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Abstract This paper first proposes an infinite class of 2k-variable Boolean functions with high non-

linearity and high algebraic degree. Then an infinite class of balanced Boolean functions are proposed

by modifying the above Boolean functions. This class of balanced Boolean functions have optimal al-

gebraic degree and high nonlinearity. Both classes have optimal algebraic immunity based on a general

combinatorial conjecture.

Keywords Algebraic degree, algebraic immunity, balancedness, Bent function, Boolean function,

nonlinearity.

1 Introduction

Boolean functions are usually used for the combiner and filter functions in stream ciphers
and for S-box designing in block ciphers. To resist known attacks, Boolean functions are gen-
erally required to have balancedness, high algebraic degree, high nonlinearity, high correlation
immunity and high algebraic immunity, and so on[1]. Among them, Algebraic immunity was
proposed by Meier, et al.[2, 3] as a response to algebraic attack[2, 4, 5].

It is a challenge to find Boolean functions achieving all the necessary cryptographic crite-
ria. There are several constructions of Boolean functions with optimum algebraic immunity,
see [6–10]. However, the nonlinearity of most of Boolean functions proposed are not sufficient
for cryptographic applications. An infinite excellent class of balanced Boolean functions, which
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were first presented in [11], further studied by Carlet and Feng[12]. It was proved this class
of Boolean functions have optimum algebraic immunity, optimal nonlinearity among all known
constructions of Boolean functions with optimal algebraic immunity. In 2009, Tu and Deng[13]

proposed two classes of Boolean functions of even variables, which have optimal algebraic im-
munity under the assumption that a combinatorial conjecture is correct. The nonlinearity of
these functions is even better than that of the functions in [12]. But Tu-Deng functions are
vulnerable to fast algebraic attacks[14]. Boolean functions, which have 1-resiliency, optimal
algebraic degree and high nonlinearity, were proposed in [15, 16] through a modification of
Boolean functions in [13]. Based on the combinatorial conjecture Tu and Deng[13] introduced,
these functions are at least algebraic immunity suboptimal. Tang, et al.[17] proposed two classes
of highly nonlinear Boolean functions with optimal algebraic immunity based on a new com-
binatorial conjecture which had been proved by Cohen and Flori[18] in 2011. These functions
also have a good immunity to fast algebraic attacks.

In this paper, the constructions of Boolean functions in [13, 17] are extended to the more
general case. We first propose an infinite class of 2k-variable Boolean functions, which have high
nonlinearity and high algebraic degree. Based on a general combinatorial conjecture[17, 18], this
infinite class of 2k-variable Boolean functions have optimal algebraic immunity. By a modifica-
tion of the above Boolean functions, we also propose an infinite class of balanced Boolean func-
tions with optimal algebraic degree and high nonlinearity. And this class of balanced Boolean
functions have the same algebraic immunity as the above class. The proof techniques for the
properties of Boolean functions are analogous to those of [12] and [13] in this presentation.

The remainder of the paper is organized as follows. In Section 2, we recall the necessary
background of Boolean functions. In Section 3, we introduce the general combinatorial con-
jecture, with the aid of which we discuss the algebraic immunity of the proposed Boolean
functions. In Section 4 and Section 5, we give two constructions and discuss their algebraic
degree, nonlinearity and algebraic immunity. Section 6 concludes the paper.

2 Preliminaries

Let n be a positive integer. A Boolean function of n variables is a mapping from Fn
2 to F2,

where F2 denotes the finite field with two elements. Denote Bn the set of all n-variable Boolean
functions. The basic representation of an n-variable Boolean function f is by the output column
of its truth table, i.e., a binary string of length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), · · · , f(1, 1, · · · , 1)].

The Hamming weight of f , wt(f), is the size of the support supp(f) = { x ∈ Fn
2 | f(x) = 1 }.

We say that a Boolean function f is balanced if the number of 1s equals the number of 0s in
its truth table, that is, if its Hamming weight equals 2n−1.

Any Boolean function has a unique representation as a multivariate polynomial over F2,
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which is called the algebraic normal form (ANF):

f(x1, x2, · · · , xn) =
∑

I⊆{1,2,··· ,n}
aI

∏

i∈I

xi, aI ∈ F2.

The algebraic degree, deg(f), is defined to be

deg(f) = max
I⊆{1,2,··· ,n}

{|I| | aI �= 0}.

A Boolean function is affine if it has algebraic degree at most 1. The set of all affine functions
is denoted by An.

We identify the field F2n with the vector space Fn
2 . An n-variable Boolean functions can

also be uniquely expressed by a univariate polynomial over F2n

f(x) =
2n−1∑

i=0

aix
i,

where a0, a2n−1 ∈ F2, ai ∈ F2n for 1 ≤ i < 2n − 1 such that a2
i = a2i(mod 2n−1). The binary

expansion of i is i = i0 + i12 + · · · + in−12n−1, and we denote i = (i0, i1, · · · , in−1) ∈ Fn
2 . The

algebraic degree of f equals max{wt(i) | ai �= 0, 0 ≤ i < 2n}, where wt(i) = i0+i1+ · · ·+in−1 ∈
Z.

