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Abstract This paper discusses optimal reinsurance strategy by minimizing insurer’s risk under one

general risk measure: Distortion risk measure. The authors assume that the reinsurance premium is

determined by the expected value premium principle and the retained loss of the insurer is an increasing

function of the initial loss. An explicit solution of the insurer’s optimal reinsurance problem is obtained.

The optimal strategies for some special distortion risk measures, such as value-at-risk (VaR) and tail

value-at-risk (TVaR), are also investigated.

Keywords Distortion risk measure, expected value premium principle, optimal reinsurance strategy,

TVaR, VaR.

1 Introduction

Recently, the discussion on optimal reinsurance strategy is an interesting topic. For a policy
of an insurer, the potential loss suffered by the insurer can be expressed as a non-negative
random variable X , and a reasonable assumption on X is that 0 < E[X ] < ∞. To control
risk, the insurer cedes a part of its risk, denoted as f(X) ∈ [0, X ], to a reinsurer. The insurer’s
retained loss can be expressed as If (X) = X − f(X). As a compensation for covering the
insurer’s loss, the reinsurer will receive a reinsurance premium from the insurer, denoted as
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μ(f(X)). Under the reinsurance arrangement, the total payment Tf (X) of the insurer can be
expressed as a sum of the retained loss If (X) and the paid reinsurance premium μ(f(X)),

Tf (X) = If (X) + μ(f(X)).

To investigate optimal reinsurance strategy, one needs to discuss the optimization problem
under the insurer’s risk measure. As the widely used risk measures, value-at-risk (VaR) and
tail value-at-risk (TVaR) are applied for the discussion on optimal reinsurance (see [1] and [2]).
The VaR of a random variable X ≥ 0 at a confidence level 1 − α, 0 < α < 1, is defined as

VaRα(X) = inf{y : P (X > y) ≤ α}.
The TVaR of a random variable X ≥ 0 at a confidence level 1 − α, 0 < α < 1, is defined as

TVaRα(X) =
1
α

∫ α

0

VaRs(X)ds.

It is known that VaR and TVaR belong to one family of risk measures: Distortion risk measures.
A distortion function g(x) : [0, 1] → [0, 1] is an increasing function satisfying that g(0) = 0 and
g(1) = 1. Associated with distortion function g(x), the distortion risk measure is defined as

ρg[X ] =
∫ ∞

0

g(P (X > x))dx. (1)

For a detailed introduction about distortion risk measure, see [3]. Note that VaRα(X) has
the associated distortion function g(x) = I{x>α}, and TVaRα(X) has the associated distortion
function g(x) = min{ x

α , 1}. It is known that Wang’s transform (WT) risk measure[4] also
belongs to the family of distortion risk measures. The distortion risk measure will be used in
this paper to measure the insurer’s risk.

As for the reinsurance premium principle, we assume that the reinsurance premium is cal-
culated by the expected value premium principle, that is,

μ(f(X)) = (1 + β)E[f(X)], (2)

where β > 0 is the safety loading factor. Note that the expected value premium principle is
widely used (see [1]).

For investigating the optimal reinsurance strategy, three widely used families of the ceded
loss function f(x) are summarized as follows:

F := {f(x) : 0 ≤ f(x) ≤ x, f(x) is an increasing and convex function},

H := {f(x) : 0 ≤ f(x) ≤ x, both f(x) and If (x) are increasing functions},

L := {f(x) : 0 ≤ f(x) ≤ x, If (x) is an increasing and left continuous function}.
Note that when f ∈ H, both f(x) and If (x) are continuous. Thus it is easy to verify that
F � H � L, see [5] for details. Some papers found that the truncated stop-loss function, which
does not belong to families F and H, is optimal (see [6–9]). Thus it is interesting to consider
the optimal reinsurance strategy in the family L.
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Many papers on VaR-minimization and TVaR-minimization are focused on families F , H,
and L. In the family F , [1] and [2] concerned the VaR-minimization and TVaR-minimization
under the expected value premium principle. [2] revisited the VaR-minimization within the
family F under Wang’s premium principle. In the family H, [5] obtained closed-form solutions
for VaR and TVaR minimization problems under different premium principles, and [10] focused
on the distortion risk measure. In the family L, [11] considered a local reinsurance model and
derived that the stop-loss strategy is optimal. Under the expected value premium principle, [5]
considered the optimal reinsurance strategies in the three families F , H, and L, respectively,
and derived optimal reinsurance strategies for VaR-minimization.

This paper will focus on the optimal reinsurance in the family L. The optimization problem
can be expressed as follows:

min
f∈L

{ρg[Tf(X)]}, (3)

where ρg is the distortion risk measure in Equation (1) and the reinsurance premium is calcu-
lated by the expected value premium principle in Equation (2).

The paper is organized as follows. Section 2 presents the explicit solution for our optimal
reinsurance model. The proofs of our main theorems are given in Section 3. The conclusions
are drawn in Section 4. Some proofs are put in appendix.

2 The Main Results

In this section, the optimization problem (3) will be discussed. Before giving the optimal
reinsurance treaty, some preparation work is needed.

2.1 Preparation Work

For f ∈ L, I−1
f (x) := inf{t : If (t) > x}. By the monotonicity and the left-continuity of

If (x), it is easy to verify

{X : If (X) > t} = {X : X > I−1
f (t)}, ∀ r.v. X ≥ 0.

Define BX(t) = (1 + β)SX(t) − g(SX(t)), where SX(t) := P (X > t) is the survival function of
X .

Proposition 2.1 The distortion risk measure of the insurer’s total payment can be rep-
resented as

ρg[Tf (X)] = (1 + β)E[X ] −
∫

R
+

BXdνf ,

where the measure νf is defined by νf ([a, b)) = If (b) − If (a), [a, b) ∈ B
R

+ .

Proof Given the distortion risk measure ρg in (1), for any positive constant c we have
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ρg[X + c] = ρg[X ] + c (see [3]). Thus it yields that

ρg[Tf (X)] = μ(f(X)) + ρg[If (X)]

= (1 + β)E[f(X)] + ρg[If (X)]

= (1 + β)E[X ] + ρg[If (X)] − (1 + β)E[If (X)]

= (1 + β)E[X ] −
∫ ∞

0

[
(1 + β)P (If (X) > t) − g(P (If (X) > t))

]
dt

= (1 + β)E[X ] −
∫ ∞

0

[
(1 + β)SX(I−1

f (t)) − g(SX(I−1
f (t)))

]
dt

= (1 + β)E[X ] −
∫ ∞

0

BX(I−1
f (t))dt

= (1 + β)E[X ] −
∫

R
+

BX ◦ I−1
f dμ, (4)

where μ denotes the Lebesgue measure. It is known that there exists a unique measure νf

defined by νf (B) = μ({x : I−1
f (x) ∈ B}), B ∈ B

R
+ , such that

∫
R

+
BX ◦ I−1

f dμ =
∫

R
+

BXdνf , (5)

see [12] for details. Using the fact that the two inequalities If (s) > t and s > I−1
f (t) are

equivalent, we have

νf ([a, b)) = μ({x : a ≤ I−1
f (x) < b}) = μ([If (a), If (b))) = If (b) − If (a), ∀[a, b) ⊆ [0,∞).

