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Abstract The bilevel programming is applied to solve hierarchical intelligence control problems in

such fields as industry, agriculture, transportation, military, and so on. This paper presents a quadratic

objective penalty function with two penalty parameters for inequality constrained bilevel programming.

Under some conditions, the optimal solution to the bilevel programming defined by the quadratic

objective penalty function is proved to be an optimal solution to the original bilevel programming.

Moreover, based on the quadratic objective penalty function, an algorithm is developed to find an

optimal solution to the original bilevel programming, and its convergence proved under some conditions.

Furthermore, under the assumption of convexity at lower level problems, a quadratic objective penalty

function without lower level problems is defined and is proved equal to the original bilevel programming.

Keywords Algorithm, bilevel programming, penalty function, quadratic objective.

1 Introduction

In this paper, we consider the following bilevel programming:

(BP) min
x,y

f1(x, y)

s.t. gi(x, y) ≤ 0, i ∈ I = {1, 2, · · · , p},
y solves the following problem:

min
y

f2(x, y)

s.t. hj(x, y) ≤ 0, j ∈ J = {1, 2, · · · , q},

where f1, f2, gi, hj : Rn × Rm → R, i ∈ I, j ∈ J . Its feasible set is denoted by X = {(x, y) ∈
Rn × Rm | gi(x, y) ≤ 0, i ∈ I} and Y = {(x, y) ∈ Rn × Rm | hj(x, y) ≤ 0, j ∈ J}.
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In 1952, the bilevel programming came from the Stackelberg game[1], which is applied to
solve hierarchical intelligence control problems. Because there are many such problems in such
fields as industry, agriculture, transportation, military, and so on[2–7], it is very important to
study the theory of the bilevel programming. Dempe and Colson, et al. reviewed of about
500 papers[8, 9] as to theories and algorithms of bilevel programming. A bilevel programming
may be transformed into mathematical program with equilibrium constraints. Luo, Pang, and
Ralph[10] gave a system of theories for mathematical programs with equilibrium constraints. In
2002, Dempe published Foundations of Bilevel Programming covering linear bilevel problems,
optimality conditions, solution algorithm, and discrete bilevel problems. In his book, Dempe
discussed a descent algorithm, a bundle algorithm, penalty methods, a trust region method,
and smoothing methods under the assumption of convexity at the lower level problem[11].

It is well-known that it is difficult to solve a nonlinear bilevel programming, since a global
solution can hardly be obtained. In recent years, penalty methods become an efficient tool in
solving mathematical programming. Penalty function method provides an important approach
to solving constrained optimization problems[12]. Its main idea is to transform the constrained
optimization problems into a sequence of unconstrained optimization problems by enlarging
penalty parameters. The unconstrained optimization problem is defined by a penalty parame-
ter with constrained functions, which is then added to the objective function. Penalty methods
were presented by researchers to study solution algorithms or optimal conditions for bilevel
programming. For example, Marcotte and Zhu[13] studied exact and inexact penalty methods
for the generalized bilevel programming problem. Ye, Zhu, and Zhu[14] gave exact penalization
and necessary optimality conditions for generalized bilevel programming problems. Stefan and
Michael[15] discussed exact penalization of mathematical programs with equilibrium constraints.
Liu, Han, and Zhang[16] studied exact penalty functions for convex bilevel programming prob-
lems. Yang, et al. studied lower order penalty methods[17], partial augmented Lagrangian
method[18], and a sequential smooth penalization approach[19] to mathematical programs with
complementarity constraints. Lü, et al.[20] presented a penalty function method based on Kuhn-
Tucker condition to solve linear bilevel programming. Calvete and Galé[21] gave a penalty ap-
proach to optimality, obtained an algorithm for bilevel multiplicative problems through cutting
plan. Ankhili and Mansouri[22] introduced an exact penalty function for bilevel programs with
linear vector optimization at lower level. In above papers, i.e., [13–22], some researchers use the
convexity assumption or linear assumption for the lower level problem, while others use penalty
methods for the lower level problem which is replaced either by mathematical programs with
equilibrium constraints or mathematical programs with complementarity constraints. All in all,
the penalty function methods can ease the difficulties in solving bilevel programming.

