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Abstract This paper considers the priority facility location problem with penalties. The authors

develop a primal-dual 3-approximation algorithm for this problem. Combining with the greedy aug-

mentation procedure, the authors further improve the previous ratio 3 to 1.8526.
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1 Introduction

The facility location problem (FLP) is one of the classical NP-hard problems. Uncapacitated
facility location problem (UFLP) is the most basic FLP. In the UFLP, given a facility set
F and a client set C, each facility i ∈ F has an opening cost fi, each client j ∈ C has a
service demand dj (often assumed to be 1), and there is a connection cost cij indicating the
cost of per unit demand facility i provide for client j. Generally, the UFLP is assumed to
be metric, that is, the connection costs satisfy non-negativity, symmetric and the triangle
inequality. The objective is to open some facilities such that each client j ∈ C is assigned to an
open facility with the minimum total opening and connection cost. From the point of view of
approximation algorithm, there are three important results for the UFLP: The first one was the
3.16-approximation algorithm by Shmoys, et al.[1], which gave us the first constant factor; the
second one was the 1.488-approximation algorithm by Li[2], which gave us the currently best
factor; and the third one was 1.463 given by Guha and Khuller[3], which is the lower bound of
the factor.
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Due to the broad applications, variants of the UFLP arise naturally (see [4–12]). Facility
location problem with penalties (FLPWP), first studied by Charikar, et al.[5], is one of the
variants. The difference between the FLPWP and the UFLP is, in the former problem, not all
clients are required to be serviced and there is a penalty cost for the rejected clients. The objec-
tive is to minimize the total cost including the opening cost, the connection cost and the penalty
cost. According to the type of the penalty cost function, the FLPWP can be classified into
either facility location problem with linear penalties (FLPLP) or facility location problem with
submodular penalties (FLPSP). For the FLPLP, Charikar, et al.[13] gave a primal-dual based
3-approximation algorithm. Later, Xu and Xu[14, 15] achieved an LP-rounding based (2 + 2/e)-
approximation algorithm, and then, combining with the cost scaling technique and the greedy
augmentation procedure, they designed a primal-dual based 1.8526-approximation algorithm.
Besides, Hayrapetyan, et al.[16] presented an LP-rounding based (1 + ρ)-approximation algo-
rithm, where ρ is a constant parameter. For the FLPSP, Chudak and Nagano[17] gave a convex
program rounding based (1 + ε)(1 + ρ)-approximation algorithm. Du, et al.[12] designed a
primal-dual based 3-approximation algorithm.

The priority facility location problem (PFLP), first proposed by Ravi and Sinha[18] as a
special case of multicommodity facility location problem (MFLP), is another variant of the
UFLP. The differences between the PFLP and the UFLP are, in the PFLP, each client has a
level-of-service requirement, and each facility has a non-decreasing cost function that specifies
the cost of opening the facility at the level-of-service. The requirement of all clients must be
satisfied. The objective is to minimize the total cost including the opening cost and the con-
nection cost. Mahdian[19] offered a primal-dual based 3-approximation algorithm for the PFLP
in his Ph. D. thesis. Li, et al.[20] presented a primal-dual based 3-approximation algorithm
for the stochastic version of the PFLP. Using the greedy augmentation procedure, they further
improved the ratio to 1.8526 which is the best ratio for the PFLP and its stochastic version.

In this paper, combining with the above two variants of the UFLP, we consider the priority
facility location problem with penalties (PFLPWP). Different from the UFLP, in the PFLPWP,
each client j ∈ C has a level-of-service requirement lj ∈ {1, 2, · · · , L}, and each facility i ∈ F
has a non-decreasing cost function fi(l) that specifies the cost of opening the facility i at the
level-of-service l(l = 1, 2, · · · , L). Not all clients are required to be serviced and there is a
penalty cost pj for the rejected client j. The objective is to minimize the total cost including
the opening cost, the connection cost and the penalty cost.

Our 3-approximation algorithm for the PFLPWP is an extension of the primal-dual al-
gorithm by Jain and Vazirani[21] for the UFLP. Since the problem is equipped with different
level-of-service requirements and penalties, we carefully arrange the order of the level-of-service
similar to the method in [19] and accurately identify the outliers. Later, by opening a virtual fa-
cility for clients[15], and then combining with the greedy augmentation[3, 5], we further improve
the approximation ratio from 3 to 1.8526.