Then combining (4) and (5), the proposition is proved.
To simplify our discussion, we make the following assumption on the distortion function

g(x).
Assumption A Assume that g(x), x ∈ [0, 1] is left-continuous, and its domain has a finite

partition [0, 1] =
⋃n

i=1(αi, αi+1] ∪ {0}, such that for each i = 1, 2, · · · , n, the function g(x) is
either concave or convex on (αi, αi+1].

Some common distortion risk measures, such as VaR, TVaR, and Wang’s transform risk
measure, satisfy Assumption A. Figure 1 gives the corresponding distortion functions with
confidence level 1 − α = 0.1.

In the following, we will discuss the reinsurance optimization problem (3) under Assumption
A. The right-continuity of SX(t) and the left-continuity of g(x), x ≥ 0 guarantee that the
function BX(t), t ≥ 0 is right-continuous. It is obvious that BX(t−), t ≥ 0 is left-continuous.

A point x0 ∈ E ⊆ R is called a local maximum point if there exists a neighborhood UE(x0)
of x0 in E, such that for any x ∈ UE(x0) we have f(x) ≤ f(x0). And the value f(x0) is called
the local maximum value (see [13, p214]).

For a real-valued function f , we denote the set of all its local maximum values on the set B

as loc(f(x), x ∈ B). And for simplicity, sometimes we write (a,∞) as (a,∞].
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Figure 1 The associated distortion functions for VaR, TVaR, and Wang’s transform risk measure

Lemma 2.2 Suppose that the function g(x), x ∈ [0, 1] satisfies Assumption A. Then there
exists a finite partition [0,∞) =

⋃d
i=1[γi, γi+1), such that for each i = 1, 2, · · · , d, the function

BX(t) is monotonic on [γi, γi+1) and the function BX(t−) is monotonic on (γi, γi+1].

Proof For simplicity, we write B(x) = (1 + β)x − g(x). Based on Assumption A, g(x)
is concave or convex on (αi, αi+1], thus B(x) is convex or concave on (αi, αi+1]. From the
properties of convex and concave functions, we know there exists one αi ≤ βi ≤ αi+1 such
that B(x) is monotonic on (αi, βi] and (βi, αi+1] respectively. Therefore, there exists a finite
partition (0, 1] =

⋃n
i=1(αi, βi] ∪ (βi, αi+1] such that the function B(x) is monotonic on each

subinterval.
Define S−1

X (a) = inf{x ≥ 0 : SX(x) ≤ a}. Then SX(t) ≤ a if and only if t ≥ S−1
X (a) (Cui, et

al.[10]), which means that SX(t) ∈ (a, b] if and only if t ∈ [S−1
X (b), S−1

X (a)). Then we have

[0,∞) =
n⋃

i=1

([S−1
X (αi+1), S−1

X (βi)) ∪ [S−1
X (βi), S−1

X (αi))) ∪ [S−1
X (0),∞).

Due to the facts that SX(t), t ≥ 0 is decreasing and BX(t) = B(SX(t)), t ≥ 0, the function BX(t)
is monotonic on the subintervals [S−1

X (βi), S−1
X (αi)) and [S−1

X (αi+1), S−1
X (βi)), and BX(t) ≡

0, t ∈ [S−1
X (0),∞). Thus there exists a finite partition, denoted as [0,∞) =

⋃d
i=1[γi, γi+1),

such that BX(t) is monotonic on [γi, γi+1). Finally, BX(t−) is monotonic on (γi, γi+1] for each
i = 1, 2, · · · , d.

From Lemma 2.2, the two functions BX(t), t ≥ 0 and BX(t−), t ≥ 0 have finitely many local
maximum values. Thus the function max{BX(t), BX(t−)}, t ≥ 0 also has finitely many local
maximum values. We define

M1,0 = max{y : y ∈ loc(max{BX(t), BX(t−)}, t ∈ (0,∞))}
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and
M1 = max{BX(0), M1,0}.

Write

r1 =

{
sup{t : max{BX(t), BX(t−)} = M1,0}, if M1,0 = M1,

0, otherwise.
(6)

Then we define

m1 =

{
inf{0 ≤ t ≤ r1 : max{BX(s), BX(s−)} = M1, ∀s ∈ [t, r1]}, if M1,0 = M1,

0, otherwise.
(7)

Note that max{BX(t), BX(t−)} = M1, t ∈ (m1, r1), and m1 = 0 if r1 = 0.
Similarly, for i ≥ 2 we write

Mi = max{y : y ∈ loc(max{BX(t), BX(t−)}, t ∈ (ri−1,∞))},
ri = sup{t : max{BX(t), BX(t−)} = Mi},

and
mi = inf{t ≤ ri : max{BX(s), BX(s−)} = Mi for each s ∈ [t, ri]}. (8)

Repeat the above procedure until there exists no positive local maximum point. The number
of the Mi is denoted as s. From Lemma 2.2, the number s is finite. For simplicity, we define
m0 = 0, ms+1 = ∞. Then

m0 = 0 ≤ m1 < · · · < ms < ms+1 = ∞, M1 > · · · > Ms > 0.

Lemma 2.3 If m1 > 0, we have

max{BX(r1), BX(r1−)} = M1, max{BX(m1), BX(m1−)} = M1;

Otherwise, BX(0) = M1 follows. Moreover, for i = 2, 3, · · · , s,

max{BX(ri), BX(ri−)} = Mi, max{BX(mi), BX(mi−)} = Mi.

The proof of the lemma will be given in appendix.
In the next, we define

BX(t) =

⎧⎪⎪⎨
⎪⎪⎩

BX(t−), if t = mi for some i = 1, 2, · · · , s,

where mi > 0 and BX(mi−) > BX(mi),

BX(t), otherwise.

(9)

It is obvious that BX(t) ≥ BX(t) and BX(t) = BX(t) for t 
= mi, i ≤ s. By Lemma 2.3,
BX(mi) = Mi, i = 1, 2, · · · , s, are local maximum values of BX(t).