The objective penalty function with an objective penalty parameter was discussed in [23]
with its numerical results showing that the objective penalty function algorithm has a better
convergence than those of the constrained penalty function algorithm. Hence, we studied an
objective penalty function of bilevel programming[24]. In this paper, based on the idea of
objective penalty function, we present another objective penalty function which differs from that
in [24]. The second item of objective penalty function in [24] does not include any parameter
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N and M .

2 Objective Penalty Function for (BP)

In this section, an objective penalty optimization problem of (BP) is defined as

F1(x, y; M) = Q(f1(x, y) − M) + M2
∑

i∈I

Q(gi(x, y))

and
F2(x, y; N) = Q(f2(x, y) − N) + N2

∑

j∈J

Q(hj(x, y)),

where the objective parameter M, N ∈ R, and Q(t) = max{t, 0}2. Consider the following
bilevel programming problem:

BP(M, N) min
x,y

F1(x, y; M)

s.t. (x, y) ∈ Rn × Rm,

y solves the following problem:

min
y

F2(x, y; N)

s.t. (x, y) ∈ Rn × Rm.

Now, a theorem is proved as follows.

Theorem 2.1 Suppose that M, N are two constants and (x∗
M , y∗

N ) is an optimal solution
to BP(M, N) for M < f1(x∗

M , y∗
N) and N < f2(x∗

M , y∗
N)}. If (x∗

M , y∗
N ) ∈ X ∩ Y , then (x∗

M , y∗
N)

is an optimal solution to (BP).

Proof First, we prove that y∗
N is an optimal solution as follows.

min f2(x∗
M , y)

s.t. hj(x∗
M , y) ≤ 0, j ∈ J = {1, 2, · · · , q}.

Under the given conditions, for any (x∗
M , y) ∈ Y , we have

0 < Q(f2(x∗
M , y∗

N) − N) = F2(x∗
M , y∗

N ; N) ≤ F2(x∗
M , y; N) = Q(f2(x∗

M , y) − N).

Hence, f2(x∗
M , y∗

N ) − N ≤ f2(x∗
M , y) − N , that is, f2(x∗

M , y∗
N ) ≤ f2(x∗

M , y) and (x∗
M , y∗

N) is a
feasible solution to (BP).

Then, let (x, y) be a feasible solution to (BP). We have

0 < Q(f1(x∗
M , y∗

N) − M) = F1(x∗
M , y∗

N ; M) ≤ F1(x, y; M) = Q(f1(x, y) − M).

Hence, f1(x∗
M , y∗

N ) − M ≤ f1(x, y) − M , that is, f1(x∗
M , y∗

N ) ≤ f1(x, y) and (x∗
M , y∗

N ) is an
optimal solution to (BP).

Based on Theorem 2.1, an algorithm differing from the penalty algorithm in [11] is proposed
to compute an optimal solution to (BP), which solves a sequential problem BP(M, N) and is
called as quadratic objective penalty function algorithm (QOPFA for short).
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QOPFA Algorithm
Step 1 Choose (x1, y1), M1, N1 < 0, a > 1, and k = 1.
Step 2 Solve the following problem:

BP(Mk, Nk) min
(x,y)

F1(x, y; Mk)

s.t. (x, y) ∈ Rn × Rm,

y solves the following problem:

min
y

F2(x, y; Nk)

s.t. (x, y) ∈ Rn × Rm.

Let (xk+1, yk+1) be an optimal solution to BP(Mk, Nk).
Step 3 If (xk+1, yk+1) ∈ X ∩ Y and Mk < f1(xk+1, yk+1), Nk < f2(xk+1, yk+1), stop,

then (xk+1, yk+1) is an optimal solution to (BP). Otherwise, let Mk+1 = aMk, Nk+1 = aNk,
k := k + 1 and go to Step 2.

Theorem 2.2 Suppose that f1, f2, gi(i ∈ I) and hj(j ∈ J) are continuous on Rn×Rm, and
lim(x,y)→∞ f1(x, y) = +∞. Let {(xk, yk)} be the sequence generated by the QOPFA algorithm.

