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Abstract In this paper, two new interpolation algorithms for CNC machining along curved tool

pathes are proposed: a time-optimal interpolation algorithm under chord error, feedrate, and tangential

acceleration bounds, and a greedy interpolation algorithm under the chord error and tangential jerk

bounds. The key idea is to reduce the chord error bound to a centripetal acceleration bound which

leads to a velocity limit curve, called the chord error velocity limit curve. Then, the velocity planning

is to find the proper velocity curve governed by the acceleration or jerk bounds “under” the chord error

velocity limit curve. For two types of simple tool pathes, explicit formulas for the velocity curve are

given and the methods are implemented in commercial CNC controllers.

Keywords Chord error, CNC interpolation, cubic PH curve, jerk, quadratic B-spline, time-optimal

velocity planning, velocity limit curve.

1 Introduction

Interpolation algorithms, which control how the machine tool moves along the manufacturing
tool path, play a key role in high speed and high precision CNC machining. An interpolation
algorithm in the CNC controller usually consists of two phases: velocity planning and parameter
computation. Let C(u), u ∈ [0, 1] be the tool path. The phase to determine the feedrate v(u)
along C(u) is called velocity planning. When the feedrate v(u) is known, the phase of sampling
or computing the next interpolation point at ui+1 = ui + �u during one sampling time period
is called parameter computation.

This paper focuses on velocity planning along a spatial parametric tool path for three-
axis CNC machining. For the parameter computation, please refer to [1–4] and the literatures
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therein. The aim of velocity planning is to find a velocity function v(u) such that the machining
time is minimum under the given kinematic and error constraints.

Using a phase space analysis method, Bobrow, et al.[5] and Shiller[6] presented a time-
optimal velocity planning method for a robot moving along a curved path with acceleration
bounds for each axis. Timar, et al.[7, 8] proposed a time-optimal velocity planning algorithm in
CNC machining under the same acceleration constraints. Zhang, et al.[9] simplified the method
in References [7, 8] for quadratic B-splines and realized real-time manufacturing on industrial
CNC machines. Zhang, et al.[10] gave a greedy algorithm for velocity planning under multi-axis
jerk bounds. These optimal methods use the “Bang-bang” control strategy, that is, at least one
of the axes reaches its acceleration or jerk bound all the time. But they did not consider the
chord error which is an important factor for high precision CNC-machining.

In [2, 11–13], the critical point approach is used to find the velocity curve. Critical points
of the tool path with extremal curvatures are identified and maximum feedrates at the critical
points are determined according to the chord error or acceleration constraints. Furthermore,
feedrate function for each tool path segment between two critical points are planned with various
velocity profiles such as S-shape profile[13], trigonometric profile[11], jounce confined profile[2],
and dynamics constraints[12]. In [14], Müller, et al. proposed a high accuracy interpolation
method based on the analytic solution of the inverse kinematic problem using the template
equation method. This kind of approaches is very practical, but it is not time-optimal and the
chord error is not guarantied at all places.

In [15–18], the velocity planning problems are formulated as nonlinear optimization problems
which are solved with standard numerical methods. Nonlinear optimization based interpolation
methods under the confined jerk and chord error were given by Erkorkmaz and Altintas[16],
and Sencer, et al.[18]. Dong, et al.[15] gave a discrete greedy algorithm under confined feedrate,
acceleration, and jerk based on a series of single variable optimization subproblems. In [17],
Gasparetto, et al. proposed to use a linear combination of the machining time and the total
jerk as the objective function in order to minimize vibration. Numerical optimization methods
are very general and powerful, but solving nonlinear programming problems is generally time-
consuming and the obtained solutions are not guarantied to be globally optimal.

In [19–23], direct sampling approaches are adopted by computing the velocities at every
sampling time based certain strategies. Yeh and Hsu[23] used a chord error bound to control
the feedrate if needed and used a constant feedarte in other places. Nam and Yang[22] proposed
a recursive method to generate jerk limited velocity. Jeong, et al. proposed a sampled data
approach to parametric interpolation[20]. Emami, Arezoo[19] and Lai, et al.[21] proposed time-
optimal velocity planning methods with confined acceleration, jerk, and chord error by adjusting
the velocity if any of the bounds is violated through backtracking. In [24], Beudaert, et al.
improved the above procedure by searching the backtracking point with dichotomy when any
of the bounds is violated.

In this paper, velocity planning along a curved tool path under a chord error bound and tan-
gential acceleration and jerk bounds is considered following the phase analysis approaches[5–7, 10].
The main contribution is to control the chord error, for which the key concept of chord error
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velocity limit curve (CEVLC) is introduced. In the case of tangential acceleration bound, we
give a time-optimal velocity planning algorithm. In the case of tangential jerk bound, we give
a greedy velocity planning algorithm which is time-optimal under certain greedy conditions.

We show that the chord error bound can be approximately reduced to a centripetal accel-
eration bound. Furthermore, if the centripetal acceleration reaches its bound, the velocity can
be written as an algebraic function in the parameter u of the tool path C(u). The graph of this
function is called the CEVLC. The CEVLC is significant because the final velocity curve must
be “under” this curve or be part of this curve, which narrows the range of velocity planning.
Also, certain key points on the CEVLC, such as the discontinuous points, play an important
role in the velocity planning.

For quadratic splines and cubic PH curves, the integration velocity curve can be given by
explicit formulas. We implement our algorithm in these two cases on a commercial CNC con-
troller and conduct experiments on three-axis industrial CNC machines to show the feasibility
of our method. To implement the method in CNC controllers, we first compute the velocity
curves off-line and then use the velocity curves as parts of the input to the CNC controllers
to achieve real-time interpolation. This strategy is adopted in many existing work such as
References [3, 9, 21].

As a final remark, we want to mention that using the tangential acceleration is optional.
For instance, by combining the CEVLC introduced in this paper and the method in [7, 8],
it is possible to give a time optimal velocity planning method with confined chord error and
acceleration bounds along each axis. Furthermore, by combining the CEVLC and the method
proposed by us in [10], it is possible to give an algorithm with confined chord error and multi-axis
jerk bounds.