The rest of this paper is organized as follows. In Section 2, we present the integer program,
the linear programming relaxation and the dual program for the PFLPWP. In Section 3, we
design and analyze the primal-dual algorithm. We offer the improved algorithm with the
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approximation ratio 1.8526 in Section 4. Finally, the conclusions are given in Section 5.

2 Priority Facility Location Problem with Penalties

In the PFLPWP, given a facility set F and a client set C, each client j has a level-of-service
requirement lj ∈ {1, 2, · · · , L} and a penalty cost pj . The opening cost of facility i ∈ F ,
at the level-of-service l, is a non-decreasing function fi(l) (l = 1, 2, · · · , L). The connection
cost, between client j ∈ C and the facility i ∈ F satisfying the level-of-service requirement of
client j, is cij . Note that a facility can not be opened at just one level-of-service; otherwise,
the level-of-service requirements of some clients will not be satisfied. For convenience, we let
F = {(i; l)|i ∈ F , l = 1, 2, · · · , L}, where (i; l) is facility-level pair. For short, we call it facility.
Our objective is to determine an opening facility set ̂F ⊆ F , while selecting a penalty client
set ̂P ⊆ C, and then connect the clients in C\ ̂P to the opening facilities in ̂F , such that the
total cost including the opening cost

∑

(i;l)∈ ̂F fi(l), the connection cost
∑

j∈C\ ̂P c
̂θ(j)j , and the

penalty cost
∑

j∈ ̂P pj is minimized, where ̂θ(j) is the closest facility in ̂F that can satisfy client
j’s level-of-service requirement.

To derive an integer program formulation for the PFLPWP, we introduce three types of
{0, 1} variables: yi(l) indicating whether facility (i; l) is opened at level-of-service l; xij indicat-
ing whether client j is connected to facility i; and zj indicating whether client j is penalized.
The PFLPWP is formulated as

min
∑

(i;l)∈F

fi(l)yi(l) +
∑

i∈F

∑

j∈C
cijxij +

∑

j∈C
pjzj

s.t.
∑

i∈F
xij + zj ≥ 1, ∀j ∈ C,

xij ≤
L

∑

l=lj

yi(l), ∀i ∈ F , j ∈ C,

xij , yi(l), zj ∈ {0, 1}, ∀(i; l) ∈ F , j ∈ C.

(1)

In the above program, the first constraints denote that each client j ∈ C is either connected
to a facility or rejected; the second constraints ensure that if client j is connected to facility
i, then this facility must open at the level-of-service between lj and L. Furthermore, in an
optimal solution to (1), a facility can only be opened at one level-of-service; otherwise, if there
is a facility i opened at two level-of-service l′ and l such that l ≥ l′, then we can just open i at
level-of-service l, implying that the total facility cost is decreased by f(l′) without increasing



PRIORITY FACILITY LOCATION WITH PENALTIES 1105

the connection cost. Relaxing the last constraints, we obtain

min
∑

(i;l)∈F

fi(l)yi(l) +
∑

i∈F

∑

j∈C
cijxij +

∑

j∈C
pjzj

s.t.
∑

i∈F
xij + zj ≥ 1, ∀j ∈ C,

xij ≤
L

∑

l=lj

yi(l), ∀i ∈ F , j ∈ C,

xij , yi(l), zj ≥ 0, ∀(i; l) ∈ F , j ∈ C.

(2)

Introducing the dual variables αj and βij , we obtain the dual of the program (2)

max
∑

j∈C
αj

s.t. αj − βij ≤ cij , ∀i ∈ F , j ∈ C,
∑

j∈C:l≥lj

βij ≤ fi(l), ∀(i; l) ∈ F ,

αj ≤ pj , ∀j ∈ C,

αj , βij ≥ 0, ∀i ∈ F , j ∈ C,

(3)

where αj can be regarded as the budget of client j, and βij as the contribution of the client j

to the facility (i; l) with l ≥ lj.

3 Primal-Dual Algorithm

In this section, we will first propose a primal-dual algorithm for the PFLPWP, then analyze
the algorithm to obtain the approximation ratio of 3.