(i) If {(xk, yk)}(k = 1, 2, · · · , k) is a finite sequence (i.e., the QOPFA algorithm stops at
the k-th iteration), then xk is an optimal solution to (BP).

(ii) If {(xk, yk)} is an infinite sequence and there is some k′>1 such that Mk <f1(xk+1,yk+1),
Nk < f2(xk+1, yk+1) for all k > k′, then {(xk, yk)} is bounded and any limit point of it is an
optimal solution to (BP). Otherwise, f1(xk, yk) → −∞ or f2(xk, yk) → −∞ as k → +∞.

Proof (i) If the QOPFA algorithm terminates at the k-th iteration with the first condition
in Step 3 occuring, (xk, yk) is an optimal solution to (BP) by Theorem 1.

(ii) Suppose that {(xk, yk)} is an infinite sequence and there is some k′ > 1 such that
Mk < f1(xk+1, yk+1) and Nk < f2(xk+1, yk+1) for all k > k′. Let (x′, y′) be a feasible solution
to (BP). The bounded sequence {(xk, yk)} is checked as follows. Since (xk+1, yk+1) is an optimal
solution to BP(Mk, Nk),

Q(f1(xk+1, yk+1) − Mk) ≤ F1(xk+1, yk+1; Mk) ≤ Q(f1(x′, y′) − Mk), k = 1, 2, · · · .

So,
(f1(xk+1, xk+1) − Mk)2 ≤ (f1(x′, y′) − Mk)2, k = k′ + 1, k′ + 2, · · · .

We have f1(xk+1, yk+1) ≤ f1(x′, y′), k = k′ + 1, k′ + 2, · · · . Hence, the sequence {xk+1, yk+1}
is bounded, since lim(x,y)→∞ f1(x, y) = +∞. Without loss of generality, we assume (xk, yk) →
(x, y). And, for any given feasible solution (x, y) to (BP), we have

0 < (f1(xk+1, yk+1) − Mk)2 + M2
k

∑

i∈I

Q(gi(xk+1, yk+1)) ≤ (f1(x, y) − Mk)2, ∀k > k′,

that is,
∑

i∈I

Q(gi(xk+1, yk+1)) ≤ 1
M2

k

(f1(x, y)−f1(xk+1, yk+1))(f1(xk+1, yk+1)+f1(x, y)−2Mk), ∀k > k′.
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It is clear that Mk → −∞ as k → +∞. By letting k → +∞ in the above equation, we obtain∑
i∈I Q(gi(x, y)) = 0. Hence, (x, y) ∈ X and f1(x, y) ≤ f1(x, y). On the other hand, for any

(x, y) ∈ Y , we have

0 < (f2(xk+1, yk+1) − Nk)2 + N2
k

∑

j∈J

Q(hj(xk+1, yk+1)) ≤ (f2(x, y) − Nk)2, ∀k > k′,

that is,

∑

j∈J

Q(hj(xk+1, yk+1)) ≤ 1
N2

k

(f2(x, y)−f2(xk+1, yk+1))(f2(xk+1, yk+1)+f2(x, y)−2Nk), ∀k > k′.

It is clear that Nk → −∞ as k → +∞. By letting k → +∞ in the above equation, we obtain∑
j∈J Q(hj(x, y)) = 0. Hence, (x, y) ∈ Y and f2(x, y) ≤ f2(x, y). Therefore, (x, y) is an optimal

solution to (BP).
Example 1 Consider the problem:

(MP1) min
x,y

f1(x, y) = (x − 2)2 + (y − 2)2

s.t. −x ≤ 0,−y ≤ 0,

y solves the following problem:

min
y

f2(x, y) = x2 + y2

s.t. −x ≤ 0,−y ≤ 0.

It is clear that (2, 0) is an optimal solution to (MP1). Let an objective penalty function problem
of (MP1) as follows.

MP1(M, N) min
x,y

F1(x, y; M) = max{(x − 2)2 + (y − 2)2 − M, 0}2

+M2({max{−x, 0}2 + max{−y, 0}2)

s.t. (x, y) ∈ R1 × R1,

y solves the following problem:

min
y

F2(x, y; N) = max{x2 + y2 − N, 0}2

+N2({max{−x, 0}2 + max{−y, 0}2)

s.t. (x, y) ∈ Rn × Rm.