The rest of the paper is organized as follows. Section 2 gives a time-optimal velocity planning
algorithm with chord error and acceleration bounds. Section 3 gives a greedy velocity planning
algorithm with chord error and jerk bounds. Section 4 gives the details for computing the
time optimal velocity curves for quadratic B-splines and cubic PH-splines and the experimental
results. Section 5 gives the experimental results. Section 6 concludes the paper.

2 Time-Optimal Velocity Planning with Chord Error and Tangential

Acceleration Bounds

In this section, we will give a time-optimal velocity planning algorithm under the chord
error, feedrate, and tangential acceleration bounds.

2.1 Problem

We consider a spatial piecewise parametric curve C(u), u = 0..1 with C1 continuity, such as
B-splines, Nurbs, etc. We further assume that each piece of the curve is differentiable to the
third order and has left and right limitations at the endpoints.

In order to control the CNC machine cutting tools, we need to know the velocity at each
point on the tool path, which is denoted as a function v(u) in the parameter u and is called the
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velocity curve. The procedure to compute the velocity curve v(u) is called velocity planning.
In this subsection, we show that the chord error bound can be reduced to the centripetal
acceleration bound and formulate the velocity planning problem as an optimization problem
with tangential and centripetal acceleration bounds.

For the parametric curve C(u), denote its parametric speed to be

σ(u) =
ds

du
= |C′(u)|,

where ′ is the derivative w.r.t. u. The curvature and radius of curvature are defined to be

k(u) =
|C′(u) × C′′(u)|

σ(u)3
, ρ(u) =

1
k(u)

. (1)

When the cutting tool moves from point A to point B on C(u), the line segment AB is
generally considered to be a first order approximation of the machining trajectory, and the
distance between line segment AB and the curve segment is called the chord error[19, 21, 23],
which is one of many sources of the manufacturing error (Figure 1). Firstly, we will show that
the chord error bound can be reduced to the centripetal acceleration bound.

A

P

B

O

PQ

Q

Figure 1 The chord error

Let T be the sampling period of the CNC machine, δ the chord error bound, and ±AT the
tangential acceleration bounds. As shown in Figure 1, the chord error |PQ| is generally taken
as

|PQ| = ρ −
√

ρ2 − |AB|2/4

in the literature [19, 21, 23]. From the above formula, we have −2|PQ|ρ + |PQ|2 = −|AB|2/4.
In general, the chord error |PQ| is much less than the radius of curvature ρ. Based on this fact
and omitting the second order small quantity |PQ|2, the chord error formula at each parametric
value u is derived[25]:

|PQ| ≈ |AB|2
8ρ

.



840 YUAN CHUNMING · ZHANG KE · FAN WEI

If we denote by δ(u) the interpolating chord error at u with velocity curve v(u), then from the
above formula

q(u) = v2(u) = |AB|2/T 2 ≈ 8δ(u)ρ(u)
T 2

. (2)

Let
aN (u) = v(u)2/ρ(u) = k(u)v(u)2 = k(u)q(u) (3)

be the centripetal acceleration and

AN =
8δ

T 2
. (4)

Then, from (2), (3), and (4), the chord error bound is transformed to the centripetal acceleration
bound:

δ(u) ≤ δ ⇐⇒ aN (u) ≤ AN =
8δ

T 2
. (5)

Since
d

dt
=

ds

dt

du

ds

d

du
=

v

σ

d

du
, (6)

the tangential acceleration is

aT (u) =
dv(u)

dt
=

v(u)v′(u)
σ(u)

=
q′(u)
2σ(u)

. (7)

From (6), the time optimal velocity planning is to find a velocity curve v(u) such that

min
v(u)

t =
∫ 1

0

σ(u)
v(u)

du, (8)

under the following constraints

aN (u) ≤ AN , u = 0..1, (9)

|aT (u)| ≤ AT , u = 0..1, (10)

where aN (u) and aT (u) are the centripetal acceleration and tangential acceleration, respectively,
and AN is computed from the chord error bound δ with Formula (4).

Remark 2.1 Note that since aN (u) and aT (u) are perpendicular, the acceleration for
each axis, say ax(u), is clearly bounded by

√
A2

N + A2
T .

2.2 CEVLC and Its Key Points

In this section, we define the CEVLC, which will play a key role in our algorithms.
Let δ be the chord error bound and T the sampling period of the CNC machine. Then we

can determine a bound AN for the centripetal acceleration with (4). If the chord error reaches
its bound, then the centripetal acceleration will reach its bound AN approximately by (5). In
this case, from (3) and (4) we have q(u) = AN

k(u) , which defines a curve qlim(u) = v2
lim(u) =

AN/k(u) = 8δ
k(u)T 2 , u ∈ [0, 1], or

vlim(u) =

√
8δ/k(u)

T
, u ∈ [0, 1], (11)



TIME OPTIMAL INTERPOLATION WITH CONFINED CHORD ERROR 841

in the u-v phase plane with v as the vertical axis and u as the horizontal axis, where k(u) is
the curvature of the tool path C(u). We call this curve the chord error velocity limit curve,
denoted by CEVLC. It is clear that the real velocity curve must be on or below the CEVLC in
the phase plane in order to satisfy the chord error bound.

Certain points on the CEVLC play an important role in our algorithms, which are called
switching points or key points.

The first type key points are the discontinuous points of the CEVLC. These points corre-
spond to the curvature discontinuous points of the tool path. They must be the singular points
of the parametric curve or the connection points of two curve segments. The singular points
of C(u) can be computed by solving the equations C ′(u) × C′′(u) = 0. From (1) and (11), the
limit velocity vlim is ∞ at these points and the real velocity curve can not reach it, so we can
remove the singular points from the key points. Thus, only the connection points need to be
considered.

At a first type key point u, the velocity is not continuous and we denote by v+(u), v−(u)
(a+(u), a−(u)) the left and right side velocities (accelerations) respectively. If v+(u) < v−(u),
let the velocity and acceleration of this point be (v+(u), a+(u)); otherwise, the velocity and
acceleration of this point are defined to be (v−(u), a−(u)).