The Hamming distance dH(f, g) between two Boolean functions f and g is the Hamming
weight of their difference f + g, i.e., dH(f, g) = |{ x ∈ Fn

2 | f(x) + g(x) = 1 }|. The nonlinearity
Nf of a Boolean function f ∈ Bn is defined as

Nf = min
g∈An

(dH(f, g)).

Let x = (x1, x2, · · · , xn) and a = (a1, a2, · · · , an) both belong to Fn
2 and a · x = a1x1 +

a2x2 + · · · + anxn.
Wf (a) =

∑

x∈Fn
2

(−1)f(x)+a·x

is called the Walsh spectrum of f at a. For f : F2n −→ F2, the Walsh spectrum of f at a ∈ F2n

is defined by
Wf (a) =

∑

x∈F2n

(−1)f(x)+tr(ax),

where tr is the trace function from F2n to F2. For f : F2k ×F2k −→ F2, the Walsh spectrum
of f at (a, b) ∈ F2k ×F2k is defined by

Wf (a, b) =
∑

(x,y)∈F2k×F2k

(−1)f(x,y)+tr(ax+by).

A Boolean function f is balanced if and only if Wf (0) = 0. The nonlinearity of f can also
be expressed via its Walsh spectra as

Nf = 2n−1 − 1
2

max
a∈F2n

|Wf (a)|.
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It is well-known that the nonlinearity satisfies the following inequality

Nf ≤ 2n−1 − 2
n
2 −1.

The upper bound can be attained when n is even, and such Boolean functions are called Bent
functions.

Definition 2.1 (see [3]) The algebraic immunity AI(f) of an n-variable Boolean function
f ∈ Bn is defined to be the lowest degree of nonzero Boolean functions g such that f · g = 0 or
(f + 1) · g = 0.

Courtois and Meier[2] proved that AI(f) ≤ �n
2 �. The algebraic immunity, as well as the

nonlinearity and algebraic degree, is affine invariant.
We can refer to [19] for BCH code and [20] for finite fields used in this paper.

3 Some Combinatorial Conditions

In this section, we will introduce some combinatorial conjectures for discussing the alge-
braic immunity of some Boolean functions. Denote Z∗

2k−1 = {u ∈ Z2k−1| gcd(u, 2k − 1) = 1}
throughout this paper.

Tu and Deng in [13] presented two classes of Boolean functions as follows.

Construction 3.1 Let n = 2k ≥ 4 be an integer and α be a primitive element of the
finite field F2k . Set Δ = {1 = α0, α1, · · · , α2k−1−1}. Define f, F ∈ Bn as

f(x, y) = g(xy2k−2), F (x, y) =

⎧
⎨

⎩
g(xy2k−2), x �= 0,

g(y), x = 0,

where g is a Boolean function defined over F2k with supp(g) = Δ.

In order to discuss the algebraic immunity of Boolean functions above, they presented the
following combinatorial conjecture on binary strings.

Conjecture 3.2 (see [13]) Let k ≥ 2 be an integer. For any 0 < t < 2k − 1, define

Sk,t,+ = { (a, b) | 0 ≤ a, b < 2k − 1, a + b ≡ t(mod 2k − 1), wt(a) + wt(b) ≤ k − 1}.

Then |Sk,t,+| ≤ 2k−1.

Tu and Deng[13] pointed out that the correctness of Conjecture 3.2 implies the optimal
algebraic immunity of Boolean functions in Construction 3.1. And they could validate this
conjecture when k ≤ 29[13]. In [21, 22], the authors proved it is true for many cases of t.

Tang, et al.[17] presented another combinatorial conjecture similar to Conjecture 3.2 to
investigate the algebraic immunity of Boolean functions they introduced.

Conjecture 3.3 (see [17]) Let k ≥ 2 be an integer. For any 0 ≤ t < 2k − 1, define

Sk,t,− = { (a, b) | 0 ≤ a, b < 2k − 1, a − b ≡ t(mod 2k − 1), wt(a) + wt(b) ≤ k − 1}.

Then |Sk,t,−| ≤ 2k−1.
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Fortunately, Conjecture 3.3 has been proved[18], so Boolean functions Tang, et al.[17] pro-
posed have optimal algebraic immunity. The authors also referred to a general conjecture in
[17] as follows.

Conjecture 3.4 Let k ≥ 2 be an integer, and u ∈ Z∗
2k−1. For any 0 ≤ t < 2k − 1, define

Sk,t,u = { (a, b) | 0 ≤ a, b < 2k − 1, ua + b ≡ t(mod 2k − 1), wt(a) + wt(b) ≤ k − 1}.

Then |Sk,t,u| ≤ 2k−1.

For 2 ≤ k ≤ 15, this general conjecture was checked in [17]. This general conjecture includes
Conjecture 3.2 and Conjecture 3.3 as special cases. A more general conjecture is as follows.

Conjecture 3.5 Let k ≥ 2 be an integer, and u, v ∈ Z∗
2k−1. For any 0 ≤ t < 2k − 1,

define

Sk,t,u,v = { (a, b) | 0 ≤ a, b < 2k − 1, ua + vb ≡ t(mod 2k − 1), wt(a) + wt(b) ≤ k − 1}.

Then |Sk,t,u,v| ≤ 2k−1.

Lemma 3.6 Conjecture 3.5 is equivalent to Conjecture 3.4.