So when M, N < 0, (2, 0) is obviously an optimal solution to MP1(M, N).

3 Objective Penalty Function with the Convexity to the Lower Level

Problem

In the section, suppose that f2(x, y) and hj(x, y)(j ∈ J) with respect to y ∈ Rm are convex,
f2 and hj(j ∈ J) are continuous differentiable on Rn × Rm. Because Q(t) = max{t, 0}2 is
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convex and monotone increasing on R1, F2(x, y; N) with respect to y ∈ Rm is convex and
differentiable[25].

Consider the following nonlinear optimization problem:

BP1(M, N) min
x,y

F1(x, y; M)

s.t. ∇yF2(x, y; N) = 0,

where

∇yF2(x, y; N) = max{f2(x, y) − N, 0}∇yf2(x, y) + N2
∑

j∈J

max{hj(x, y), 0}∇yhj(x, y).

Theorem 3.1 Suppose that M and N are given constants and f2(x, y) and hj(x, y)(j ∈ J)
with respect to y ∈ Rm are convex. Then, (x∗

M , y∗
N ) is an optimal solution to BP1(M, N) if and

only if (x∗
M , y∗

N) is an optimal solution to BP(M, N).

Proof Suppose that (x∗
M , y∗

N ) is an optimal solution to BP1(M, N). According to the
assumption, we have that F2(x, y; N) with respect to y ∈ Rm is convex. From

∇yF2(x∗
M , y∗

N ; N) = 0,

we know that y∗
N is an optimal solution to miny∈Rm F2(x∗

M , y; N). Hence, (x∗
M , y∗

N) is a fea-
sible solution to BP(M, N). Let (x, y) be a feasible solution to BP(M, N). It is clear that
∇yF2(x, y; N) = 0. Then, (x, y) is a feasible solution to BP1(M, N). So, F1(x∗

M , y∗
N ; M) ≤

F1(x, y; M), which means that (x∗
M , y∗

N) is an optimal solution to BP(M, N).
Now, suppose that (x∗

M , y∗
N ) is an optimal solution to BP(M, N). According to the assump-

tion, we have that F2(x, y; N) with respect to y ∈ Rm is convex. From

∇yF2(x∗
M , y∗

N ; N) = 0,

(x∗
M , y∗

N) is a feasible solution to BP1(M, N). Let (x, y) be a feasible solution to BP1(M, N).
We know that y is an optimal solution to miny∈Rm F2(x, y; N). Then, (x, y) is a feasible
solution to BP(M, N). From F1(x∗

M , y∗
N ; M) ≤ F1(x, y; M), (x∗

M , y∗
N ) is an optimal solution to

BP1(M, N).
Define penalty function

BP2(M, N) min
x,y

F (x, y; M, N) = F1(x, y; M) + M2
∑

j∈J

max{hj(x, y), 0}2

+M2‖∇yF2(x, y; N)‖2

s.t. (x, y) ∈ Rn × Rm.

From Theorems 2.1 and 3.1, it is easily known that the following results holds.

Theorem 3.2 Suppose that M and N are constants. Suppose that f2(x, y) and hj(x, y)(j ∈
J) with respect to y ∈ Rm are convex, and (x∗

M , y∗
N) is an optimal solution to BP2(M, N) with

M < f1(x∗
M , y∗

N ) and N < f2(x∗
M , y∗

N ). If (x∗
M , y∗

N) ∈ X ∩ Y and ∇yF2(x∗
M , y∗

N ; N) = 0, then
(x∗

M , y∗
N) is an optimal solution to BP1(M, N), BP(M, N), and (BP), respectively.
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Example 2 Consider the problem:

(MP2) min
x,y

f1(x, y) = (x − 2)2 + (y − 2)2

s.t. −x ≤ 0,−y ≤ 0,

y solves the following problem:

min
y

f2(x, y) = x2 + y2

s.t. −x ≤ 0,−y ≤ 0.

Let objective penalty function problem of (MP2) as follows.