3.1 The Primal-Dual Algorithm

We now give the primal-dual algorithm for the PFLPWP.
Algorithm 1 (The primal-dual algorithm)
Stage 1 (Constructing a dual feasible solution to (3))
Step 1 First introduce a concept of time, denoted by t. The algorithm starts at time t = 0.

Initially all the dual variables are zero, all the facilities are closed, and all clients are unfrozen.
In the process of the algorithm, when the dual variable αj stop to increase, we call client j is
frozen. Let ˜F denote the temporarily open facility set, U denote the unfrozen client set, and
˜P = {j ∈ C|αj = pj}. At the beginning of the algorithm, set ˜F := ∅, U := C, ˜P := ∅.

Step 2 For the unfrozen client j ∈ U , we increase αj at the same rate with time t. As time
t goes, one of the following events will occur.

Event 1 There is a client j ∈ U , such that αj = pj . Freeze j, and update ˜P := ˜P ∪{j} and
U := U \ {j}.

Event 2 There is a client j ∈ U , (i; l) ∈ F \ ˜F , l ≥ lj , such that αj = cij . We say that the
facility-client pair (i, j) is tight. After that, the corresponding dual variable βij will increase in
accordance with αj . Define βij = max{0, t− cij}.
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Event 3 There is a facility (i; l) ∈ F \ ˜F , such that
∑

j∈C:l≥lj
βij = fi(l). We call facility

(i; l) is temporarily open. Update ˜F := ˜F ∪ {(i; l)}, and define N(i; l) = {j|βij > 0, l ≥ lj} to
be the neighbor of the facility (i; l). Now, freeze client j ∈ N(i; l) ∩ U , and connect (directly)
this client to the facility (i; l), which is declared the connecting witness of client j. For the
convenience of the algorithm analysis, let ̂N(i; l) := N(i; l). Update U := U \ N(i; l).

Event 4 There is a client j ∈ U , (i; l) ∈ ˜F , l ≥ lj, such that αj = cij . Freeze j and
connect (directly) this client to facility (i; l), which is declared the connecting witness of client
j. Update ̂N(i; l) := ̂N(i; l) ∪ {j}, U := U \ {j}.

If all the events happen at the same time, the algorithm executes them in an arbitrary order.
When U = ∅, go to Stage 2.

Stage 2 (Constructing a primal integer feasible solution to (1))
Step 1 Let ̂F denote the finally open facility set, and ̂P denote the penalty client set. Set

̂F := ∅, ̂P := ∅.
Step 2 Determine open facilities. Sort the temporarily open facility in a decreasing level-

of-service. According to this order, consider each facility (i; l) ∈ ˜F . If there is (i′, l′) ∈ ̂F such
that l′ ≥ l and N(i; l) ∩ N(i′, l′) �= ∅, then consider the next facility in ˜F ; otherwise update
̂F := ̂F ∪ {(i; l)}. If (i; l) ∈ ̂F , we say that facility i is open at level l.

Step 3 Determine penalty clients. Let ̂P := ˜P \ ⋃

(i;l)∈ ̂F
̂N(i; l).

Step 4 Connect client j ∈ C \ ̂P to the closest facility (i; l) ∈ ̂F opening at level l ≥ lj .
Let (α, β) be the dual solution obtained by Stage 1, and (x̂, ŷ, ẑ) be the primal solution

obtained by Stage 2, respectively. It is easy to prove that the two solutions obtained by
Algorithm 1 are both feasible. Let F , C and P be the opening cost, connection cost and
penalty cost of the solution (x̂, ŷ, ẑ).

Next we present the analysis of Algorithm 1.

3.2 Analysis of Algorithm 1

We now describe the analysis of Algorithm 1. We first give three lemmas to bound the
opening cost F , connection cost C and penalty cost P respectively, and then bound the total
cost of the solution (x̂, ŷ, ẑ) to obtain the approximation ratio 3.

Since for all facilities (i; l), the neighbors N(i; l) are disjoint, we have the following lemma.

Lemma 3.1

F =
∑

(i;l)∈ ̂F

fi(l) =
∑

(i;l)∈ ̂F

∑

j∈N(i;l)

βij .