Proof It’s obvious Conjecture 3.5 implies Conjecture 3.4.
If Conjecture 3.4 is true, i.e., for any u ∈ Z∗

2k−1, 0 ≤ t < 2k − 1, |Sk,t,u| ≤ 2k−1. For any
v ∈ Z∗

2k−1,
(a, b) ∈ Sk,t,u if and only if (a, b) ∈ Sk,vt,uv,v ,

so |Sk,vt,uv,v | = |Sk,t,u| ≤ 2k−1.
For any u, v ∈ Z∗

2k−1, 0 ≤ t < 2k − 1, |Sk,vt,uv,v | ≤ 2k−1 if and only if for any u, v ∈
Z∗

2k−1, 0 ≤ t < 2k − 1, |Sk,t,u,v| ≤ 2k−1. Therefore, Conjecture 3.5 is true.
The properties of set Sk,t,u were also investigated in [18].

Lemma 3.7 (see [18]) Let Sk,t,u be defined as above. Then it satisfies the following
properties:

i) |Sk,t,u| = |{ a ∈ Z2k−1 |wt(a) + wt(t − ua) ≤ k − 1}|.
ii) |Sk,t,u| = |Sk,2t,u|.
iii) |Sk,t,u| = |Sk,t,2u|.
iv) |Sk,t,u| = |Sk,u−1t,u−1 |.
As Lemma 3.7 and the proved Conjecture 3.3, Conjecture 3.4 is correct for u = −2l, 0 ≤

l < k.

4 Boolean Functions with Optimal Algebraic Immunity

In this section, we present an infinite class of 2k-variable Boolean functions and discuss its
algebraic immunity, algebraic degree and nonlinearity.

Construction 4.1 Let n = 2k ≥ 4, u ∈ Z∗
2k−1. Let α be a primitive element of the finite

field F2k . Set Δs = {αs, αs+1, · · · , α2k−1+s−1} where 0 ≤ s < 2k − 1 is an integer. Then we
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define a Boolean function f ∈ Bn as follows:

f(x, y) = g(xy2k−1−u),

where g is a Boolean function defined over F2k with supp(g) = Δs.

Remark 4.2 If we replace xy2k−1−u with xvy2k−1−u, u, v ∈ Z∗
2k−1 in Construction 4.1,

the conclusions in this section can be applied to the corresponding Boolean functions. More
precisely, if Boolean functions f(x, y) = g(xvy2k−1−u) with the function g as above. Then
supp(f) = { (x, y) | xvy2k−1−u ∈ Δs, x, y ∈ F∗

2k−1}, i.e., supp(f) = { (x, y) | xy2k−1−v−1u ∈
Δ′

s, x, y ∈ F∗
2k−1}, where Δ′

s = {(αv−1
)s, (αv−1

)s+1, · · · , (αv−1
)2

k−1+s−1}. For example, supp(f) =
{ (x, y) | xy2k−2 ∈ {(α−1)s, (α−1)s+1, · · · , (α−1)2

k−1+s−1}, x, y ∈ F∗
2k−1} for u = v = −1.

That is to say, the function f is Boolean functions defined in Construction 4.1 when αv−1
is a

primitive element of the finite field F2k .

It is obtained immediately that wt(f) = 2k−1(2k − 1) = 22k−1 − 2k−1. The properties of
Boolean functions in Construction 4.1 will be investigated in the following subsections.

4.1 Algebraic Immunity

Theorem 4.3 Let f be the n-variable Boolean function defined in Construction 4.1. If
Conjecture 3.4 is correct, then f has optimal algebraic immunity, i.e., AI(f) = k.

Proof It is sufficient to prove that both f and f + 1 have no annihilators with algebraic
degrees less than k. Let f admit a nonzero annihilator h : F2k ×F2k −→ F2 with deg(h) < k.
Boolean function h can be written as a bivariate polynomial on F2k

h(x, y) =
2k−1∑

i=0

2k−1∑

j=0

hi,jx
iyj , hi,j ∈ F2k .

It follows that hi,j = 0 if wt(i) + wt(j) ≥ k, which implies h2k−1,i = hj,2k−1 = 0 for all
0 ≤ i, j ≤ 2k − 1. Since f · h = 0 and supp(f) = {(γyu, y)|y ∈ F∗

2k , γ ∈ Δs}, then h(x, y) = 0
for all (x, y) ∈ supp(f), i.e., h(γyu, y) = 0 for all y ∈ F∗

2k , γ ∈ Δs.

h(γyu, y) =
2k−2∑

i=0

2k−2∑

j=0

hi,j(γyu)iyj =
2k−2∑

i=0

2k−2∑

j=0

hi,jγ
iyj+ui

can be written as

h(γyu, y) =
2k−2∑

t=0

ht(γ)yt,

where

ht(γ) =
∑

0≤i,j≤2k−2,ui+j≡t(mod 2k−1)

hi,jγ
i

= h0,t + h1,t−u(mod 2k−1)γ + h2,t−2u(mod 2k−1)γ
2

+ · · · + h2k−2,t−(2k−2)u(mod 2k−1)γ
2k−2.
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Note that {t − ui(mod 2k − 1)|0 ≤ i < 2k − 1} = Z2k−1 due to (u, 2k − 1) = 1.
For any γ ∈ Δs, h(γyu, y) = 0 for all y ∈ F∗

2k , so it follows that

ht(γ) = 0, 0 ≤ t ≤ 2k − 2, for all γ ∈ Δs.