MP2 − 1(M, N) min
x,y

F1(x, y; M) = max{(x − 2)2 + (y − 2)2 − M, 0}2

+M2({max{−x, 0}2 + max{−y, 0}2)

s.t. (x, y) ∈ R1 × R1,

∇yF2(x, y; N) = 4y max{x2 + y2 − N, 0} − 2N2 max{−y, 0} = 0.

When M, N < 0, (2, 0) is an optimal solution to MP2−1(M, N). Let objective penalty function
problem of (MP2) as follows.

MP2 − 2(M, N) min
x,y

F (x, y; M, N) = max{(x − 2)2 + (y − 2)2 − M, 0}2

+M2({max{−x, 0}2 + max{−y, 0}2)

+M2(4y max{x2 + y2 − N, 0} − 2N2 max{−y, 0})2
s.t. (x, y) ∈ R1 × R1.

When M, N < 0, (2, 0) is an optimal solution to MP2 − 2(M, N).
Let

Z(N) = {(x, y) ∈ X ∩ Y |∇yF2(x, y; M) = 0}
and

E(x, y; N) =
∑

i∈I

Q(gi(x, y)) +
∑

j∈J

Q(hj(x, y)) + ‖∇yF2(x, y; N)‖2.

We have F (x, y; M, N) = Q(f1(x, y) − M) + M2E(x, y; N).

Lemma 3.3 Suppose that f2(x, y) and hj(x, y)(j ∈ J) with respect to y ∈ Rm are convex
for every x ∈ Rn. For any given N < f2(x, y), E(x, y; N) = 0 or (x, y) ∈ Z(N), if and only if
(x, y) is a feasible solution to (BP).

Proof It is obvious that E(x, y; N) = 0 is equal to (x, y) ∈ Z(N). If for any given N <

f2(x, y), (x, y) ∈ Z(N), then ∇yF2(x, y; N) = 0. According to the assumption, it is easy for us
to know that F2(x, y; N) with respect to y ∈ Rm is convex for every x ∈ Rn. Hence, y is an
optimal solution to miny∈Rm F2(x, y; N). From (x, y) ∈ Y , we have

0 < Q(f2(x, y) − N) = F2(x, y; N) ≤ F2(x, z; N) = Q(f2(x, z) − N), ∀(x, z) ∈ Y.
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So,
f2(x, y) ≤ f2(x, z), ∀(x, z) ∈ Y.

Therefore, y is an optimal solution to miny f2(x, y) s.t. (x, y) ∈ Y , and (x, y) is a feasible
solution to (BP).

We prove when (x, y) is a feasible solution to (BP), E(x, y; N) = 0. Since y is an opti-
mal solution to miny∈Rm F2(x, y; N), we have ∇xF2(x, y; N) = 0 and (x, y) ∈ X ∩ Y . So,
E(x, y; N) = 0.

From Lemma 3.1 we have the following result.

Theorem 3.4 Suppose that f2(x, y) and hj(x, y)(j ∈ J) with respect to y ∈ Rm are
convex for every x ∈ Rn. Let (x∗, y∗) be an optimal solution to min(x,y)∈Rn×Rm E(x, y; N) with
N < f2(x∗, y∗). If E(x∗, y∗; N) > 0, then any (x, y) ∈ Rn × Rm is not a feasible solution to
(BP).

Based on Theorems 3.2 and 3.4, we propose an algorithm to solves the sequential problem
BP2(M, N), which is called as quadratic convex objective function penalty algorithm (QCOPFA
for short).

QCOPFA Algorithm
Step 0 Let M1 < 0, a > 1, k = 1 and N < min(x,y)∈Rn×Rm f2(x, y).
Step 1 Solve min(x,y)∈Rn×Rm E(x, y; N), then get an optimal solution (x1, y1). If E(x1, y1;

N) > 0, stop and there is no feasible solution to (BP). Otherwise, go to Step 2.
Step 2 Solve the following problem:

BP2(Mk, N) min
x,y

F (x, y; Mk, N) = Q(f1(x, y) − Mk) + M2
kE(x, y; N)

s.t. (x, y) ∈ Rn × Rm.