The second type key points are the continuous but non-differentiable points of the CEVLC
(slope discontinuity). These points correspond to the curvature continuous but non-differentiable
points of the tool path. Hence, they must be the connection points of two curve segments. At
a second type key point u, the tangential acceleration is not continuous and is defined to be
min{a+(u), a−(u)}.

For a differentiable segment of the CEVLC divided by the above two types of key points, we
can further divide it according to whether the tangential acceleration of the CEVLC is ±AT ,
where AT is from (10). A point on the CEVLC is called a third type key point if the tangential
acceleration along the CEVLC at this point is ±AT . We can find the third type key points by
solving the following algebraic equation in u

alim(u) =
q′lim(u)
2σ(u)

=
(

ANσ(u)3

|C′(u) × C′′(u)|
)′/

(2σ(u)) = ±AT .

With these switching points, the CEVLC is divided into two types of segments:
1) A curve segment is called feasible if the absolution values of tangential acceleration at

all points are bounded by AT . A feasible CEVLC segment can be a part of the final velocity
curve.

2) A curve segment is called unfeasible if the absolution values of tangential acceleration
at all points are larger than AT . An unfeasible CEVLC segment cannot be a part of the final
velocity curve, and the final velocity curve must be strictly under it due to the constraint
aN (u) ≤ AN .

If the curve segments on the left and right sides of a second type key point are both feasible,
we can delete this key point since it does not affect the velocity planning.
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2.3 Integration Trajectory

In this section, we will show how to compute the velocity curve when the tangential accel-
eration reaches its bound.

We use “Bang-Bang” control, that is, at least one of “=” holds in inequalities (9) or (10).
If the centripetal acceleration reaches its bound AN , from Section 2.2, the velocity curve is a
piece of CEVLC. If the tangential acceleration reaches its bound, then from (7) the square of
the velocity q(u) = v(u)2 can be obtained by solving the differential equation q′(u) = 2AT σ(u),
whose solution is

q = 2AT π(u) + c, (12)

where π(u) =
∫

σdu is the primitive function of σ(u) and c a constant which can be determined
by an initial point (u∗, q(u∗)) on the velocity curve:

c = q(u∗) − 2AT π(u∗).

The curve (12) is called an AT integration curve or an AT integration trajectory. If the tangen-
tial acceleration reaches the negative bound −AT , we can just replace AT with −AT to obtain
the −AT integration trajectory.

Before presenting the algorithm, we first give a description of the solution to Problem (8),
which will be helpful for understanding the algorithm.

Let vP (u) be the AT integration trajectory starting from a point P = (uP , vlim(uP )) on
the CEVLC both for the forward (the +u) and the backward (the −u) directions. Let v0(u)
be the AT forward integration trajectory from the start point P0 = (0, 0) and v1(u) the AT

backward integration trajectory from the end point P1 = (1, 0). Of course, all the velocity
curves mentioned above are defined in [0, 1].

Then, the solution to the optimization problem (8) is given below.

Theorem 1 Let K be the finite set of key points of the CEVLC. Then

v(u) = min
P∈K

(vlim(u), v0(u), v1(u), vP (u)) (13)

is the solution to the optimal problem (8).

We will prove the theorem in the appendix of the paper.
From Theorem 1, we see that the time optimal velocity curve is the minimal value of the

CEVLC and the integration trajectories passing through the start point (0, 0), the end point
(1, 0), and all the key points of the CEVLC in the u-v plane. The algorithm we will given in
the next section is an efficient realization of this theorem. Also from the theorem, v(u) is a
piecewise continuous curve for u ∈ [0, 1].

2.4 The Time Optimal Velocity Planning Algorithm

Since we use the “Bang-Bang” control strategy, the real velocity curve must be either a
feasible part of the CEVLC or a segment of an integration trajectory under the CEVLC. What
we need to do is to find the “switching points” between these two kinds of curves.
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We first give the main idea of the velocity planning algorithm which will compute the velocity
curve v(u) in the u-v plane with u as the horizontal axis.

Firstly, compute the CEVLC, find its key points, and the speeds at the key points. Compute
the forward AT integration trajectory vs from the start point (u, v(u)) = (0, 0). Find the
intersection point (ul, vs(ul)) of vs and the CEVLC. Compute the backward AT integration
trajectory ve from the end point (1, 0). Find the intersection point (ur, ve(ur)) of ve and the
CEVLC.

Secondly, If ul ≥ ur, find the intersection point of vs and ve and return the combination of
vs and ve as the final velocity curve. Otherwise, set Pc = (ul, vs(ul)) to be the current point
and consider the following three cases:

1) If the next segment of CEVLC starting from point Pc in the forward (the +u) direction
is feasible, then we merge this feasible segment into vs and set the new current point to be the
end point of this feasible segment.

2) If the next segment of CEVLC starting from point Pc in the forward direction is not
feasible and the forward AT integration trajectory vf with initial point Pc is under the CEVLC,
then let (ui, vf (ui)) be the intersection point of vf and the CEVLC and merge vf (u), u ∈ [ur, ui]
into vs. Let ul = ui and set Pc = (ul, vf (ul)) to be the new current point. See Figure 2 for an
illustration.

3) If the next segment of CEVLC starting from point Pc in the forward direction is not
feasible and the AT integration trajectory vf with initial point Pc is above the CEVLC, then
we find the next key point Pn on the right hand side of Pc. From Pn, compute the backward
AT integration trajectory vb, find the intersection point of vb with vs, and merge vb and vs as
the new vs. Set Pn as the new current point. See Figure 3 for an illustration.

u=ulvlim

vlim

vf

(a) From Step 5.2). The current point is discon-

tinuous and forward integration is possible

vlim

vlim

vf

u=ul
(b) From Step 6.2). The current point is contin-

uous and forward integration is possible

Figure 2 Two cases of Step 8: computation of forward integration curve vf

With the new current point, we can repeat the above procedure until the velocity curve is
found.