Based on mi, i = 1, 2, · · · , s + 1, and the function BX , a sequence m∗
i , i = 0, 1, · · · , s, can

be defined. Let m∗
0 = 0, and for 1 ≤ i ≤ s,

m∗
i = inf{t : t ≥ mi and BX(t) ≤ BX(mi+1)}. (10)

Here we define inf ∅ = ∞.
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Remark 2.4 1) When mi > 0, from the definitions of mi and m∗
i−1, there exists a δ > 0

such that BX(t) ≤ BX(mi), t ∈ (mi − δ, mi]. Then m∗
i−1 ≤ mi − δ < mi and mi − m∗

i−1 > 0
follows. Note that mi > 0 for i ≥ 2, then we have m∗

i−1 < mi for each i = 2, 3, · · · , s. And

m0 = m∗
0 = 0 ≤ m1 ≤ m∗

1 < m2 ≤ · · · < ms−1 ≤ m∗
s−1 < ms ≤ m∗

s ≤ ms+1 = ∞.

2) When mi > 0, the point mi is one local maximum point of max{BX(t), BX(t−)}. Note
that we define M1 = BX(0) instead of max{BX(0), BX(0−)} when BX(0) > M1,0. Thus, if
BX(0−) > BX(0), we obtain that M1 = BX(0) is not the local maximum value. In this case,
m1 equals to 0.

Each subinterval (mi, mi+1] can be partitioned into (mi, m
∗
i ) and [m∗

i , mi+1], and the prop-
erties of BX(t) on each subinterval will be given in the following lemma. The proof of the
lemma will be given in appendix.

Lemma 2.5 For each 0 ≤ i ≤ s, BX(t) > BX(mi+1), t ∈ (mi, m
∗
i ) and BX(t) ≤

BX(mi+1), t ∈ [m∗
i , mi+1], and the function BX(t) is decreasing on (mi, m

∗
i ).

Example 2.6 (VaR) For VaRα(X), we have the associated distortion function g(x) =
I{x>α}. Thus

BX(t) =

{
(1 + β)SX(t) − 1, if t < VaRα(X),

(1 + β)SX(t), otherwise.
(11)

It is obvious that BX(t) is decreasing on the intervals [0, VaRα(X)) and [VaRα(X),∞) respec-
tively. Suppose that X ≥ 0 has a continuous and strictly increasing distribution on (0,∞) with
a possible jump at 0.

(a) If α < SX(0) − 1
1+β , we have s = 2, M1 = (1 + β)SX(0) − 1, m1 = 0,

M2 = BX(VaRα(X)) = (1 + β)α and m2 = VaRα(X).

By Equation (10), we have

m∗
1 = inf{t ≥ m1 : (1 + β)SX(t) − 1 ≤ (1 + β)α} = VaRq(X),

where q = α + 1
1+β . Similarly, we obtain m∗

2 = ∞.
(b) If α ≥ SX(0) − 1

1+β , we have s = 1. Thus M1 = BX(VaRα(X)) = (1 + β)α, m1 =
VaRα(X), and m∗

1 = ∞.

Example 2.7 (TVaR) For TVaRα(X), we have the associated distortion function g(x) =
min{ x

α , 1}, and

BX(t) =

⎧⎨
⎩

(1 + β)SX(t) − 1, if t < VaRα(X),

(1 + β)SX(t) − 1
α

SX(t), otherwise.
(12)

(a) If α ≤ 1
1+β , the function BX(t) is decreasing on [0, VaRα(X)) and increasing on

[VaRα(X),∞). By the definitions of Mi, mi, and m∗
i , we obtain s = 1, M1 = BX(0), m1 = 0,

m2 = ∞, and m∗
1 = VaR 1

1+β
(X).
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(b) If α > 1
1+β , BX(t) is decreasing on [0,∞). Moreover, we can get s = 1, M1 = BX(0),

m1 = 0, m2 = ∞, and m∗
1 = ∞.

2.2 The Solution of the Reinsurance Optimization Problem (3)

For the given non-negative random variable X , the corresponding mi, m
∗
i , i = 0, 1, · · · , s,

have been defined in the subsection above. Write

f∗(x) =
s∑

i=0

(x − m∗
i )+I(m∗

i ,mi+1](x) + (x − m∗
s)+. (13)

And the associated retained loss function can be expressed as

If∗(x) =
s∑

i=1

min{x, m∗
i }I(mi,mi+1](x). (14)

According to νf∗([a, b)) = If∗(b) − If∗(a), we have

νf∗([m∗
i−1, mi)) = 0, νf∗({mi}) = mi − m∗

i−1, i = 1, 2, · · · , s,

νf∗(B) = μ(B), ∀B ⊆
s⋃

i=1

(mi, m
∗
i ),

νf∗([m∗
s ,∞)) = 0.

Then for any Borel set A ⊆ [0,∞), the measure νf∗(A) can be expressed as

νf∗(A) = μ

(
A ∩

s⋃
i=1

(mi, m
∗
i ]

)
+

s∑
i=1

(mi − m∗
i−1)I{mi∈A}. (15)

It can be directly verified that 0 ≤ f∗(x) ≤ x, x ≥ 0, and If∗(x) is an increasing and left-
continuous function. Thus f∗(x) belongs to the family L. As stated, f∗(x) and If∗(x) can
be determined by the points mi and m∗

i , i = 0, 1, · · · , s. To make the definitions of f∗(x) and
If∗(x) clearer, we give Figure 2 to show the relationships between the points mi, m

∗
i and the

two functions f∗(x), If∗(x).

Theorem 2.8 Suppose that the distortion function g(x) satisfies Assumption A. Then
the infimum of the optimization problem (3) can be stated as

inf
f∈L

ρg[Tf (X)] = (1 + β)E[X ] −
∫

R
+

BXdνf∗ .

If BX(mi) = BX(mi) for all i = 1, 2, · · · , s, then f∗ defined in Equation (13) is one solution
of the optimization problem (3), and

ρg[Tf∗(X)] =
s∑

i=1

∫ mi

m∗
i−1

[(1 + β)(SX(t) − SX(mi)) + g(SX(mi))]dt

+
s∑

i=1

∫ m∗
i

mi

g(SX(t))dt; (16)

Otherwise, the optimization problem (3) has no solution.
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Figure 2 The relationships between the points mi, m
∗
i and the two functions f∗(x), If∗(x)

In case BX(mi) = BX(mi) for all i = 1, 2, · · · , s, we can explain the equation (16) as follows.
On the layer (m∗

i−1, mi], the ceded loss part is greater than zero and BX(t) ≤ BX(mi), thus

(1 + β)(SX(t) − SX(mi)) + g(SX(mi)) ≤ g(SX(t)); (17)

On the layer (mi, m
∗
i ], from the definition of f∗(x), we know that there is no ceding on such

a layer, and g(SX(t)) is used to measure the risk of the insurer’s total payment. Thus the
existence of reinsurance will reduce the insurer’s risk measured by the distortion risk measure
ρg.

