξ(s), u(s))‖ds ≤ ‖ξ‖ + K ′
∫ t

0

‖[xξ(s) + 1]‖ds.

Letting y(t) := ‖xξ(t)‖ + 1, we conclude that

y(t) ≤ y(0) + K ′
∫ t

0

y(s)ds.

By Bellman Gronwall inequality, for all t ∈ I, we can obtain y(t) ≤ y(0)eK′
and hence, that

‖xξ(t)‖ ≤ (1 + ‖ξ‖)eK′
.
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4 Numerical Results and Discussion

For numerical simulation, we use the 6th Runge-Kutta method to calculate the numerical
results of the nonlinear multistage switch dynamic system. The medium composition, cultiva-
tion conditions, determination of biomass, substrate and metabolites have been reported[4, 5].
The initial value ξ = (0.115g/L, 494.5mmol/L, 0, 0, 0)T. Fed-batch began at t1 = 5.33h. The
flow time ti, the flow stopping time t′i, and the speeds ui and vi of adding glycerol and alkali,
i ∈ Λ785, are determined by the experiment.

Since intermittent feeding of alkali into the reactor to maintain the pH value at 7 or so
greatly affects the extracellular concentrations of acetic acid and ethanol, this work is only
concerned with the relative error between the experimental data and computational values of
the first three substances. Figures 1–3 show the comparisons for the concentrations of biomass,
substrate and 1,3-PD between experimental data and computational results, where the stars
denote the experimental values, written as y(τj) = (y1(τj), y2(τj), y3(τj)), τj = 2jh, j ∈ Λ16,
the dashing lines denote the computational curves in [4], and the red real lines denote the
computational curves xk(t), k ∈ Λ3 in this work. Define relative errors as follows:

ek :=
∑16

i=1

∣
∣xk(τi) − yk(τi)

∣
∣

∑16
i=1 yk(τi)

, k ∈ Λ3.
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Figure 1 Comparison for the concentration of biomass between

experimental data and computational results

We obtain the errors e1 = 6.21%, e2 = 10.27%, e3 = 6.98%. Actually, about the numerical
results, in this paper, there is no manifest distinction from [7]. However, in [7], the key parame-
ters tl and tm may be different for each different batch culture stages. So, it may cause potential
difficulty to do further study on the parameter identification and optimal control problems since
there are more than 300 batch culture stages in the experiment. In this paper, however, we
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have 3 different switch functions corresponding to the different stages and the most important
advantages is that stationary factors ai, i = 1, 2, 3, 4, 5, in function f2(x(t), u(t)) are fixed in
each corresponding stage. This advantage will help us to do further research especially in terms
of genetic engineering and metabolism mechanisms in the future.
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Figure 2 Comparison for the concentration of glycerol between

experimental data and computational results
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5 Conclusions

In this paper, we have presented a novel nonlinear multistage switch dynamic system for
describing the fed-batch culture. We then demonstrated the existence, uniqueness, bounded-
ness and regularity of solutions to the nonlinear multistage switch system. Then, a numerical
simulation for the nonlinear multistage switch system illustrates the improvements between our
efforts and those in [4, 5, 7]. Our future work will involve parameter identification and the
optimal control problems of nonlinear multistage switch system. It will be a challenge since the
system is a highly nonlinear, multistage and switch system.
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