Note that clients in C \ ̂P can be divided into three groups: The clients contributing to the
finally open facilities, i.e., clients in C1 =

⋃

(i;l)∈ ̂F N(i; l); the clients directly connected but

not contributing to the finally open facilities, i.e., clients in C2 =
⋃

(i;l)∈ ̂F

(

̂N(i; l) \ N(i; l)
)

;

and the clients switched its connection eventually because its connecting witness are not open
at Stage 2 in Algorithm 1, i.e., clients in C3 = (C \ ̂P) \ ⋃

(i;l)∈ ̂F
̂N(i; l). Thus we obtain the

following lemma.
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Lemma 3.2

C ≤
∑

(i;l)∈ ̂F

∑

j∈N(i;l)

cij +
∑

j∈C2

αj + 3
∑

j∈C3

αj .

Proof For any client j ∈ C \ ̂P , (i; l) ∈ ̂F , we consider the following three possibilities.
(i) For client j ∈ C1, connect (directly) j to its connecting witness (i; l) ∈ ̂F . The connection

cost is cij .
(ii) For client j ∈ C2, connect (directly) j to its connecting witness (i; l) ∈ ̂F . The connection

cost is cij = αj .
(iii) For client j ∈ C3, denote its connecting witness by (˜i;˜l). Since (˜i;˜l) is not open at Stage

2 in Algorithm 1, there exist (i; l) ∈ ̂F (l ≥ ˜l) and client j′, such that j′ contributs to (˜i;˜l) and
(i; l), namely j′ ∈ N(˜i;˜l) ∩ N(i; l). Connect (indirectly) j to facility (i; l). See Figure 1.

'j

( , )i l

j

( , )i l,,, )

Figure 1 The evaluation of connection cost for client j ∈ C3. Heavy line corresponds

to the client has contribution to the open facility, thin line corresponds to

the connection between client and facility, dashed line corresponds to the

reconnection of client j to facility (i; l)

And because (˜i;˜l) is the connecting witness of client j, j /∈ ˜P, thus αj ≥ max{c̃ij , t(˜i;˜l)}.
By the triangle inequality, we get

cij ≤ cij′ + c̃ij′ + c̃ij ≤ 2t(˜i;˜l) + αj ≤ 3αj .

Summing up the connection costs of all clients, we obtain the lemma.
From the definition of ̂P, we have the following lemma.

Lemma 3.3

P =
∑

j∈ ̂P
αj .

The main result of this subsection is the following theorem.

Theorem 3.4 Algorithm 1 is a 3-approximation algorithm for the PFLPWP.
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Proof Combining Lemmas 3.1, 3.2, and 3.3, we obtain

3F + 3P + C ≤ 3
∑

(i;l)∈ ̂F

∑

j∈N(i;l)

βij + 3
∑

j∈ ̂P
αj +

∑

(i;l)∈ ̂F

∑

j∈N(i;l)

cij +
∑

j∈C2

αj + 3
∑

j∈C3

αj

≤ 3
(

∑

(i;l)∈ ̂F

∑

j∈N(i;l)

βij +
∑

(i;l)∈ ̂F

∑

j∈N(i;l)

cij

)

+ 3
∑

j∈ ̂P
αj +

∑

j∈C2

αj + 3
∑

j∈C3

αj

= 3
∑

j∈C1

αj + 3
∑

j∈ ̂P
αj +

∑

j∈C2

αj + 3
∑

j∈C3

αj .

Therefore

3F + 3P + C ≤ 3
∑

j∈C
αj . (4)

The proof is finished.

4 The Improved 1.8526-Approximation Algorithm

In this section, we use the greedy augmentation technique in [5] to improve the approxima-
tion ratio from 3 to 1.8526.

4.1 The Improved Algorithm

We now present our greedy improvement schema.
Algorithm 2 (The improved algorithm)
Stage 1 (Constructing and solving a new instance)
Step 1 For each facility (i; l) ∈ F and constant γ > 0, let f ′

i(l) := γfi(l) to obtain a new
instance I.