According to Theorem 2.8, when BX(mi) > BX(mi) for some i ≤ s, we have that for each
f ∈ L,

ρg[Tf (X)] > (1 + β)E(X) −
∫

R
+

BXdνf∗ .

The difference between ρg[Tf∗(X)] and inff∈L ρg[Tf (X)] can be expressed as follows:

ρg[Tf∗(X)] − inf
f∈L

ρg[Tf (X)] =
∫

R
+

BXdνf∗ −
∫

R
+

BXdνf∗

=
s∑

i=1

(BX(mi) − BX(mi))(mi − m∗
i−1)

> 0.
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Remark 2.9 In [10], under the expected value premium principle, the insurer’s minimum
risk measure can be expressed as

∫ ∞
0

min{(1 + β)SX(t), g(SX(t))}dt. In the next, we compare
our minimum risk measure in Equation (16) with the above risk measure.

For fixed i ∈ {1, 2, · · · , s}, consider the interval [m∗
i−1, mi] and the interval (mi, m

∗
i ) sepa-

rately. First we focus on the interval [m∗
i−1, mi]. Since BX(mi) > 0, we have

(1 + β)(SX(t) − SX(mi)) + g(SX(mi)) < (1 + β)SX(t). (18)

Meanwhile, using the fact that BX(t) ≤ BX(mi), t ∈ [m∗
i−1, mi], we get that

(1 + β)(SX(t) − SX(mi)) + g(SX(mi)) ≤ g(SX(t)). (19)

Combining Equations (18) with (19), we have

(1 + β)(SX(t) − SX(mi)) + g(SX(mi)) < min{(1 + β)SX(t), g(SX(t))}, t ∈ [m∗
i−1, mi].

In the following, we consider the interval (mi, m
∗
i ). Since BX(t) > BX(mi+1) ≥ 0, we have

(1 + β)SX(t) − g(SX(t)) > 0 and

min{(1 + β)SX(t), g(SX(t))} = g(SX(t))

follows.
Based on the above consideration, we conclude that

ρg[Tf∗(X)] =
s∑

i=1

∫ m∗
i

mi

g(SX(t))dt

+
s∑

i=1

∫ mi

m∗
i−1

[(1 + β)(SX(t) − SX(mi)) + g(SX(mi))]dt

≤
s∑

i=1

∫ m∗
i

mi

min{(1 + β)SX(t), g(SX(t))}dt

+
s∑

i=1

∫ mi

m∗
i−1

min{(1 + β)SX(t), g(SX(t))}dt

=
∫ ∞

0

min{(1 + β)SX(t), g(SX(t))}dt. (20)

The equation (20) states that the minimum risk of the insurer’s risk measure according to
Theorem 2.8 is smaller than or equal to the one according to Cui, et al.[10]. The reason is that
the family H considered in [10] is smaller than our family L.

The next two examples give the optimal reinsurance strategies for VaR-optimization and
TVaR-optimization.

Example 2.10 (VaR optimization) Consider the optimal problem in Example 2.6.



132 ZHENG YANTING · CUI WEI · YANG JINGPING

1) If α < SX(0) − 1
1+β , the optimal ceded loss function and the optimal retained function

can be expressed as
f∗(x) = (x − VaRq(X))+I{x≤VaRα(X)}

and
If∗(x) = min{x, VaRq(X)}I{x≤VaRα(X)} + xI{x>VaRα(X)}.

Here q = α + 1
1+β .

2) If α ≥ SX(0) − 1
1+β , the optimal ceded loss function f∗(x) and the optimal retained

function If∗(x) can be expressed as

f∗(x) = xI{x≤VaRα(X)} and If∗(x) = xI{x>VaRα(X)}.

Example 2.11 (TVaR optimization) Consider the optimal problem in Example 2.7.
1) If α ≤ 1

1+β , the optimal ceded loss function and the optimal retained function can be
expressed as

f∗(x) = (x − VaR 1
1+β

(X))+ and If∗(x) = min{x, VaR 1
1+β

(X)}.

2) If α > 1
1+β , the optimal ceded loss function is f∗(x) = 0, and the optimal retained

function is If∗(x) = x.

3 Proofs

This section will give the proof of Theorem 2.8. First we need to give some lemmas.

Lemma 3.1 Given x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn, we have

max
ω1,··· ,ωn

{ n∑
i=1

ωixi : w1 ≤ c1, · · · ,

j∑
i=1

ωi ≤ cj , ωj ≥ 0, j = 1, 2, · · · , n

}

= c1x1 +
n∑

i=2

(ci − ci−1)xi.

The above lemma is easy to verify and we omit its proof here.

Lemma 3.2 For BX(t) defined in Equation (9), we have

max
f∈L

{∫
R+

BXdνf

}
=

∫
R+

BXdνf∗ . (21)

Proof Based on the definition of νf∗ in Equation (15), we can conclude

∫
R+

BXdνf∗ =
s∑

i=1

{
BX(mi)(mi − m∗

i−1) +
∫ m∗

i

mi

BX(t)dt

}
. (22)
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On the other hand, for each ceded loss function f ∈ L, from the definition of L − S integral,
we have

∫
R+

BXdνf = lim
n→∞

n2n∑
k=0

k

2n
νf

({
t :

k

2n
≤ B

+

X(t) <
k + 1
2n

})

− lim
m→∞

m2m∑
k=0

k

2m
νf

({
t :

k

2m
≤ B

−
X(t) <

k + 1
2m

})
, (23)

where B
+

X(t) := max{BX(t), 0} and B
−
X(t) := max{−BX(t), 0}.

Denote �x� to be the largest integer less than or equal to x. Based on Lemma 2.5, for each
1 ≤ i ≤ s, we have

0 ≤ �BX(m∗
i−)2n�

2n
≤ BX(t) <

�BX(mi)2n� + 1
2n

, t ∈ (mi, m
∗
i ). (24)

Since BX(t) is positive and decreasing on (mi, m
∗
i ), then for each k = 0, 1, · · · , n2n, there exists

an interval 〈ai,k, ai,k+1〉 such that

〈ai,k, ai,k+1〉 =
{

t :
k

2n
≤ B

+

X(t) <
k + 1
2n

}
∩ (mi, m

∗
i ), (25)

where “〈” denotes “(” or “[” according to that the left-end point of the above interval is close
or open, similarly for “〉”.