From the definition of BCH code, we know that the vector

(h0,t, h1,t−u(mod2k−1), h2,t−2u(mod2k−1), · · · , h2k−2,t−(2k−2)u(mod 2k−1))

is a codeword in some BCH code of length 2k − 1 over F2k , having the elements in Δs as zeros
and the designed distance 2k−1 + 1. If this codeword is nonzero, its Hamming weight should
be greater than or equal to 2k−1 +1. But this contradicts the fact that the Hamming weight of
this codeword should be less than or equal to 2k−1 from Conjecture 3.4. Hence, this codeword
must be zero, that is,

h0,t = h1,t−u(mod 2k−1) = h2,t−2u(mod2k−1) = · · · = h2k−2,t−(2k−2)u(mod 2k−1) = 0

for any 0 ≤ t ≤ 2k − 2. This proves h = 0.
Next, we prove a similar result for f + 1. Let h(x, y) ∈ B2k such that deg(h) < k and

(f + 1) · h = 0, then

supp(f + 1) = { (x, y) |xy2k−1−u ∈ F2k \ Δs, x, y ∈ F2k}.
Similarly, for all 0 ≤ t ≤ 2k − 2, we have

ht(γ) = 0, for any γ ∈ F∗
2k \ Δs.

Then the vector

(h0,t, h1,t−u(mod2k−1), h2,t−2u(mod2k−1), · · · , h2k−2,t−(2k−2)u(mod 2k−1))

is also a codeword in some BCH code of length 2k −1 over F2k , having the elements in F∗
2k \Δs

as zeros and designed distance 2k−1. If the codeword is nonzero, its Hamming weight is at least
2k−1.

At the same time, h(0, β) =
∑2k−2

j=0 h0,jβ
j for any β ∈ F2k , hence h0,j = 0 for 0 ≤ j ≤ 2k−2.

According to Conjecture 3.4 and h0,i = 0, 0 ≤ i ≤ 2k − 2, the Hamming weight of vector ht is
less than 2k−1. A contraction follows. Thus it’s obtained that h = 0.

From the above discussion, we have AI(f) = k. That is to say, the constructed Boolean
functions have optimal algebraic immunity.

Conjecture 3.4 is correct for u = −2l, 0 ≤ l < k, therefore Boolean function f defined by
Construction 4.1 has the optimal algebraic immunity, i.e., AI(f) = k in this case.

4.2 Polynomial Representation and Algebraic Degree

Theorem 4.4 Let f be the n-variable Boolean function defined in Construction 4.1. Then
its bivariate representation is

f(x, y) =
2k−2∑

i=1

α−is(1 + α−i)2
k−1−1(xy2k−1−u)i.
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Furthermore, the algebraic degree of f is max1≤i≤2k−2{wt(i) + wt((2k − 1 − u)i)} and k ≤
deg(f) ≤ 2(k − 1).

Proof Let g(x) =
∑2k−1

i=0 gix
i be the univariate representation of g over F2k . It’s obvious

g0 = g(0) = 0, g2k−1 = 0 (since g has even Hamming weight). For every i ∈ {1, 2, · · · , 2k − 2},

gi =
2k−2∑

j=0

g(αj)α−ij =
2k−1−1+s∑

j=s

α−ij = α−is 1 + α−i2k−1

1 + α−i
= α−is(1 + α−i)2

k−1−1.

Then g(y) =
∑2k−2

i=1 α−is(1 + α−i)2
k−1−1yi and deg(g) = k − 1. By the definition of f(x, y), we

obtain

f(x, y) = g(xy2k−1−u) =
2k−2∑

i=1

α−is(1 + α−i)2
k−1−1(xy2k−1−u)i

and deg(f) = max1≤i≤2k−2{wt(i) + wt((2k − 1 − u)i)}. It is obvious k ≤ deg(f) ≤ 2(k − 1).

Remark 4.5 1) If u = 1, f has algebraic degree k, since wt(i)+wt(−i) = k for any 1 ≤ i ≤
2k − 2; If u = 2l, 1 ≤ l < k, deg(f) = max1≤i≤2k−2(wt(i) + wt(−2li)) = max1≤i≤2k−2

(
wt(i) +

wt(−i)
)

= k.
2) If u = 2k − 2, deg(f) = max1≤i≤2k−2{2wt(i)} = 2(k − 1) = n − 2; If u = 2k − 1 − 2l,

0 ≤ l < k, deg(f) = max1≤i≤2k−2

(
wt(i)+wt(2li)

)
= max1≤i≤2k−2

(
wt(i)+wt(i)

)
= 2(k−1) =

n − 2.

In Table 1, we give the exact algebraic degree of Boolean functions in Construction 4.1 for
some cases.