Step 2 Solve I by Algorithm 1 to get the feasible solution (x̂′, ŷ′, ẑ′). Note that this solution
is also feasible to (2). Assume that solution (x̂′, ŷ′, ẑ′) opens facilities set ̂F ′ and penalty clients
set ̂P ′ in the instance I. Let ̂Fg := ̂F ′ and ̂Pg := ̂P ′ denote the open facilities set and the
penalty clients set of solution (x̂′, ŷ′, ẑ′) in (2).

Stage 2 (Greedy improvement)
Step 1 Consider (2). For the clients in C, add a facility (i0; L) to the feasible solution

(x̂′, ŷ′, ẑ′) with opening cost fi0(L) = 0 and connection cost ci0j = pj , ∀j ∈ C. For each client
j ∈ C, let θ(j) be the closest facility in solution (x̂′, ŷ′, ẑ′) that can satisfy its level-of-service
requirement. Let F := F ∪ {(i0; L)}, and ̂Fg := ̂Fg ∪ {(i0; L)}.

Step 2 For each facility (i; l) ∈ F \ ̂Fg, compute

gain(i; l) :=
∑

j∈C:cθ(j)j≥cij,l≥lj

(cθ(j)j − cij) − fi(l),

and let

(ig; lg) := arg max
(i;l)∈F\ ̂Fg

gain(i; l)
fi(l)

.
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Step 3 If gain(ig, lg) > 0, update ̂Fg := ̂Fg ∪ {(ig, lg)}, and ̂Pg := ̂Pg \ {j|cθ(j)j ≥ cigj},
and goto Step 2; otherwise goto Step 4.

Step 4 Connect j ∈ C \ ̂Pg to the closest facility (i; l) ∈ ̂Fg, where l ≥ lj . Denote the
solution by (x̂g, ŷg, ẑg). See Figure 2.

Figure 2 The construction of integer feasible solution( Algorithm 2). Heavy line cor-

responds to the client connect to the open facility, dashed line corresponds

to the reconnection of client j to the newly open facility

Let Fg, Cg and Pg denote the opening cost, connection cost and penalty cost respectively in
solution (x̂g , ŷg, ẑg). Let F ∗, C∗ and P ∗ denote the opening cost, connection cost and penalty
cost respectively in the optimal solution OPT = (x∗, y∗, z∗) of (1). Let F ∗ and P∗ be the open
facility set and the penalty client set respectively in OPT .

4.2 Analysis of Algorithm 2

We first develop some lemmas, and then present the approximation ratio of Algorithm 2.

Lemma 4.1 The connection cost and penalty cost of the solution obtained from Algo-
rithm 2 satisfies

Cg + Pg ≤ F ∗ + C∗ + P ∗. (5)

Proof To prove by contradiction, we assume that Cg + Pg > F ∗ + C∗ + P ∗. Similar to
Step 1 in Stage 2 of Algorithm 2, for each client j ∈ C, add a facility (i0; L) to F ∗ with opening
cost fi0(L) = 0 and connection cost ci0j = pj for any j ∈ C. Let F ∗ := F ∗ ∪ {(i0; L)}. For
client j, let θ∗(j) be the closest facility in F ∗ that can satisfy its level-of-service requirement.

Note that, Step 2 in Stage 2 of Algorithm 2 is an iterative process. Assume that at the
beginning of the iteration, the connection cost and penalty cost are C and P respectively. Let
us consider the following restricted operation which results in a less greedy gain′. The facilities
(i; l) are added to ̂Fg if and only if θ∗(j) = i, implying that client j is connected to facility i.
Define

gain′(i; l) :=
∑

j∈C:θ∗(j)=i,l≥lj

(cθ(j)j − cij) − fi(l).

Obviously, for any (i; l) ∈ F ∗, we have gain(i; l) ≥ gain′(i; l). Hence,
∑

(i;l)∈F∗
gain(i; l) ≥

∑

(i;l)∈F∗
gain′(i; l).
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And because

∑

(i;l)∈F∗
gain′(i; l) =

∑

(i;l)∈F∗

(

∑

j∈C:θ∗(j)=i,l≥lj

(cθ(j)j − cij) − fi(l)
)

=
∑

j∈C
cθ(j)j −

∑

j∈C
cθ∗(j)j −

∑

(i;l)∈F∗
fi(l)

= C + P − (C∗ + P ∗) − F ∗,

we have
∑

(i;l)∈F∗
gain(i; l) ≥ C + P − C∗ − P ∗ − F ∗.