Based on Equations (24) and (25), we can partition the interval (mi, m
∗
i ) as

(mi, m
∗
i ) =

�BX (mi)2
n�⋃

k=�BX(m∗
i −)2n�

〈ai,k, ai,k+1〉. (26)

For the right-hand side of Equation (23) and any positive integer n > BX(m1), we have

n2n∑
k=0

k

2n
νf

({
t :

k

2n
≤ B

+

X(t) <
k + 1
2n

})
−

m2m∑
k=0

k

2m
νf

({
t :

k

2m
≤ B

−
X(t) <

k + 1
2m

})

≤
n2n∑
k=0

k

2n
νf

({
t :

k

2n
≤ B

+

X(t) <
k + 1
2n

})

=
s∑

i=1

{ n2n∑
k=0

k

2n
νf

({
t :

k

2n
≤ B

+

X(t) <
k + 1
2n

}
∩ [m∗

i−1, mi]
)

+
n2n∑
k=0

k

2n
νf

({
t :

k

2n
≤ B

+

X(t) <
k + 1
2n

}
∩ (mi, m

∗
i )

)}

+
n2n∑
k=0

k

2n
νf

({
t :

k

2n
≤ B

+

X(t) <
k + 1
2n

} ∩ [m∗
s,∞)

)

=
s∑

i=1

{
Ii,1 + Ii,2

}
+ I3. (27)
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Consider Ii,1, Ii,2, and I3, respectively. Since BX(t) ≤ BX(mi), t ∈ [m∗
i−1, mi], we can derive

that

Ii,1 ≤ BX(mi)νf ([m∗
i−1, mi]). (28)

For the second term Ii,2, Equation (26) leads to

Ii,2 =
�BX (mi)2

n�∑
k=�BX (m∗

i −)2n�

k

2n
νf (〈ai,k, ai,k+1〉). (29)

For the last term I3 of Equation (27), since BX(t) ≤ 0 on [m∗
s,∞), we have

I3 = 0. (30)

Then Equations (27), (28), (29), and (30) yield that

n2n∑
k=0

k

2n
νf

({
t :

k

2n
≤ B

+

X(t) <
k + 1
2n

})
−

m2m∑
k=0

k

2m
νf

({
t :

k

2m
≤ B

−
X(t) <

k + 1
2m

})

≤
s∑

i=1

{
BX(mi)νf ([m∗

i−1, mi]) +
�BX (mi)2

n�∑
k=�BX(m∗

i −)2n�

k

2n
νf (〈ai,k, ai,k+1〉)

}

≤
s∑

i=1

{
BX(mi)νf ([m∗

i−1, mi]) +
�BX (mi)2

n�∑
k=�BX(m∗

i −)2n�+1

k

2n
νf (〈ai,k, ai,k+1〉)

+BX(m∗
i−)νf (〈ai,�BX (m∗

i −)2n�, ai,�BX (m∗
i −)2n�+1〉)

}

=
s∑

i=1

{
BX(mi)νf ([m∗

i−1, mi]) +
�BX(mi)2n�

2n
νf (〈mi, ai,�BX (mi)2n�+1〉)

+
�BX(mi)2n� − 1

2n
νf (〈ai,�BX(mi)2n�+1, ai,�BX (mi)2n�+2〉) + · · ·

+
�BX(m∗

i−)2n� + 1
2n

νf (〈ai,�BX(m∗
i −)2n�−1, ai,�BX(m∗

i −)2n�〉)

+BX(m∗
i−)νf (〈ai,�BX (m∗

i −)2n�, ai,�BX (m∗
i −)2n�+1〉)

}

:= I4. (31)

Based on Lemma 2.5, we obtain

BX(m1) ≥ �BX(m1)2n�
2n

≥ �BX(m1)2n� − 1
2n

≥ �BX(m1)2n� − 2
2n

≥ · · ·

≥ �BX(m∗
1−)2n� + 2
2n

≥ �BX(m∗
1−)2n� + 1
2n

≥ BX(m∗
1−)

≥ BX(m2) ≥ �BX(m2)2n�
2n

≥ �BX(m2)2n� − 1
2n

≥ · · · .
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Since νf ([a, b]) = If (b+)− If (a) ≤ If (b+) ≤ b for any a < b, we have the following inequalities

νf ([0, m1]) ≤ m1,

νf ([0, m1]) + νf ((m1, a1,�BX (m1)2n�+1〉) ≤ a1,�BX(m1)2n�+1,

νf ([0, m1]) + νf ((m1, a1,�BX (m1)2n�+1〉) + νf (〈a1,�BX (m1)2n�+1, a1,�BX (m1)2n�+2〉)
≤ a1,�BX (m1)2n�+2,

· · · .

Then it follows from Lemma 3.1 and Equation (31) that

I4 ≤
s∑

i=1

{
BX(mi)(mi − m∗

i−1) +
�BX(mi)2

n�∑
k=�BX (m∗

i −)2n�+1

k

2n
(ai,k+1 − ai,k)

+BX(m∗
i−)(ai,�BX (m∗

i −)2n�+1 − ai,�BX(m∗
i −)2n�)

}
. (32)

On the other hand, from Equation (22), we can get

∫
R+

BXdνf∗ =
s∑

i=1

{
BX(mi)(mi − m∗

i−1) +
∫ m∗

i

mi

BX(t)dt

}

≥
s∑

i=1

{
BX(mi)(mi − m∗

i−1)

+
�BX(mi)2

n�∑
k=�BX (m∗

i −)2n�+1

k

2n
μ

({
t :

k

2n
≤ B

+

X(t) <
k + 1
2n

}
∩ (mi, m

∗
i )

)

+BX(m∗
i−)(ai,�BX(m∗

i −)2n�+1 − ai,�BX (m∗
i −)2n�)

}

=
s∑

i=1

{
BX(mi)(mi − m∗

i−1) +
�BX(mi)2

n�∑
k=�BX(m∗

i −)2n�+1

k

2n
(ai,k+1 − ai,k)

+BX(m∗
i−)(ai,�BX(m∗

i −)2n�+1 − ai,�BX (m∗
i −)2n�)

}
. (33)

Combining Equations (23), (31), (32), and (33), we obtain
∫

R+

BXdνf ≤
∫

R+

BXdνf∗ .

Note that f∗ ∈ L and f is any ceded loss function belonging to the family L, then Equation (21)
holds and Lemma 3.2 is proved.

Similar to Lemma 3.2, we can obtain a general corollary. Its proof will be given in the
appendix.
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Corollary 3.3 For a function h(t) defined on the interval [0, d], 0 < d < ∞, assume that
there exists a finite partition [0, d) =

⋃sh

i=0[mh,i, mh,i+1) satisfying that

0 = mh,0 ≤ mh,1 < mh,2 < · · · ≤ mh,sh+1 = d

and
h(mh,1) ≥ h(mh,2) ≥ · · · ≥ h(mh,sh

) ≥ h(mh,sh+1) ≥ 0.