To describe our algorithm precisely, we need the following notations. For a discontinu-
ous curve f1(x), we denote by f+

1 (x∗) and f−
1 (x∗) the limitations of f1(x) at x∗ from the

left and right hand sides respectively, and define f1(x∗) = min(f+
1 (x∗), f−

1 (x∗)). Let f2(x)
be a curve with C0 continuity. If f2(x∗) = f1(x∗) or f2(x∗) is between the left and right
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limitations of f1(x) at x∗, then define (x∗, f2(x∗)) to be the intersect point of the curves
(x, f2(x)) and (x, f1(x)).

u=un

vlim

vs
vb

vlim

(a) From Step 5.3). The current point is discon-

tinuous. Forward integration is impossible and

backward integration is needed

vb
u=un

vlim

vs

(b) From Step 6.3). The current

point is continuous. Forward inte-

gration is impossible and backward

integration is needed

Figure 3 Two cases of Step 9: computation of backward integration curve vb

We now give the velocity planning algorithm.

Algorithm 2.2 (VP CETA) The input of the algorithm is the curve C(u), u ∈ [0, 1], a
chord error bound δ, and a tangential acceleration bound AT . The output is the velocity curve
v(u), u ∈ [0, 1] which is the solution to the optimization problem (8).

1) Compute the centripetal acceleration bound AN with Formula (4), the CEVLC in (11),
and its key points as shown in Section 2.2.

2) From the start point (u, v(u)) = (0, 0), compute the forward AT integration trajectory
vs. Compute the first intersection point (ul, vs(ul)) of vs and the CEVLC. If there exist no
intersections, denote ul = 1.

3) From the end point (u, v(u)) = (1, 0), compute the backward AT integration trajectory
ve. Compute the first intersection point (ur, ve(ur)) of ve and the CEVLC. If there exist no
intersections, denote ur = 0.

4) If (ul, vs(ul)) = (ur, ve(ur)), then return the combination of vs and ve as the final velocity
curve. If ul > ur, find the intersection point (ui, vs(ui)) of vs and ve, return v(u), where

v(u) =

⎧
⎨

⎩
vs, 0 ≤ u ≤ ui,

ve, ui < u ≤ 1.
(14)

5) If (ul, vlim(ul)) is a discontinuous point on the CEVLC, consider three possibilities:
5.1) If v+

lim(ul) > vs(ul) = v−lim(ul), goto Step 6.
5.2) If v+

lim(ul) = vs(ul) < v−lim(ul), goto Step 8.
5.3) If v+

lim(ul) ≥ vs(ul) > v−lim(ul), let un = ul and goto Step 9.
6) Now, (ul, vs(ul)) is the starting point of the next segment of CEVLC. Consider three

cases:
6.1) If the next segment of the CEVLC is feasible, goto Step 7
6.2) If a−

lim(ul) ≥ AT , goto Step 8.
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6.3) If a−
lim(ul) ≤ −AT , then find the next key point (un, vlim(un)) along the +u direction

and goto Step 9.
7) Let un > ul be the parameter of the next key point. Then, the CEVLC over the interval

(ul, un) is feasible. Update vs to be

vs(u) =

⎧
⎨

⎩
vs(u), 0 ≤ u < ul,

vlim(u), ul ≤ u ≤ un.

Let ul = un, goto Step 4.
8) Starting from (ul, vs(ul)), compute the forward AT integration trajectory vf . Find the

first intersection point (ui, vf (ui)) of vf and the CEVLC (Figure 2). If there exist no intersec-
tions, set ul = 1. Update vs to be

vs(u) =

⎧
⎨

⎩
vs(u), 0 ≤ u < ul,

vf (u), ul ≤ u ≤ ui.

Let ul = ui, goto Step 4.
9) Starting from point (un, vlim(un)), compute the backward AT integration trajectory vb

in the −u direction. Find the intersection point† (ui, vb(ui)) of vb and vs (Figure 3). Update
vs to be

vs(u) =

⎧
⎨

⎩
vs(u), 0 ≤ u < ui

vb(u), ui ≤ u ≤ un.

Let ul = un, goto Step 4.
The following theorem shows that the proposed algorithm computes the unique solution to

the optimization problem (8). The proof of this theorem will be given the the appendix of this
paper. Further improvements of the algorithm are given in Section 2.5.

Theorem 2 The velocity curve computed with Algorithm VP CETA is the velocity curve
defined in Equation (13) and is the only solution to the optimization problem (8). More precisely,
we will show that the velocity curve will reach its maximal possible value at every point of the
tool path under the given constraints.

As a consequence of the above theorem, we can see that the “Bang-Bang” control strategy
is a necessary way to achieve time-optimality to the velocity planning problem under the given
constraints.

†We will show that there exists a unique intersection point in Lemma 6.3.
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(a) CEVLC and key points
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(b) Velocity curve

Figure 4 An illustrative example of velocity planning. The horizontal axis is the

parameter of the curve C(u). The vertical axis is the velocity

Figure 4 is an illustrative example of the algorithm. We first compute the CEVLC vlim

and the key points as shown in Figure 4(a), where ◦ represents the first type key points and
the corresponding parameters are 0.2, 0.7; the � represents the second type key point, and the
corresponding parameter is 0.4; and the � represents the third type key point. The gray parts
are feasible segments.

Starting from point (u, v) = (0, 0), compute the forward integration trajectory vs which in-
tersects the CEVLC at u = 0.2. Starting from (u, v) = (1, 0), compute the backward integration
trajectory ve which intersects the CEVLC at u = 0.7.

In Step 5, the current point Pc is a discontinues point and case 5.3) is executed. In Step 9,
starting from the first ◦ point, compute the backward integration trajectory vb which intersects
vs at the first point marked by +. Update vs to be the piecewise curve marked by I, II in
Figure 4(b).

From the first point marked by ◦, the CEVLC is feasible. Hence, update vs to be the
piecewise curve marked by I, II and the first gray part of the CEVLC(III).

Let the key point marked by � be the current point. From the current point, the CEVLC
is not feasible and Case 6.3) is executed. In Step 9, we select the next key point which is the
first point marked by �. Starting from this point, compute the backward integration trajectory
vb which intersects vs at the second point marked by +. Update vs to be the piecewise curve
marked by I, II, III, IV.

Starting from the first point marked by �, the CEVLC is feasible. Hence, update vs to be
the piecewise curve marked by I, II, III, IV, V.