So, if the iteration starts with the solution (x̂g, ŷg, ẑg), then
∑

(i;l)∈F∗
gain(i; l) ≥ Cg + Pg − C∗ − P ∗ − F ∗.

According to the assumption of contradictory, we have
∑

(i;l)∈F∗
gain(i; l) > 0,

which indicates that there exists a facility (i; l) such that gain(i; l) > 0. Thus, the algorithm
will carry out the next iteration. Therefore, we must have Cg + Pg ≤ F ∗ + C∗ + P ∗.

Assume that after the kth iteration in Algorithm 2, the opening cost, connection cost
and penalty cost of the obtained solution are Fk, Ck and Pk, respectively. From the proof
of Lemma 4.1, we have the following corollary.

Corollary 4.2 If

Ck + Pk > F ∗ + C∗ + P ∗,

Algorithm 2 will carry out the (k + 1)th iteration. During the (k + 1)th iteration, there exists a
facility (i; l) ∈ F ∗ such that

gain(i; l)
fi(l)

≥ Ck + Pk − F ∗ − C∗ − P ∗

F ∗ . (6)

Assume F , C and P are the opening cost, connection cost, and penalty cost of the solution
(x̂′, ŷ′, ẑ′) in the original instance, respectively. Noting that Algorithm 2 carries out the iteration
at the solution (x̂′, ŷ′, ẑ′), we set F0 := F , C0 := C, P0 := P . We have the following lemma.

Lemma 4.3 If C + P > F ∗ + C∗ + P ∗, then the opening cost of the solution obtained
from Algorithm 2 satisfies

Fg + Cg + Pg ≤ F + F ∗ ln
(

3γF ∗ − 3γF + 2C∗ + 2P ∗

F ∗

)

+ F ∗ + C∗ + P ∗. (7)
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Proof By Corollary 4.2, there exists an integer K > 0 such that CK + PK ≤ F ∗ +C∗ + P ∗

and Ck + Pk > F ∗ + C∗ + P ∗ for any 0 ≤ k ≤ K − 1. Let us consider the (k + 1)th iteration,
where 0 ≤ k ≤ K − 1. From (6), we have

Ck + Pk − Ck+1 − Pk+1 − (Fk+1 − Fk)
Fk+1 − Fk

≥ Ck + Pk − F ∗ − C∗ − P ∗

F ∗ .

It is easy to see that

Fk+1 − Fk ≤ F ∗
(

Ck + Pk − Ck+1 − Pk+1

Ck + Pk − C∗ − P ∗

)

.

Therefore,

FK = F +
K

∑

k=1

(Fk − Fk−1)

≤ F + F ∗
K

∑

k=1

(

Ck−1 + Pk−1 − Ck − Pk

Ck−1 + Pk−1 − C∗ − P ∗

)

implying that

Fg + Cg + Pg ≤ FK + CK + PK

≤ F + F ∗
K

∑

k=1

(

Ck−1 + Pk−1 − Ck − Pk

Ck−1 + Pk−1 − C∗ − P ∗

)

+ CK + PK . (8)

The derivation with respect to CK + PK on the right side of (8) is

1 − F ∗

CK−1 + PK−1 − C∗ + P ∗ ≥ 0,

implying that the right side of (8) is a monotone increasing function with respect to CK + PK ,
and by (5), it achieves its maximum at CK + PK = F ∗ + C∗ + P ∗. In the following, we assume
CK + PK = F ∗ + C∗ + P ∗. Since

Ck−1 + Pk−1 − Ck − Pk

Ck−1 + Pk−1 − C∗ − P ∗ = 1 − Ck + Pk − C∗ − P ∗

Ck−1 + Pk−1 − C∗ − P ∗

≤ ln
(

Ck−1 + Pk−1 − C∗ − P ∗

Ck + Pk − C∗ − P ∗

)

,

we have

Fg + Cg + Pg ≤ F + F ∗
K

∑

k=1

ln
(

Ck−1 + Pk−1 − C∗ − P ∗

Ck + Pk − C∗ − P ∗

)

+ CK + PK

= F + F ∗ ln
(

C + P − C∗ − P ∗

CK + PK − C∗ − P ∗

)

+ CK + PK

= F + F ∗ ln
(

C + P − C∗ − P ∗

F ∗

)

+ F ∗ + C∗ + P ∗. (9)
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On the other hand, by (4) and the weak duality theorem, we have

3γF + C + P ≤ 3γF + C + 3P ≤ 3(γF ∗ + C∗ + P ∗) (10)

which indicates that

C + P − C∗ − P ∗ ≤ 3γF ∗ − 3γF + 2C∗ + 2P ∗.