Furthermore, for each 0 ≤ i ≤ sh there exists one m∗
h,i satisfying m∗

h,0 = 0 and mh,i ≤ m∗
h,i ≤

mh,i+1 for 1 ≤ i ≤ sh, such that

h(t) ≥ h(mh,i+1), t ∈ (mh,i, m
∗
h,i), h(t) ≤ h(mh,i+1), t ∈ [m∗

h,i, mh,i+1]

and h(t) is decreasing on [mh,i, m
∗
h,i). Then

max
f∈L

{∫
[0,d]

h(t)dνf (t)
}

=
sh∑
i=1

[
h(mh,i)(mh,i − m∗

h,i−1) +
∫ m∗

h,i

mh,i

h(t)dt

]

+h(mh,sh+1)(mh,sh+1 − m∗
h,sh

). (34)

Remark 3.4 For the function h(t) defined on the interval [0, d], 0 < d ≤ ∞ with h(d) = 0,
if it satisfies the conditions of Corollary 3.3, we have

max
f∈L

{∫
[0,d)

h(t)dνf (t)
}

=
sh∑
i=1

[
h(mh,i)(mh,i − m∗

h,i−1) +
∫ m∗

h,i

mh,i

h(t)dt

]
. (35)

Before giving the proof of Theorem 2.8, we discuss two examples for h(t) which will be used
in the proof of Theorem 2.8.

Example 3.5 For given 1 ≤ i ≤ s + 1, define a function on [0, d] = [0, m∗
i−1] by

h(t) = BX(t)I[0,m∗
i−1)(t) + BX(m∗

i−1−)I{m∗
i−1}(t). (36)

Then

max
l∈L

{∫
[0,m∗

i−1]

h(t)dνl

}
=

i−1∑
k=1

BX(mk)(mk − m∗
k−1) +

i−1∑
k=1

∫ m∗
k

mk

BX(t)dt. (37)

Proof We will check that h(t) satisfies all the conditions in Corollary 3.3.
From the definition of h(t), we know h(t) = BX(t) on [0, m∗

i−1), and h(m∗
i−1) = BX(m∗

i−1−).
Thus sh = i − 1, mh,sh+1 = m∗

i−1, and for each 0 ≤ k ≤ sh, mh,k = mk, m∗
h,k = m∗

k, then
[0, m∗

i−1) = [0, mh,sh+1) =
⋃sh

k=0[mh,k, mh,k+1).
Based on the properties of mk, m∗

k, k = 0, 1, · · · , i−1, and the facts that mh,k = mk, m∗
h,k =

m∗
k, 0 ≤ k ≤ sh, we have

0 = mh,0 ≤ mh,1 ≤ m∗
h,1 < mh,2 ≤ m∗

h,2 < · · · < mh,sh
≤ m∗

h,sh
= mh,sh+1 = d

and
h(mh,1) > h(mh,2) > · · · > h(mh,sh

) ≥ h(mh,sh+1) = BX(m∗
i−1−) ≥ 0.
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Moreover, for each 0 ≤ k ≤ sh, from Lemma 2.5 we know h(t), t ∈ [mh,k, m∗
h,k) is de-

creasing and greater than h(mh,k+1), and h(t) ≤ h(mh,k+1), t ∈ [m∗
h,k, mh,k+1]. Thus h(t) in

Equation (36) satisfies all the conditions in Corollary 3.3. Then Equation (37) follows from
Corollary 3.3.

Example 3.6 For the given 1 ≤ i ≤ s, define

h(t) = max {BX(mi), BX(mi+1)}I{t=mi} + BX(t)I{t>mi} (38)

on [0,∞). Then we have

max
l∈L

{ ∫
[0,∞)

h(t)dνl

}
= max {BX(mi), BX(mi+1)} × mi

+
s−1∑
k=i

BX(mk+1)(mk+1 − m∗
k) +

s∑
k=i

∫ m∗
k

mk

BX(t)dt. (39)

Proof We will check that h(t) satisfies all the conditions in Remark 3.4. We know that
h(t) = 0, t ∈ [0, mi), h(mi) = max {BX(mi), BX(mi+1)}, h(t) = BX(t), t ∈ (mi,∞), and
h(∞) = BX(∞) = 0.

From the definitions of mi and m∗
i , we have sh = s− i + 1, mh,k = mi+k−1, 1 ≤ k ≤ sh + 1,

and m∗
h,k = m∗

i+k−1, 1 ≤ k ≤ sh. Thus we can get

0 = mh,0 ≤ mh,1 ≤ m∗
h,1 < mh,2 ≤ m∗

h,2 < · · · < mh,sh
≤ m∗

h,sh
≤ mh,sh+1 = ∞

and
h(mh,1) > h(mh,2) > · · · > h(mh,sh

) > h(mh,sh+1) = BX(∞) = 0.

In the next, we consider the intervals [0, mi) and [mi,∞) separately. On the interval [0, mi),
it is easy to check that h(t) ≡ 0 ≤ h(mi). On the interval [mi,∞), for each i ≤ k ≤ s, the
function h(t), t ∈ [mk, m∗

k) is decreasing and greater than h(mk+1), and h(t) ≤ h(mk+1), t ∈
[m∗

k, mk+1]. Then applying Remark 3.4, we conclude that Equation (39) holds.
Proof of Theorem 2.8 1) Suppose that BX(mi) = BX(mi) for all i = 1, 2, · · · , s. Then

BX(t) = BX(t), t ≥ 0, and hence Equation (21) can be rewritten as

max
f∈L

{∫
R+

BXdνf

}
=

∫
R+

BXdνf∗ .

Thus from Proposition 2.1, we have

min
f∈L

ρg[Tf (X)] = ρg[Tf∗(X)].

We can get Equation (16) by direct verification.
2) Suppose that BX(mi) > BX(mi) for some 1 ≤ i ≤ s. Based on the definition of

BX(t), for those mi, i = 1, 2, · · · , s satisfying BX(mi) > BX(mi), we have that mi > 0 and
BX(mi) = BX(mi−). In the following, we will prove

inf
f∈L

ρg[Tf (X)] = (1 + β)E[X ] −
∫

R
+

BXdνf∗ . (40)
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Its proof will be finished by proving that there exists a sequence {fn ∈ L} such that

lim
n→∞

∫
R+

BXdνfn =
∫

R+

BXdνf∗ , (41)

and for f ∈ L,
∫

[0,∞)

BX(t)dνf <

∫
[0,∞)

BX(t)dνf∗ . (42)

(a) We will prove Equation (41) in this part.
As stated, for those mi, i = 1, 2, · · · , s satisfying BX(mi) > BX(mi), we have mi > 0

and BX(mi) = BX(mi−). Then there exists a sequence 0 < δ
(n)
i < mi − m∗

i−1 satisfy-
ing limn→∞ δ

(n)
i = 0, such that limn→∞ BX(mi − δ

(n)
i ) = BX(mi−) = BX(mi). For those

mi, i = 1, 2, · · · , s satisfying BX(mi) = BX(mi), we define δ
(n)
i ≡ 0. Thus limn→∞ BX(mi −

δ
(n)
i ) = BX(mi) = BX(mi). Therefore, limn→∞ BX(mi − δ

(n)
i ) = BX(mi) holds for all

mi, i = 1, 2, · · · , s.