Let the second point marked by � to be the current point. Starting from this point, the
CEVLC is not feasible and Case 6.2) is executed. In Step 8, compute the forward integration
trajectory vf which intersects ve at the third point marked by +. The final velocity curve
consists of seven pieces marked by I, II, III, IV, V, VI, and VII.

Note that the CEVLC can be parts of the final velocity curve quite often, while in [7, 8],
the VLC cannot be a part of the final velocity curve.
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Remark 2.3 In Algorithm VP CETA, we need to compute the CEVLC and its key points,
the integration trajectory, the intersection points of the integration trajectory and the CEVLC,
and the intersection points of two integration trajectories. In principle, these computations can
be reduced to computing integrations and solving algebraic equations. In Section 4, we will
show how to give explicit formulas for the integration curve for two types of simple tool pathes.

2.5 Improvements of the Algorithm

In this section, we present modifications to Algorithm VP CETA to improve its efficiency
by getting rid of some unnecessary computations.

We need the following properties of the CEVLC, the proofs of which are given in the ap-
pendix as Lemmas 6.2 and 6.1, respectively.

Proposition 3 Let (ul, vlim(ul)) and (un, vlim(un)) be two adjacent key points of the
CEVLC. Then an AT or −AT integration trajectory can intersect the curve segment vlim(u),
u ∈ (ul, un) once at most.

Proposition 4 Let v1(u) and v2(u) be two velocity curves for the tool path C(u) defined
on [u1, u2] and a1T (u), a2T (u) their tangential accelerations respectively. If v1(u1) ≤ v2(u1)
and a1T (u) ≤ a2T (u) for u ∈ [u1, u2], then v1(u) ≤ v2(u) for u ∈ [u1, u2]. Furthermore, if
v1(u1) < v2(u1), then v1(u) < v2(u) for u ∈ [u1, u2].

We will propose three improvements which are summarized as three remarks below.

Remark 2.4 Step 8 of Algorithm VP CETA can be modified as follows. Let ul be the
current parametric value, un the parametric value for the next key point of the CEVLC, and
vf (u) the forward integration trajectory starting from point (ul, vs(ul)). Then the tangential
acceleration of vf (u) is AT in the +u direction. We can modify Step 8 as follows:

8.1) If vf (un) < vlim(un), by Proposition 3, vf does not meet the CEVLC in (ul, un] and we
can repeat this step for the next segment of CEVLC until either un = 1 or vf (un) ≥ vlim(un).

8.2) If v+
lim(un) ≥ vf (un) ≥ v−lim(un) or v+

lim(un) = vf (un) ≤ v−lim(un), then vf meets the
CEVLC at (un, vf (un)).

8.3) Otherwise, we have vf (un) > v+
lim(un) and vf meets the CEVLC in (ul, un) at a unique

point P by Proposition 3. Furthermore, if the current CEVLC segment is not feasible, we need
not to compute this intersection point. Because, in the next step, we will execute Step 9 by
computing the backward integration curve vb from u = un and compute the intersection point
Q of vf and vb. Point P is above vb and will not be a part of the final velocity curve (Figure
5(a)).

In Step 8.3, we need to compute the intersection point between an integration curve and a
feasible CEVLC or between a backward integration curve and a forward integration curve. We
can use numerical method to compute it. A simple but useful method to compute these points
is the bisection method, since the intersection point is unique.

Steps 2 and 3 of Algorithm VP CETA can be modified similarly as Step 8.
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P

vb
u=un

u=ul

vlim

Q
vf

(a) Case 8.3): point P is not needed

vb

P

u=un
u=ul

vlim

Q
vf

vlim

u=unnvbn

R

(b) Step 9′: vb is not needed

Figure 5 Modifications of Steps 8 and 9

Remark 2.5 Step 9 can be simplified as follows. We call a parameter un useless if
v+
lim(un) ≥ v−lim(un), a−

lim(un) ≤ −AT , and the next CEVLC segment is not feasible. Note
that the second and third conditions mentioned above are equivalent to the following condition:
alim(u) < −AT , u ∈ (un, unn), where unn is the parametric value for the next key point after
un. If un is useless, then we need not to compute the backward integration trajectory vb from
point (un, vlim(un)). Because the backward integration trajectory vbn starting from unn will be
strictly under vb due to Proposition 4 (Figure 5(b)), and as a consequence vb will not be a part
of the final velocity curve due to Theorem 1. So, Step 9 can be modified as follows.

Step 9′ If un is useless, we will choose the next key point as un and repeat this procedure
until either un = 1 or un is not useless. Use this un to compute the backward integration
trajectory vb and update vs.

Remark 2.6 Due to Theorem 1 and Proposition 4, we can give the following simpler
and more efficient algorithm. The input and output of the algorithm are the same as that of
Algorithm VP CETA. After computing the CEVLC and its key points, we compute the velocity
curve as follows:

1) Let P be the set of key points of the CEVLC plus the start and end points (0, 0) and
(1, 0). Set the velocity curve to be the empty set.

2) Repeat the following steps until P = ∅.
3) Let P = (u, vlim(u)) ∈ P be a point with the smallest velocity vlim(u) and remove P from

P .
4) Let V f

P and V b
P be the forward and backward AT integration trajectories starting from

point P respectively, which can be computed with the methods in Remark 2.4. If, starting
from point P , the left (right) CEVLC segment is feasible, V b

P (V f
P ) is set to be this segment.

Find the intersection points of V b
P (V f

P ) and the existence velocity curve if needed. Update the
velocity curve using V f

P and V b
P .

5) Remove the points in P , which are above the curve V f
P or V b

P . This step is correct due
to Theorem 1 and Proposition 4.

The main advantage of the above algorithm is that many key points are above these integra-
tion trajectories and we do not need to compute the integration trajectories starting from these
points. Also, all the integration trajectories computed in this new algorithm will be part of the
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output velocity curve, because each of them starts from the key point which is not processed
and has the smallest velocity.

2.6 Feedrate Override in CNC-Machining

During the CNC-machining, there exists another constraint: the maximal feedrate vmax. In
this situation, all we need to do is to change the velocity curve to v∗(u) = min(v(u), vmax),
where v(u) is the optimal velocity curve obtained in the preceding sections. And it is easy to
see that the time optimal property is also valid when we add the maximal feedrate constraint
according to Theorem 2. The procedure of the interpolation is as follows.