Table 1 The algebraic degree of functions in Construction 4.1

n The algebraic degree of functions in Construction 4.1

u 1 3 5 7 11 15 30
10

deg 5 7 7 7 7 8 8

u 1 5 11 13 23 31 62
12

deg 6 8 9 8 9 10 10

u 1 9 19 21 27 55 126
14

deg 7 10 11 11 10 11 12

u 1 7 19 59 61 182 254
16

deg 8 12 12 12 12 12 14

u 1 3 37 57 59 239 510
18

deg 9 13 14 12 15 15 16
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4.3 Nonlinearity

Lemma 4.6 Let k ≥ 2 be a positive integer and α be a primitive element of F2k . Let
Δs = {αs, · · · , α2k−1+s−1}, where 0 ≤ s < 2k − 1 is an integer. Define

Γ s =
∑

γ∈Δs

∑

x∈F∗
2k

(−1)tr(γxu+x),

where u ∈ Z∗
2k−1. Then

|Γs| ≤ 1 +
2k+1

π
ln

4(2k − 1)
π

.

Proof Let ζ = e
2π

√−i

2k−1 be a primitive (2k − 1)-th root of unity in the complex field C, and
χ be the multiplicative character of F∗

2k defined by χ(αj) = ζj (0 ≤ j ≤ 2k − 2). We define the
Gauss sum

G(χμ) =
∑

x∈F∗
2k

χμ(x)(−1)tr(x), 0 ≤ μ ≤ 2k − 2.

It is well-known that G(χ0) = −1 and |G(χμ)| = 2
k
2 for 1 ≤ μ ≤ 2k − 2. By Fourier inverse

transform,

(−1)tr(αj) =
1

2k − 1

2k−2∑

μ=0

G(χμ)χμ(αj), 0 ≤ j ≤ 2k − 2.

Let q = 2k,

Γs =
∑

γ∈Δs

∑

x∈F∗
2k

(−1)tr(γxu+x)

=

q
2 +s−1∑

i=s

q−2∑

j=0

(−1)tr(α
i+uj)(−1)tr(α

j)

=
1

(q − 1)2

q
2 +s−1∑

i=s

q−2∑

j=0

( q−2∑

μ=0

G(χμ)χμ(αi+ju)
)( q−2∑

ν=0

G(χν)χν(αj)
)

=
1

(q − 1)2

q−2∑

μ=0

q−2∑

ν=0

q
2+s−1∑

i=s

q−2∑

j=0

G(χμ)G(χν)ζ−μ(i+ju)−νj

=
1

(q − 1)2

q−2∑

μ=0

q−2∑

ν=0

G(χμ)G(χν)
( q

2 +s−1∑

i=s

ζ−μi

)( q−2∑

j=0

ζ(−μu−ν)j

)
.

It is easy to deduce that

q
2 +s−1∑

i=s

ζ−μi = ζ−μs

q
2−1∑

i=0

ζ−μi =

⎧
⎪⎨

⎪⎩

q

2
, μ = 0,

ζ−μs 1 − ζ−μ q
2

1 − ζ−μ
, μ �= 0

and
q−2∑

j=0

ζ(−μu−ν)j =

⎧
⎨

⎩
q − 1, ν = μ(q − 1 − u),

0, ν �= μ(q − 1 − u).
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Therefore,

Γs =
1

q − 1

q−2∑

μ=1

G(χμ)G(χμ(q−1−u))
(

ζ−μs 1 − ζ−μ q
2

1 − ζ−μ

)
+

q

2(q − 1)

=
1

q − 1

q−2∑

μ=1

G(χμ)G(χμ(q−1−u))
ζ−μs+ μ

2 −μq
4 (ζ

μq
4 − ζ−

μq
4 )

ζ
μ
2 − ζ−

μ
2

+
q

2(q − 1)

=
1

q − 1

q−2∑

μ=1

G(χμ)G(χμ(q−1−u))
ζ−μs+ μ

2 −μq
4 sin μqπ

2(q−1)

sin μπ
q−1

+
q

2(q − 1)
.

We have

|Γs| ≤ 1
q − 1

q−2∑

μ=1

|G(χμ)||G(χμ(q−1−u))| 1
| sin μπ

q−1 |
+

q

2(q − 1)

=
q

2(q − 1)
+

q

q − 1

q−2∑

μ=1

1
sin( μπ

q−1 )
.

From [12],
q−2∑

μ=1

(
sin

μπ

q − 1

)−1

≤ −2(q − 1)
π

ln tan
(

π

4(q − 1)

)
,

we get

|Γs| ≤ q

2(q − 1)
− 2q

π
ln tan

(
π

4(q − 1)

)

≤ 1 − 2q

π
ln

π

4(q − 1)

≤ 1 +
2q

π
ln

4(q − 1)
π

.

Therefore, it is obtained that |Γs| ≤ 1 + 2k+1

π ln 4(2k−1)
π .

Theorem 4.7 Let n = 2k and f ∈ Bn be the Boolean function given by Construction 4.1.
Then

Nf ≥ 2n−1 − 2k+1

π
ln

4(2k − 1)
π

− 1 ≈ 2n−1 − 2 ln 2
π

k2k.

Proof We only need to compute Wf (a, b). Obviously Wf (0, 0) = 22k − 2wt(f) = 22k −
2(2k − 1)2k−1 = 2k.

For any (a, b) ∈ F2k ×F2k \ {(0, 0)},

Wf (a, b) =
∑

(x,y)∈F2k×F2k

(−1)f(x,y)+tr(ax+by)

= −2
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

= −2
∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr(aγyu+by).
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If a = 0, b ∈ F∗
2k , then

Wf (0, b) = −2
∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr(by) = 2k.