Let (xk+1, yk+1) be an optimal solution to BP2(Mk, N).
Step 3 If (xk+1, yk+1) ∈ Z(N) and Mk < f1(xk+1, yk+1), stop and (xk+1, yk+1) is an

optimal solution to (BP). Otherwise, let Mk+1 = aMk, k := k + 1 and go to Step 2.
In the QCOPFA algorithm, it is assumed that we can always get N <min(x,y)∈Rn×Rm f2(x, y).

Theorem 3.5 Suppose that f1, f2, gi(i ∈ I), and hj(j ∈ J) are continuous on Rn × Rm,
and lim(x,y)→∞ f1(x, y) = +∞. Let {(xk, yk)} be the sequence generated by the QCOPFA
algorithm.

(i) If {(xk, yk)}(k = 1, 2, · · · , k) is a finite sequence (i.e., the QCOPFA algorithm stops at
the k-th iteration), then xk is an optimal solution to (BP).

(ii) If {(xk, yk)} is an infinite sequence and there is some k′>1 such that Mk <f1(xk+1, yk+1)
for all k > k′, then {(xk, yk)} is bounded and any limit point of it is an optimal solution to
(BP). Otherwise, f1(xk, yk) → −∞ as k → +∞.

Proof (i) If the QCOPFA algorithm terminates at the k-th iteration with the first condition
in Step 3 occuring, xk is an optimal solution to (BP) by Theorem 3.1.

(ii) Suppose that {(xk, yk)} is an infinite sequence and there is some k′ > 1 such that
Mk < f1(xk+1, yk+1) and N < f2(xk+1, yk+1) for all k > k′. Let (x′, y′) be a feasible solution
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to (BP). The bounded sequence {(xk, yk)} is checked as follows. Since (xk, yk) is an optimal
solution to BP2(Mk, N),

Q(f1(xk+1, yk+1) − Mk) ≤ F (xk+1, yk+1; Mk, N) ≤ Q(f1(x′, y′) − Mk), k = 1, 2, · · · .

So,
(f1(xk+1, xk+1) − Mk)2 ≤ (f1(x′, y′) − Mk)2, k = k′ + 1, k′ + 2, · · · .

We have f1(xk+1, yk+1) ≤ f1(x′, y′), k = k′ + 1, k′ + 2, · · · . Hence, the sequence {xk+1, yk+1}
is bounded, since lim(x,y)→∞ f1(x, y) = +∞. Without loss of generality, we assume (xk, yk) →
(x, y). And, for any given feasible solution (x, y) to (BP), we have

0 < (f1(xk+1, yk+1) − Mk)2 + M2
kE(xk+1, yk+1; N) ≤ (f1(x, y) − Mk)2, ∀k > k′.

That is,

E(xk+1, yk+1; N) ≤ 1
M2

k

(f1(x, y) − f1(xk+1, yk+1))(f1(xk+1, yk+1) + f1(x, y) − 2Mk), ∀k > k′.

It is clear that Mk → −∞ as k → +∞. By letting k → +∞ in the above equation, we obtain
E(x, y) = 0. Hence, (x, y) ∈ X and f1(x, y) ≤ f1(x, y). Therefore, from Theorem 3.2, (x, y) is
an optimal solution to (BP).

Example 3[26] Consider the problem:

(MP3) min
x,y

f1(x, y) = (x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2

s.t. x1 + 2x2 ≤ 30, x1 + x2 ≥ 20, 0 ≤ x1 ≤ 15, 0 ≤ x2 ≤ 15,

y solves the following problem:

min
y

f2(x, y) = (x1 − y1)2 + (x2 − y2)2

s.t. 0 ≤ y1 ≤ 15, 0 ≤ y2 ≤ 15.

Let objective penalty function problem of (MP3) as follows.