Algorithm 2.7 (Interpolation algorithm) The input is the current parameter ui, the
velocity curve v(u), maximal feedrate vmax, and the sampling time T . The output is the
parameter of the next interpolation point ui+1.

1) According to the velocity curve and the maximal feedrate, let vi = min(v(ui), vmax). The
step size is ΔL = vi · T .

2) According to the step size ΔL, compute the parameter of the next interpolation point
ui+1 with the method given in [1, 2].

Since for any parametric value u, whenever the value of v∗(u) is taken from v(u) or vmax,
the left and right limitations of the tangential acceleration are satisfied. Hence, v∗(u) satisfies
the maximal feedrate, chord error, and tangential acceleration bounds. Furthermore, in CNC-
machining, the users can change the maximal feedrate during manufacturing, which is called
feedrate override. Although the new feedrate limitation is not required to respond immediately,
the real velocity should decrease to the new lower speed as soon as possible. The following
algorithm solves the feedrate override problem.

Algorithm 2.8 (Feedrate override) The input is the velocity curve v(u), the current
parameter ui, the current feedrate v∗, the modified feedrate limitation vmax. The output is
the parametric values ui+1, ui+2, · · · of the interpolation points.

1) If v∗ > vmax, then let vi = v∗ − AT T , v̌i = max(vi, vmax), vi = min(v̌i, v(ui)). Find the
next interpolation point ui+1 according to Algorithm 2.7, i = i + 1, v∗ = vi, and repeat Step 1.

2) If v∗ ≤ vmax, then let vi = min(v(ui), vmax, v∗ + AT T ). Find the next interpolation
point ui+1 according to Algorithm 2.7. If ui+1 > 1, then let ui+1 = 1 and terminate; else let
i = i + 1, v∗ = vi, and repeat Step 2.

Since the final velocity is under the CEVLC, the error bound is satisfied. Step 1 of the
above algorithm is to slow down feedrate as soon as possible when the current feedrate is larger
than the modified feedrate. Step 2 of the above algorithm is exactly Algorithm 2.7, where the
maximal feedrate is replaced by the modified feedrate.

One advantage of using tangential acceleration is that feedrate override can be carried out
easily. In the case of multi-axis acceleration mode, when the maximal feedrate is changed to
vmax, we cannot simply take v∗(u) = min(v(u), vmax) to be the new velocity curve and the
procedure to compute the new velocity curve is complicated.
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3 Velocity Planning with Chord Error and Jerk Bounds

In this section, we consider the velocity planning under a chord error bound δ and a jerk
bound J . We are able to give a greedy velocity planning algorithm for this problem.

By (7), the jerk of a velocity curve v(u) for the tool path C(u), u = 0..1 is

jT (u) =
daT (u)

dt
=

daT (u)
du

du

dt
=

v

σ

(
vv′

σ

)′
. (15)

Then the velocity planning problem is to find a velocity curve v(u), u = 0..1, such that

min
v(u)

t =
∫ 1

0

σ(u)
v(u)

du, (16)

under the following constraints

|jT (u)| ≤ J, aN (u) ≤ AN , u = 0..1, (17)

where J is the jerk bound and AN is the centripetal acceleration bound computed from the
chord error bound with Formula (4).

Similar to the method given in Section 2.2 of [10], we can show that a solution to the time-
optimal problem (16) must satisfy the “Bang-Bang” control strategy. That is, the velocity
curve is governed either by the jerk bound or by the chord error bound. Since the CEVLC
defined in Section 2.3 is determined by the chord error bound, all we need to do is to compute
a velocity curve governed by the jerk bound, which is “under” the CEVLC.

3.1 Key Points of the CEVLC Related to the Jerk Bound

Similar to Section 2.2, we also need to consider the switching points or key points of the
CEVLC w.r.t. the jerk bound.

Let alim(u) be the tangential acceleration of the CEVLC. If the CEVLC is not differentiable
at u, we use the left and right limitations to define a+

lim(u), a−
lim(u). There exist five types of

key points.
The first and second types of key points are the same as that given in Section 2.2. These

are the connecting points of two adjacent segments of C(u).
Since we also consider the jerk value of the CEVLC, the points with non-differentiable

tangential accelerations on the CEVLC are also selected as switching points. So, the third type
switching points are the continuous but non-differentiable points of alim(u).

For a differentiable segment of the CEVLC divided by the above three types of switching
points, we can divide it according to whether the jerk of the CEVLC is ±J , where J is the jerk
bound. A point on the CEVLC is called a fourth type key point if the jerk along the CEVLC at
this point is ±J . We can find the fourth type switching points by solving the following algebraic
equation in u

jlim(u) =
vlim(u)
σ(u)

(
vlim(u)v′lim(u)

σ(u)

)′
=

√
AN/k(u)
σ(u)

(
(AN/k(u))′

2σ(u)

)′
= ±J. (18)
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The fifth type switching points are the velocity extremal points, where the velocity reaches a
local extremal value. These points can be computed by solving the following algebraic equation
in u

alim(u) =
vlim(u)v′lim(u)

σ(u)
= 0. (19)

With these switching points, the CEVLC can be divided into two types of segments:
1) A curve segment is called jerk feasible if the absolution values of jerk at all points are

bounded by J . A jerk feasible CEVLC segment can be a part of the final velocity curve.
2) A curve segment is called unfeasible if the absolution values of jerk at all points are larger

than J . An unfeasible CEVLC segment cannot be a part of the final velocity curve. In other
words, the final velocity curve must be strictly under it except for some key points.

If the curve segments on the left and right sides of a third type key point are both jerk
feasible, and they have the same acceleration value at that point, we can delete this switching
point since it does not affect velocity planning. If a fifth type switching point is on a feasible
segment, we can also delete this point.