Since (u, 2k − 1) = 1, h(y) = ayu is a permutation polynomial on F2k s.t. h(0) = 0. So if
b = 0, a ∈ F∗

2k , then
Wf (a, 0) = −2

∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr(ayu) = 2k.

For any (a, b) ∈ F∗
2k ×F∗

2k ,

Wf (a, b) = −2
∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr(ab−uγyu+y).

Take ab−uαs = αs′
,

Wf (a, b) = −2
∑

γ∈Δs′

∑

y∈F∗
2k

(−1)tr(γyu+y).

So we get

max
(a,b)∈F2k×F2k

|Wf (a, b)| = max
{

2 max
0≤s<2k−1

∣∣∣∣
∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr(γyu+y)

∣∣∣∣, 2k

}
.

By Lemma 4.6, we have

Nf = 2n−1 − 1
2

max
(a,b)∈F2k×F2k

|Wf (a, b)|

≥ 2n−1 −
(

1 +
2k+1

π
ln

4(2k − 1)
π

)

≈ 2n−1 − 2 ln 2
π

k2k.

The proof is finished.
Theorem 4.7 gives a lower bound of the nonlinearity, which is constant for various u ∈ Z∗

2k−1.
Theorem 4.7 also shows Boolean functions in Construction 4.1 indeed have high nonlinearity.
In Table 2, we give the nonlinearity of Boolean functions in Construction 4.1 for even n. Let
us denote by Nf the nonlinearity of Boolean functions in Construction 4.1. It’s found that the
nonlinearity varies from u ∈ Z∗

2k−1. When u = 1 and u = 2k − 2, the exact nonlinearity of
Boolean functions in Construction 4.1 equals to the exact value in [13, 17].
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Table 2 The nonlinearity of functions in Construction 4.1

n The nonlinearity of functions in Construction 4.1 Bound in TH 3 2n−1 − 2
n
2 −1

u 1 2 - - -
4

Nf 6 6 - - -
5 6

u 1 2 3 5 6
6

Nf 28 28 24 24 24
22 28

u 1 7 11 13 14
8

Nf 120 112 112 112 112
100 120

u 1 5 7 11 30
10

Nf 496 488 480 480 480
442 496

u 1 5 11 23 62
12

Nf 2016 1984 1992 1984 1988
1879 2016

u 1 9 21 112 126
14

Nf 8128 8048 8064 8080 8036
7797 8128

u 1 7 19 134 254
16

Nf 32640 32512 32480 32528 32520
31865 32640

u 1 72 376 457 510
18

Nf 130816 130432 130624 130576 130520
129039 130816

u 1 7 36 587 1022
20

Nf 523776 523104 523168 523200 523164
519770 523776

u 1 19 257 1726 2046
22

Nf 2096128 2095008 2094720 2095440 2095012
2087212 2096128

4.4 A Class of Bent Function with Optimal Algebraic Immunity

The infinite class of Boolean functions defined in Construction 4.1 have different nonlinearity
for various u. We note that this class are Bent functions when u = 2l.

Theorem 4.8 Let f be the n-variable Boolean function defined in Construction 4.1. Take
u = 2l, 0 ≤ l < k. If Conjecture 3.4 is true, then f is Bent with optimal algebraic immunity,
and has algebraic degree k.

Proof As is proved in Theorem 4.3 that AI(f) = n
2 = k.

From Theorem 4.7, when (a, b) ∈ F2k ×F2k and ab = 0, Wf (a, b) = 2k.
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For any (a, b) ∈ F∗
2k ×F∗

2k ,

Wf (a, b) =
∑

(x,y)∈F2k×F2k

(−1)f(x,y)+tr(ax+by)

= −2
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

= −2
∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr(aγyu+by)

= −2
∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr(aγyu)+tr(by).

There exists a unique βγ ∈ F∗
2k s.t. βu

γ = aγ. So tr(aγyu) = tr(βγy) and

Wf (a, b) = −2
∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr(βγy)+tr(by)

= −2
∑

γ∈Δs

∑

y∈F∗
2k

(−1)tr((βγ+b)y).

Case 1: βγ + b �= 0, i.e., aγ �= bu for any γ ∈ Δs,

Wf (a, b) = −2
∑

γ∈Δs

( ∑

x∈F2k

(−1)tr(x) − (−1)tr(0)
)

= 2k

(since
∑

x∈F2k
(−1)tr(x) = 0).

Case 2: βγ + b = 0, i.e., aγ1 = bu for some γ1 ∈ Δs,

Wf (a, b) = −2
∑

γ∈Δs\{γ1}

( ∑

x∈F2k

(−1)tr(x) − (−1)tr(0)
)
− 2

∑

y∈F∗
2k

(−1)0

= −2(2k−1 − 1)(−1) − 2(2k − 1) = −2k.

Note that there exists at most one element γ ∈ Δs satisfying aγ = bu for any (a, b) ∈
F∗

2k ×F∗
2k .

From the above discussion, for any (a, b) ∈ F2k ×F2k , Wf (a, b) = 2k or Wf (a, b) = −2k, so
f is Bent.

By Remark 4.5, deg(f) = k.
Recall that the algebraic degree of 2k-variable Bent functions is at most k, so this class of

Bent functions that we construct is algebraic degree optimal.