Based on the sequence {δ(n)
i }, we define a function as follows,

fn(x) =
s−1∑
i=0

{(x − m∗
i )+I

(m∗
i ,mi+1−δ

(n)
i ]

(x) + (x − mi+1 + δ
(n)
i )I

(mi+1−δ
(n)
i ,mi+1]

(x)}

+(x − m∗
s)+ ∈ L. (43)

The function fn deduces a measure νfn satisfying that

νfn({mi}) = δ
(n)
i , νfn({mi − δ

(n)
i }) = mi − m∗

i−1 − δ
(n)
i ,

and νfn(B) = νf∗(B) for any B ∈ R+/{mi, mi − δ
(n)
i ; i = 1, 2, · · · , s}. Thus,

∫
R+

BXdνf∗ −
∫

R+

BXdνfn

=
s∑

i=1

{
BX(mi)(mi − m∗

i−1) +
∫ m∗

i

mi

BXdμ

}

−
s∑

i=1

{
BX(mi)δ

(n)
i + BX(mi − δ

(n)
i )(mi − m∗

i−1 − δ
(n)
i ) +

∫ m∗
i

mi

BXdμ

}

=
s∑

i=1

{(BX(mi) − BX(mi − δ
(n)
i ))(mi − m∗

i−1 − δ
(n)
i ) + δ

(n)
i (BX(mi) − BX(mi))}

→ 0

as n → ∞. Equation (41) is proved.
(b) We will prove Equation (42) in this part.
Choosing i such that BX(mi) < BX(mi), we define

B̂X(t) = BX(t)I{t	=mi} + BX(t)I{t=mi}.
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It is obvious that B̂X(t) ≥ BX(t), t ∈ [0,∞), therefore∫
[0,∞)

BX(t)dνf ≤
∫

[0,∞)

B̂X(t)dνf (44)

holds for each f ∈ L. Thus, if we can prove the following inequality∫
[0,∞)

B̂X(t)dνf <

∫
[0,∞)

BX(t)dνf∗ , (45)

Equation (42) can be obtained. In the following we will prove Equation (45).
On the interval [0, m∗

i−1], we define

νfi(B) = νf (B) + I{m∗
i−1∈B}(m∗

i−1 − νf [0, m∗
i−1]), B ∈ B

R
+ .

It is easy to prove that the associated fi belongs to L. Thus, for h(t) defined in Example 3.5,
we have ∫

[0,m∗
i−1]

h(t)dνfi =
∫

[0,m∗
i−1]

BX(t)dνf + BX(m∗
i−1−)(m∗

i−1 − νf ([0, m∗
i−1])). (46)

From Equations (37) and (46), we have
∫

[0,m∗
i−1]

BX(t)dνf ≤
i−1∑
k=1

{
BX(mk)(mk − m∗

k−1) +
∫ m∗

k

mk

BX(t)dt

}

−BX(m∗
i−1−)(m∗

i−1 − νf ([0, m∗
i−1])). (47)

Next consider the interval (mi,∞). For h(t) defined in Example 3.6, we have∫
[0,∞)

h(t)dνf = max {BX(mi), BX(mi+1)}νf ([0, mi]) +
∫

(mi,∞)

BX(t)dνf . (48)

Based on Equations (39) and (48), we can obtain∫
(mi,∞)

BX(t)dνf ≤ max {BX(mi), BX(mi+1)}(mi − νf ([0, mi]))

+
s−1∑
k=i

BX(mk+1)(mk+1 − m∗
k) +

s∑
k=i

∫ m∗
k

mk

BX(t)dt. (49)

Then combining Equations (47) and (49), we have∫
[0,∞)

B̂X(t)dνf

=
∫

[0,m∗
i−1]

BX(t)dνf +
∫

(m∗
i−1,mi]

BX(t)dνf +
∫

(mi,∞)

BX(t)dνf

≤
i−1∑
k=1

BX(mk)(mk − m∗
k−1) +

i−1∑
k=1

∫ m∗
k

mk

BX(t)dt − BX(m∗
i−1−)(m∗

i−1 − νf ([0, m∗
i−1]))

+
∫

(m∗
i−1,mi]

BX(t)dνf + max {BX(mi), BX(mi+1)}(mi − νf ([0, mi]))

+
s−1∑
k=i

BX(mk+1)(mk+1 − m∗
k) +

s∑
k=i

∫ m∗
k

mk

BX(t)dt. (50)
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Using BX(mi) ≥ BX(m∗
i−1−), Equations (22) and (50) imply that∫

[0,∞)

B̂X(t)dνf −
∫

[0,∞)

BX(t)dνf∗

≤ −BX(mi)(mi − m∗
i−1) − BX(m∗

i−1−)(m∗
i−1 − νf ([0, m∗

i−1]))

+
∫

(m∗
i−1,mi]

BX(t)dνf + max {BX(mi), BX(mi+1)}(mi − νf ([0, mi]))

≤ −BX(mi)(mi − νf ([0, m∗
i−1])) +

∫
(m∗

i−1,mi]

BX(t)dνf

+ max{BX(mi), BX(mi+1)}(mi − νf ([0, mi])). (51)

From Lemma 2.5, we have BX(mi) > BX(mi+1) and BX(mi) ≥ BX(t) for any t ∈ [m∗
i−1, mi].

Meanwhile, from the definition of mi, we know there exists a 0 < δ < mi − m∗
i−1 such that

BX(mi) > BX(t) holds for any t ∈ (mi − δ, mi]. Therefore, from Equation (51), we obtain

−BX(mi)(mi − νf ([0, m∗
i−1])) +

∫
(m∗

i−1,mi]

BX(t)dνf

+ max{BX(mi), BX(mi+1)}(mi − νf ([0, mi]))

= −BX(mi)(mi − νf ([0, mi − δ])) +
∫

(mi−δ,mi]

BX(t)dνf

+ max{BX(mi), BX(mi+1)}(mi − νf ([0, mi]))

+
{
− BX(mi)νf ((m∗

i−1, mi − δ]) +
∫

(m∗
i−1,mi−δ]

BX(t)dνf

}

≤ −BX(mi)(mi − νf ([0, mi − δ])) +
∫

(mi−δ,mi]

BX(t)dνf

+ max{BX(mi), BX(mi+1)}(mi − νf ([0, mi]))

=
∫

(mi−δ,mi]

(BX(t) − BX(mi))dνf

+(max {BX(mi), BX(mi+1)} − BX(mi))(mi − νf ([0, mi]))

:= II. (52)

Note that one of νf ((mi − δ, mi]) and mi−νf ([0, mi]) must be greater than 0, otherwise we will
have νf ([0, mi − δ]) = mi and f(mi − δ−) = mi − δ− νf ([0, mi − δ]) = −δ < 0, contradictory to
the fact f ∈ L. Moreover, BX(t) < BX(mi), t ∈ (mi − δ, mi] and max {BX(mi), BX(mi+1)} <

BX(mi). Thus II < 0 follows. Then from Equations (51) and (52), we can obtain∫
[0,∞)

B̂X(t)dνf −
∫

[0,∞)

BX(t)dνf∗ ≤ II < 0.