3.2 Integration Curve with a Given Jerk

In this section, we will derive the velocity curve when the jerk reaches its bound J . If the
velocity curve is governed by the jerk bound J , from (15), we have

v

σ

(
vv′

σ

)′
= J. (20)

That is, we need to solve the above second order differential equation to obtain v(u). Let
π =

∫
σdu and g = dv

dπ = v′
σ . Then, (20) becomes

v

σ

(
vv′

σ

)′
=

v

σ
(vg)′ =

v

σ
(v′g + vg′) = v

(
g2 + v

dg

dπ

)
= vg2 + v2g

dg

dv
= J. (21)

Let h = g2. Then, (21) becomes
dh

dv
=

2J

v2
− 2h

v
. (22)

Solving the above differential equation in h, we have

h =
2J

v
− c1

v2
, (23)

where c1 is an integration constant. So, we have

dv

dπ
= ±

√
2Jv − c1

v
. (24)

Solving the above equation, we have

π − c2 = ±
∫

vdv√
2Jv − c1

= ± (Jv + c1)
√

2JV − c1

3J2
, (25)

where c2 is another integration constant. Solving this algebraic equation in v, we have

v =
1
2J

[
ω

(
U +

√
U2 + c3

1

) 2
3

+ ω2

(
U +

√
U2 + c3

1

) 2
3

− c1

]
, (26)
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where U = 3J2(π − c2), ω3 = 1.
Now, we give the expressions for computing the integration constants c1, c2. From Equations

(23) and (25), we have

c1 = 2Jv − (vg)2 = 2Jv −
(

vv′

σ

)2

= 2Jv − a2
T ,

c2 = π ∓ (Jv + c1)
√

2JV − c1

3J2
= π ∓ (3Jv − a2

T )|aT |
3J2

= π − (3Jv − a2
T )aT

3J2
.

(27)

The constants c1, c2 can be determined by a specific point (u∗, v(u∗), aT (u∗)) on the integration
curve.

In (26), if U2 + c3
1 is negative in some value interval of u, the expression of v should be

changed. We substitute ω by e
2
3 ikπ(k = 0, 1, 2) to obtain

v =
−c1

2J

[
e

2
3 ikπ

(
U

(−c1)3/2
+ i

√

1 − U2

(−c1)3

)2/3

+ e−
2
3 ikπ

(
U

(−c1)3/2
− i

√

1 − U2

(−c1)3

)2/3

+ 1

]

=
−c1

2J

[
e

2
3 ikπe

2
3 i arccos

U

(−c1)3/2
+ e−

2
3 ikπe

− 2
3 i arccos

U

(−c1)3/2
+ 1

]

=
−c1

2J

[
2 cos

2

3

(
arccos

U

(−c1)3/2
+ kπ

)
+ 1

]
.

(28)

The velocity curve governed by J is called the J+ trajectory. If the jerk bound is −J , we just
need to replace J by −J in the above solutions. And we call the velocity curve governed by
−J the J− trajectory.

3.3 Velocity Planning with Confined Chord Error and Jerk

In this section, we will give a velocity planning algorithm which can be considered as a
solution to Problem (16) under a greedy rule to be explained below.

Contrary to Problem (8), it is still an open problem to design a time-optimal solution to
Problem (16) or similar problems with jerk bounds on the x-, y-, and z-axis using the continuous
model[10]. At the beginning of Section 3, we showed that a solution to Problem (16) must be
“Bang-Bang” in the sense that either the jerk or the chord error reaches its bound at any
time. What we will do below is to design a velocity curve which satisfies the “Bang-Bang”
control strategy and obeys the following “greedy rule”: we will use the J+ trajectory as much
as possible. In other words, we only use the J− trajectory to decelerate when we have to do so.

We now give the algorithm.

Algorithm 3.1 (VP CETJ) The input of the algorithm is the tool path C(u), u ∈ [0, 1],
a chord error bound δ, and a jerk bound J . The output is the velocity curve v(u), u ∈ [0, 1]
which is a solution to Problem (16) under the greedy rule.

The algorithm consists of two phases. The first phase is quite similar to Algorithm VP CETA
and can be obtained from Algorithm VP CETA by making two changes

Firstly, we need to replace the AT integration trajectory by the J+ trajectory, replace alim(u)
by jlim(u), and replace feasible segments of CEVLC by jerk feasible segments of CEVLC.
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Secondly, Step 6.3) need to be modified. In this case, we cannot use a backward J+ (even
J−) trajectory starting from point (un, vlim(un), alim(un)), since this trajectory will be above the
CEVLC. The reason is that the jerk at any point in (ul, un) for the CEVLC is less than −J , and
if we use a backward J+ trajectory vb, then both its acceleration and speed will be larger than
that of the CEVLC at a small neighborhood of un. In Algorithm VP CETA, using a backward
AT trajectory is possible, because the acceleration of the CEVLC in the backward direction at
any point in (ul, un) is larger than AT . As a consequence, the backward AT trajectory will be
below the CEVLC. A rigorous proof of this fact can be found in the appendix of the paper.

We will modify Step 6.3) as follows. Due to the above analysis, what we need to do is
to lower the start acceleration an at u = un such that there exists a backward J− trajectory
vb(u) which passes through (un, vlim(un), an) and tangents with vs. Let u1 be the parameter
value for the intersection of vb and the trajectory vs. From (27), the integration constants of
vb can be expressed as c1(u, v(u), aT (u)), c2(u, v(u), aT (u)). Since vb has the same velocity and
acceleration with vs(u) at u = u1 and c1, c2 are constants on vb, we have the following equations

⎧
⎨

⎩
c1(u1, vs(u1), as(u1)) = c1(un, vlim(un), an),

c2(u1, vs(u1), as(u1)) = c2(un, vlim(un), an),
(29)

where as(u1) is the acceleration of vs(u) at u = u1. We can solve the above algebraic equation
system to obtain u1 and an. Then the trajectory vb can be computed with (26). See Figure
3(b) for an illustration.

The first phase of the algorithm outputs a continuous velocity curve. But, at the intersection
point of two velocity curve segments, the tangential acceleration of v(u) might not be continu-
ous. The second phase of the algorithm will connect the two velocity curve segments with J−
trajectories to obtain a velocity curve with continuous tangential accelerations (Figure 6). Here
the greedy rule is used: we now must use a J− trajectory to make the connection. Two cases
are considered.