Remark 4.9 In fact, this class of Bent functions is Dillon’s PS functions[23], since Eγ =
{(γy2l

, y)|y ∈ F2k}, γ ∈ Δs are 2k−1 linear subspaces of F22k of dimension k and Eγ1 ∩Eγ2 = ∅
for γ1 �= γ2, γ1, γ2 ∈ Δs. Besides, this class of Boolean functions are affine equivalent to Bent
functions Tu and Deng proposed.
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5 Balanced Function with Optimal Algebraic Immunity

In this section, we will give a class of 2k-variable balanced Boolean functions by a slight
modification of Construction 4.1. Based on Conjecture 3.4, we will show this class of functions
have optimal algebraic immunity. These functions also have high nonlinearity and high algebraic
degree.

Construction 5.1 Let n = 2k be an even integer, k ≥ 2 and u ∈ Z∗
2k−1. Let α be a

primitive element of the finite field F2k . Set Δs = {αs, · · · , α2k−1+s−1} where 0 ≤ s < 2k − 1
is an integer. Define the Boolean function F ∈ Bn as follows:

F (x, y) =

⎧
⎨

⎩
g(xy2k−1−u), x �= 0,

g(y), x = 0,

where g is a Boolean function defined on F2k with supp(g) = Δs.

Remark 5.2 Similar to Remark 4.2, one can get Boolean functions by replacing xy2k−1−u

with xvy2k−1−u, u, v ∈ Z∗
2k−1, to which the conclusions in this section are also applied.

Theorem 5.3 Let F be the n-variable Boolean function defined in Construction 5.1. Then
F is balanced and deg(F ) = n − 1.

Proof Let n-variable Boolean function f be defined in Construction 4.1. It is obvious that
F is balanced since wt(F ) = wt(g) + wt(f) = 2k−1 + 2k−1(2k − 1) = 2n−1.

It’s easy to see that F (x, y) = f(x, y) + (1 + x2k−1)g(y). Since deg((1 + x2k−1)g(y)) =
2k − 1 > deg(f), deg(F ) = 2k − 1 = n − 1.

Theorem 5.4 Let F be the n-variable Boolean function defined in Construction 5.1. If
Conjecture 3.4 is true, then F has the optimal algebraic immunity, i.e., AI(F ) = n

2 = k.

Proof From Construction 5.1, we have {(γyu, y)|y ∈ F∗
2k , γ ∈ Δs} ⊆ supp(F ) and {(γyu, y)|

y ∈ F∗
2k , γ ∈ F∗

2k \ Δs} ∪ {(x, 0)|x ∈ F2k} ⊆ supp(F + 1). By a similar proof to that of
Theorem4.3, we can see both F and F + 1 have no nonzero annihilators with algebraic degree
less than k. So Boolean function F also has optimal algebraic immunity.

For u = −2l, 0 ≤ l < k, Boolean function F defined by Construction 5.1 has the optimal
algebraic immunity, i.e., AI(F ) = k.

Lemma 5.5 (see [12]) Let α ∈ F∗
2k be a primitive element and λ ∈ F2k . Denote

Sλ =
2k−1+s−1∑

i=s

(−1)tr(λαi).

If λ �= 0, then

|Sλ| ≤ 1 +
2

k
2 +1

π
ln

4(2k − 1)
π

.

Theorem 5.6 Let F be the n-variable Boolean function defined by Construction 5.1. Then

NF ≥ 2n−1 − 2k+1

π
ln

4(2k − 1)
π

− 2
k
2 +1

π
ln

4(2k − 1)
π

− 2

≈ 2n−1 − 2 ln 2
π

k2k − 2 ln 2
π

k2
k
2 .
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Proof For any (a, b) ∈ F2k ×F2k ,

WF (a, b) =
∑

(x,y)∈F2k×F2k

(−1)F (x,y)+tr(ax+by)

=
∑

y∈F2k

(−1)g(y)+tr(by) +
∑

(x,y)∈F∗
2k×F2k

(−1)f(x,y)+tr(ax+by)

=
∑

y∈F2k

(−1)g(y)+tr(by) +
∑

(x,y)∈F2k×F2k

(−1)f(x,y)+tr(ax+by)

−
∑

y∈F2k

(−1)tr(by)

=

⎧
⎨

⎩
0, if b = 0,

Wg(b) + Wf (a, b), else.

Consequently,

max
(a,b)∈F2k×F2k

|WF (a, b)| ≤ max
(a,b)∈F2k×F∗

2k

|Wf (a, b)| + max
b∈F∗

2k

|Wg(b)|.

For b ∈ F∗
2k ,

Wg(b) =
∑

x∈F2k

(−1)g(x)+tr(bx) = −2
2k−1+s−1∑

i=s

(−1)tr(bα
i).

By Lemmas 4.6 and 5.5,

NF ≥ 2n−1 − 2k+1

π
ln

4(2k − 1)
π

− 2
k
2 +1

π
ln

4(2k − 1)
π

− 2

≈ 2n−1 − 2 ln 2
π

k2k − 2 ln 2
π

k2
k
2 .

The proof is finished.
Theorem 5.6 shows Boolean functions in Construction 5.1 indeed have high nonlinearity.