We complete the proof by combining the above inequality and (9).
By Lemma 4.3, we obtain

Lemma 4.4 If C + P > F ∗ + C∗ + P ∗, then the cost of the solution obtained from
Algorithm 2 is no more than

(1 + ln(3γ))F ∗ +
(

1 +
2
3γ

)

(C∗ + P ∗).

Proof Taking the derivation with respect to F on the right side of (7), we have

1 − 3γF ∗

3γF ∗ − 3γF + 2C∗ + 2P ∗ .

Therefore the right side of (7) achieves its maximum at F = 2
3γ (C∗ + P ∗). Setting F :=

2
3γ (C∗ + P ∗), we obtain

Fg + Cg + Pg ≤ 2
3γ(C∗ + P ∗)

+ F ∗ ln(3γ) + F ∗ + C∗ + P ∗

= (1 + ln(3γ))F ∗ +
(

1 +
2
3γ

)

(C∗ + P ∗).

Lemma 4.5 If C + P ≤ F ∗ + C∗ + P ∗, then the cost of the solution obtained from
Algorithm 2 is no more than

(

2 − 1
3γ

)

F ∗ +
(

1 +
2
3γ

)

(C∗ + P ∗).

Proof By (10) and C + P ≤ F ∗ + C∗ + P ∗, we have

F + C + P =
3γF + C + P

3γ
+

(

1 − 1
3γ

)

(C + P )

≤ 3(γF ∗ + C∗ + P ∗)
3γ

+
(

1 − 1
3γ

)

(F ∗ + C∗ + P ∗)

=
(

2 − 1
3γ

)

F ∗ +
(

1 +
2
3γ

)

(C∗ + P ∗).

Since Algorithm 2 does not increase the total cost, we have

Fg + Cg + Pg ≤
(

2 − 1
3γ

)

F ∗ +
(

1 +
2
3γ

)

(C∗ + P ∗).

Finally, we obtain the following main result in this section.
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Theorem 4.6 Setting γ := 0.7192, Algorithm 2 is a 1.8526-approximation algorithm for
the PFLPWP.

Proof It follows from Lemmas 4.4 and 4.5 that the approximation ratio of Algorithm 2 is

max
{

1 + ln(3γ), 2 − 1
3γ

, 1 +
2
3γ

}

≈ 1.8526.

5 Conclusion

In this paper, we propose the PFLPWP along with a primal-dual 3-approximation algorithm
which is the first constant (combinatorial) approximation algorithm for the PFLPWP. Further-
more, by integrating the scaling and greedy augmentation techniques (see [3, 5]), we obtain an
improved ratio of 1.8526. It would be interesting to further improve the approximation ratio
for the PFLPWP.
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[16] Hayrapetyan A, Swamy C, and Tardos É, Network design for information networks, Proceedings

of SODA, 2005, 933–942.

[17] Chudak F A and Nagano K, Efficient solutions to relaxations of combinatorial problems with

submodular penalties via the Lovász extension and non-smooth convex optimization, Proceedings

of SODA, 2007, 79–88.

[18] Ravi R and Sinha A, Multicommodity facility location, Proceedings of SODA, 2004, 342–349.

[19] Mahdian M, Facility location and the analysis of algorithms through factor-revealing problems,

Ph.D.’s degree thesis, Massachusetts Institute of Technology, Cambridge, MA, 2004.

[20] Li G, Wang Z, and Wu C, Approximation algorithms for the stochastic priority facility location

problem, Optimization, 2013, 62(7): 919–928.

[21] Jain K and Vazirani V V, Approximation algorithms for metric facility location and k-median

problems using the primal-dual schema and Lagrangian relaxation, J. ACM, 2001, 48: 274–296.