MP3(M, N) min
x,y

F (x, y; M, N) = max{(x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2 − M, 0}2

+M2({max{x1 + 2x2−30, 0}2 + max{20−x1−x2, 0}2)

+M2(max{−x1, 0}2 + M2 max{x1 − 15, 0}2)

+M2(max{−x2, 0}2 + M2 max{x2 − 15, 0}2)

+M2[4(y1 − x1)max{(x1 − y1)2 + (x2 − y2)2 − N, 0}
−2N2 max{−y1, 0} + 2N2 max{y1 − 15, 0}]2
+M2[4(y2 − x2)max{(x1 − y1)2 + (x2 − y2)2 − N, 0}
−2N2 max{−y2, 0} + 2N2 max{y2 − 15, 0}]2

s.t. (x, y) ∈ R2 × R2,

where M, N < 0. According to the QCOPFA algorithm, we obtain that (x, y) = (15.000026,

7.499954, 15.000007, 7.499954) is an approximate solution to MP3(M, N) at fourth iteration by
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Matlab, which it is the same as the smoothing SQP algorithm in [26]. But, since F (x, y; M, N) is
always not convex, it is very difficult to find out a global solution to the subproblem BP2(Mk, N)
in the QCOPFA algorithm.

The objective penalty function algorithm presented in this paper has some interesting per-
spectives in solving objective and constrained functions which are not convex, and is worthy of
further study.

References

[1] Stackelberg H V, The Theory of the Market Economy, Oxford University Press, Oxford, England,

1952.

[2] Christos D and Ravi M, A game theoretic perspective to flow control in telecommunication

networks, Journal of the Franklin Institute, 1992, 329(2): 383–402.

[3] Zhang J and Zhu D, A bilevel programming method for pipe network optimization, SIAM J.

Optim., 1996, 6(3): 838–857.

[4] Gil H A, Galiana F D, and Silva E L da, Nodal price control: A mechanism for transmission

network cost allocation, Power Systems, IEEE Transactions on, 2006, 21: 3–10.

[5] Yang H, Zhang X, and Meng Q, Stackelberg games and multiple equilibrium behaviors on net-

works, Transportation Research Part B: Methodological, 2007, 41(8): 841–861.

[6] Kogan K and Tapiero C S, Optimal co-investment in supply chain infrastructure, European

Journal of Operational Research, 2009, 192(1): 265–276.

[7] Yao Z, Leung S C H, and Lai K K, Manufacturer’s revenue-shafring contract and retail compe-

tition, European Journal of Operational Research, 2008, 186(2): 637–651.

[8] Dempe S, Annotated bibliography on bilevel programming and mathematical programs with

equilibrium constraints, Optimization, 2003, 52(3): 333–359.

[9] Colson B, Marcotte P, and Savard G, Bilevel programming: A survey, 4OR, 2005, 3(2): 87–107.

[10] Luo Z Q, Pang J S, and Ralph D, Mathematical Programs with Equilibrium Constraints, Cam-

bridge University Press, Cambridge, 1996.

[11] Dempe S, Foundations of Bilevel Programming, Kluwer Academic Publishers, 2002.

[12] Fletcher R, Practical Method of Optimization, A Wiley-Interscience Publication, New York, 1981.

[13] Marcotte P and Zhu D L, Exact and inexact penalty methods for the generalized bilevel pro-

gramming problem, Math. Programming, 1996, 74(2): 141–157.

[14] Ye J J, Zhu D L, and Zhu Q J, Exact penalization and necessary optimality conditions for

generalized bilevel programming problems, SIAM J. Optim., 1997, 7(2): 481–507.

[15] Stefan S and Michael S, Exact penalization of mathematical programs with equilibrium con-

straints, SIAM J. Control Optimization, 1999, 37(2): 617–652.

[16] Liu G S, Han J Y, and Zhang J Z, Exact penalty functions for convex bilevel programming

problems, Journal of Optimization Theory and Applications, 2001, 110(3): 621–643.

[17] Yang X Q and Huang X X, Lower order penalty methods for mathematical programs with

complementarity constraints, Optimization Methods and Software, 2004, 19: 693–720.



A QUADRATIC OBJECTIVE PENALTY FUNCTION 337

[18] Huang X X, Yang X Q, and Teo K L, Partial augmented Lagrangian method and mathematical

programs with complementarity constraints, Journal of Global Optimization, 2006, 35: 235–254.

[19] Huang X X, Yang X Q, and Zhu D L, A sequential smooth penalization approach to mathematical

programs with complementarity constraints, Numerical Functional Analysis and Optimization,

2006, 27: 71–98.
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