This lower bound is constant for various u ∈ Z∗
2k−1. In Table 3, we give the nonlinearity

of Boolean functions in Construction 5.1 for even n compared with that of the Carlet-Feng
functions in [12]. Nf , NCF and NTCT denote the nonlinearity of Boolean functions in Con-
struction 5.1, that of the Carlet-Feng functions and that of balanced Boolean functions in [17]
respectively. It can be found that there are Boolean functions in Construction 5.1 with higher
nonlinearity than that of the Carlet-Feng functions and that of balanced Boolean functions
in [17]. Indeed, Boolean functions in Construction 5.1 for u = −1 is different from balanced
Boolean functions in [17] only when x = 0. We can also see the nonlinearity is various for
different u ∈ Z∗

2k−1.
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Table 3 The nonlinearity of functions in Construction 5.1

n The nonlinearity of functions in Construction 5.1 NCF NTCT BoundTH7 2n−1 − 2
n
2 −1

u 1 - - - 2
4

Nf 4 - - - 4
4 4 3 6

u 1 2 3 5 6
6

Nf 26 26 22 22 22
24 22 18 28

u 1 7 11 13 14
8

Nf 116 110 110 110 110
112 108 93 120

u 1 5 11 19 30
10

Nf 490 482 476 474 474
478 476 429 496

u 1 5 11 23 62
12

Nf 2008 1976 1984 1976 1982
1970 1982 1858 2016

u 1 9 21 112 126
14

Nf 8118 8038 8054 8070 8026
8036 8028 7762 8128

u 1 7 19 134 254
16

Nf 32624 32496 32464 32514 32504
32530 32508 31808 32640

u 1 72 376 457 510
18

Nf 130792 130408 130600 130552 130496
130442 130504 128949 130816

In the following, we consider the behavior of Boolean functions defined by Construction 5.1
against fast algebraic attacks. For a positive integer pair (e, d) with e small and d not too large,
if there is a nonzero Boolean function g with degree at most e such that the product gf has
degree at most d, the Boolean function is considered to be weak against fast algebraic attacks.

Balanced Boolean function in [13], i.e., Boolean functions in Construction 5.1 for u = 1,
were pointed out to be weak against fast algebraic attacks in [14]. But it is showed there are
Boolean functions in Construction 5.1 for some u ∈ Z∗

2k−1 with good immunity against fast
algebraic attacks by some experiments. Some examples are given as follows. We list pairs (e, d)
such that there is no nonzero Boolean function g with degree at most e such that the product
gf has degree at most d for the following n, u.

n = 10, u = 5: (1, 6), (2, 6), (3, 5), (4, 4);
u = 7: (1, 6), (2, 6), (3, 5), (4, 4);
u = 11: (1, 6), (2, 6), (3, 5), (4, 4);
u = 30: (1, 7), (2, 6), (3, 5), (4, 4).

n = 12, u = 5: (1, 7), (2, 7), (3, 7), (4, 6), (5, 5);
u = 11: (1, 8), (2, 7), (3, 7), (4, 6), (5, 5);
u = 23: (1, 8), (2, 7), (3, 7), (4, 6), (5, 5);
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u = 62: (1, 9), (2, 7), (3, 7), (4, 6), (5, 5).
n = 14, u = 9: (1, 9), (2, 9), (3, 9), (4, 8), (5, 7), (6, 6);

u = 21: (1, 10), (2, 10), (3, 9), (4, 8), (5, 7), (6, 6);
u = 112: (1, 10), (2, 9), (3, 9), (4, 8), (5, 7), (6, 6);
u = 126: (1, 11), (2, 10), (3, 9), (4, 7), (5, 7), (6, 6).

n = 16, u = 7: (1, 11), (2, 11), (3, 10), (4, 10), (5, 9), (6, 8), (7, 7);
u = 19: (1, 11), (2, 11), (3, 11), (4, 10), (5, 9), (6, 8), (7, 7);
u = 134: (1, 11), (2, 11), (3, 11), (4, 10), (5, 9), (6, 8), (7, 7);
u = 254: (1, 13), (2, 11), (3, 11), (4, 9), (5, 9), (6, 7), (7, 7).

n = 18, u = 72: (1, 11), (2, 11), (3, 11), (4, 11), (5, 11), (6, 10), (7, 9), (8, 8);
u = 376: (1, 12), (2, 12), (3, 12), (4, 12), (5, 11), (6, 10), (7, 9), (8, 8);
u = 457: (1, 13), (2, 13), (3, 13), (4, 12), (5, 11), (6, 10), (7, 9), (8, 8);
u = 510: (1, 15), (2, 14), (3, 13), (4, 12), (5, 11), (6, 10), (7, 9), (8, 8).

How do Boolean functions in Construction 5.1 for any u ∈ Z∗
2k−1 behave against fast alge-

braic attacks is a further research work of the authors.

6 Conclusions

We generalize Tu-Deng functions[13] and the functions proposed by Tang, et al.[17] and
put forward two infinite classes of 2k-variable Boolean functions. Based on Conjecture 3.4,
both classes have optimal algebraic immunity. These classes have high nonlinearity and high
algebraic degree, even there are Boolean functions in Construction 5.1 with higher nonlinearity
than that of the Carlet-Feng functions and that of balanced Boolean functions in [17]. Some
experiments show there are Boolean functions in Construction 5.1 with good immunity against
fast algebraic attacks.

Acknowledgements Thanks LIU Meicheng for his algorithm in computing the immuni-
ties of Boolean function against fast algebraic attacks.
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