Thus the inequality equation (45) is proved.

4 Conclusions

This paper discussed the optimal reinsurance treaty for the insurer when the insurer’s risk
is measured by distortion risk measure and the reinsurance premium is calculated by the ex-
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pected premium principle. Under the assumption that the retained loss is increasing with the
initial loss, explicit solutions for the optimal reinsurance problems were obtained. The optimal
reinsurance strategies for the two special risk measures, VaR and TVaR, were also presented as
special cases of the distortion risk measures.
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5 Appendix

Proof of Lemma 2.3 First we consider the case that i = 1 with m1 = 0. When r1 = 0, it
is easily to get BX(0) = M1. Thus, in the following we will focus on the case r1 > 0. From
the definitions of m1 and r1, we know max{BX(t), BX(t−)} = M1, t ∈ (m1, r1). Then we can
find a sequence m1 < xn < r1, n = 1, 2, · · · ,∞ of the continuity points of BX(t), such that
xn ↘ m1 as n → ∞ and max{BX(xn), BX(xn−)} = M1. By the continuity of the function
BX(t) at t = xn, we have BX(xn) = M1. Then based on the right continuity of BX(t), we have
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BX(0) = BX(m1) = limxn↘m1 BX(xn) = M1.

Next we will discuss the case i = 1 with m1 > 0 and i = 2, 3, · · · , s.
1) First, we will prove that max{BX(ri), BX(ri−)} = Mi.
From the definition of Mi, we know that

BX(ri) ≤ Mi and BX(ri−) ≤ Mi. (53)

If max{BX(t), BX(t−)} = Mi has finitely many solutions, ri can be rewritten as ri = max{t :
max{BX(t), BX(t−)} = Mi}, then max{BX(ri), BX(ri−)} = Mi is obvious. In the follow-
ing, we assume that the equation max{BX(t), BX(t−)} = Mi has infinitely many solutions.
In this case, we can find a sequence {tn < ri}∞n=1, such that tn ↗ ri as n → ∞ and
max{BX(tn), BX(tn−)} = Mi. We will prove max{BX(ri), BX(ri−)} = Mi by considering
the following two cases:

(i) Case 1: There exists an infinite subsequence {t(1)n }∞n=1 of {tn}∞n=1, such that t
(1)
n ↗ ri

and BX(t(1)n ) = Mi. Thus BX(ri−) = lim
t
(1)
n ↗ri

BX(t(1)n ) = Mi. Then we can conclude that
max{BX(ri), BX(ri−)} = Mi by Equation (53).

(ii) Case 2: There exists an infinite subsequence {t(2)n }∞n=1 of {tn}∞n=1, which satisfies t
(2)
n ↗

ri and BX(t(2)n −) = Mi. Similar to the proof in (i), we can derive that max{BX(ri), BX(ri−)} =
Mi.

2) Second, we will prove that max{BX(mi), BX(mi−)} = Mi.
When mi = ri, the equation max{BX(mi), BX(mi−)} = Mi is trivial. In the following, we

consider the case mi < ri. By the definitions of mi and Mi, we have max{BX(mi), BX(mi−)} ≤
Mi. From the definition of mi, max{BX(t), BX(t−)} = Mi, t ∈ (mi, ri] follows. Similar to the
proof for the case m1 = 0, we can find a sequence {mi < yn ≤ ri}∞n=1 of the continuity points of
BX(t), such that yn ↘ mi when n → ∞ and BX(yn) = Mi. Then, based on the right continuity
of BX(t), we have BX(mi) = limyn↘mi BX(yn) = Mi. Therefore max{BX(mi), BX(mi−)} =
Mi follows.

Proof of Lemma 2.5 Let 0 ≤ i ≤ s. Based on the definitions of mi, m
∗
i and the right-

continuity of BX(t), we can verify that BX(t) > BX(mi+1), t ∈ (mi, m
∗
i ) and BX(t) ≤

BX(mi+1), t ∈ [m∗
i , mi+1]. In the following, we will prove that BX(t) is decreasing on (mi, m

∗
i ).

Based on Lemma 2.2, we know there exists a finite partition of (mi, m
∗
i ) such that BX(t) is

monotonic on each subinterval. If BX(t) is not decreasing on (mi, m
∗
i ), there exists an interval

(η1, θ1) ∈ (mi, m
∗
i ) such that BX(t) is increasing on (η1, θ1) and BX(t) is not a constant on the

interval. Define
η2 = sup{s ≤ m∗

i : BX(t) is increasing on (η1, s)}.
1) For the case that η2 = m∗

i , the function BX(t−) is increasing on (η1, m
∗
i ] and

BX(m∗
i−) = lim

s↗m∗
i

BX(s) ≥ BX(t), t ∈ (η1, m
∗
i ).

Therefore, for any t ∈ (η1, m
∗
i ) we have

max{BX(m∗
i ), BX(m∗

i−)} ≥ BX(m∗
i−) ≥ max{BX(t), BX(t−)}.
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Meanwhile,

max{BX(m∗
i ), BX(m∗

i−)} ≥ BX(m∗
i−)

> BX(mi+1)

= max{BX(mi+1), BX(mi+1−)}
≥ max{BX(t), BX(t−)}

for any t ∈ (m∗
i , mi+1). Then max{BX(m∗

i ), BX(m∗
i −)} is a local maximum value bigger than

max{BX(mi+1), BX(mi+1−)}, contradictory to the definition of mi+1.
2) For the case η2 < m∗

i , we define η3 = sup{s ≤ m∗
i : BX(t) is decreasing on [η2, s)}.

Based on Lemma 2.2, we have η3 > η2. Note that BX(t), t ∈ (η1, η2) is increasing and
BX(t), t ∈ [η2, η3) is decreasing, then max{BX(η2), BX(η2−)} is a local maximum value of
max{BX(t), BX(t−)}. Based on the fact that BX(t) > max{BX(mi+1), BX(mi+1−)}, t ∈
(mi, m

∗
i ), we know

max{BX(η2), BX(η2−)} > max{BX(mi+1), BX(mi+1−)},

contradictory to the definition of mi+1.
From the consideration above, the function BX(t) is decreasing on (mi, m

∗
i ). The proof of

Lemma 2.5 is completed.