Figure 6 Connect two velocity curve segments with a J− trajectory (red one)

to obtain a velocity curve with continuous acceleration

Firstly, we assume that the definition interval [u1, u2] of the J− trajectory does not contain
any connection point of the tool path C(u). From (27), the integration constants of the J− tra-
jectory can be expressed as c1(u, v(u), aT (u)), c2(u, v(u), aT (u)). Let the two velocity segments
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be vl(u) and vr(u) with tangential accelerations al(u) and ar(u). Since the J− trajectory has
the same velocity and acceleration with vl(u) (or vr(u)) at u1 (or u2) and c1, c2 are constants
on the J− trajectory, we have the following equations (Figure 6)

⎧
⎨

⎩
c1(u1, vl(u1), al(u1)) = c1(u2, vr(u2), ar(u2)),

c2(u1, vl(u1), al(u1)) = c2(u2, vr(u2), ar(u2)).
(30)

We can solve the above algebraic equation system to obtain u1, u2. Then the integration
constants of the J− trajectory are c1(u1, vl(u1), al(u1)) and c2(u1, vl(u1), al(u1)), where u1 is
a solution to (30). After the two integration constants are obtained, the J− trajectory can be
computed with the methods in Section 3.2.

Secondly, if the definition interval [u1, u2] of the J− trajectory contains one connection
point of the tool path C(u), say u∗. Let σ1(u), σ2(u) be the two parametric speeds of the two
segments of C(u), and ρ1(u) =

∫
σ1(u)du, ρ2(u) =

∫
σ2(u)du. Then, from (27), to obtain the

J− trajectory, we need to solve the following algebraic equation system
⎧
⎨

⎩
c1(u1, vl(u1), al(u1)) = c1(u2, vr(u2), ar(u2)),

c2(u1, vl(u1), al(u1)) − ρ1(u1) = c2(u2, vr(u2), ar(u2)) − ρ2(u2)
(31)

to obtain u1, u2. Then, similar as above, we obtain the connecting J− trajectory. If the
definition interval of the J− trajectory contains several connection points of the tool path, one
can obtain the J− trajectory in a similar way.

The output of Algorithm VP CETJ is the velocity curve obtained in phase two, which has
confined jerk and chord error.

Remark 3.2 One can add the maximal feedrate constraint in the velocity planning just
as a part of the CEVLC, and solve Equation(30) to make the velocity curve satisfying the jerk
and chord error bounds. We will not give the details here.

4 Closed Form Solutions for Quadratic B-Splines and Cubic PH-

Splines

In Algorithms VP CETA and VP CETJ, we assume that
∫

σdu is computable. In this
section, we show that for quadratic B-splines and cubic PH-splines, a complete and efficient
time optimal velocity planning algorithm can be given by deriving the closed form formulas for
∫

σdu. Simulation results are also given.

4.1 Velocity Planning for Quadratic B-Splines with Confined Acceleration

Let C(u), u ∈ [0, 1] be a quadratic B-spline. Since C(u) has only C1 continuity and a
quadratic curve has no singular points, the connection points of the spline are all the key points
of first or second type. To compute the key points of third type, consider a piece of the spline:

C(u) = (x(u), y(u), z(u))

= (a0 + a1u + a2u
2, b0 + b1u + b2u

2, c0 + c1u + c2u
2),
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where a0, a1, a2, b0, b1, b2, c0, c1, c2 are constants. The curvature of C(u) is k(u) = |C′×C′′|
σ3 ,

where
σ = |C′| =

√
x′2 + y′2 + z′2 =

√
mu2 + nu + l.

Since C(u) is quadratic, the parameters m, n, l can be computed as follows

m = 4(a2
2 + b2

2 + c2
2), n = 4(a1a2 + b1b2 + c1c2), l = a2

1 + b2
1 + c2

1.

And
|C′ × C′′| =

√
(b1c2 − c1b2)2 + (c1a2 − a1c2)2 + (a1b2 − b1a2)2

is a constant. Hence the CEVLC is

q = v2 =
AN

|k(u)| =
ANσ3

|C′ × C′′| = Dσ3 = D(mu2 + nu + l)3/2, (32)

where D is a constant. The tangential acceleration along the CEVLC is alim = (Dσ3)′

2σ =
3
2Dσσ′ = 3

4D(σ2)′. Hence, alim(u) is a linear function in the parameter u. Then, the key points
of third type can be computed by solving linear equations alim = ±AT . From the equations,
we can see that for each piece of the quadratic B-splines, there are two key points of third type
at most.

Now, we show how to compute the AT integration trajectory. When the tangential acceler-
ation reaches its bounds ±AT , we need to compute the solution of the differential equation:

q′ = ±2AT σ. (33)

Let i(u) = ±2AT π(u), where

π(u) =
[
1
4

(2 mu + n)
√

mu2 + nu + l

m
+

1
2

ln
( 1

2 mu + n√
m

+
√

mu2 + nu + l

)
l

1√
m

]

−1
8

ln
( 1

2 mu + n√
m

+
√

mu2 + nu + l

)
n2m− 3

2 . (34)

Then, q(u) = i(u) − i(u∗) + q(u∗) is the solution to the differential Equation (33) with initial
value (u∗, q(u∗)).

We use an example to illustrate the algorithm. The curve in Figure 7(a) is a planar quadratic
B-spline (x(u), y(u)), u ∈ [0, 1] consisting of 14 pieces of quadratic curve segments, which is from
the tool path of the vase in Figure 7(b). We set the tangential acceleration and chord error
bounds to be AT = 1500mm/s2 and δ = 1μm. If the sampling period is T = 2ms, then from(4),
the centripetal acceptilation bound is AN = 2000mm/s2.
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(a) A quadratic B-spline in x, y plane (b) The vase model

(c) The CEVLC vlim(u) (d) Velocity curve v(u)

(e) Chord error (f) Tangential acceleration

Figure 7 Optimal velocity planing for a quadratic B-spline with confined chord error

and acceleration. Except (a) and (b), the horizontal axis is the parameter

of C(u). The units for the velocity, acceleration, and chord error are mm/s,

mm/s2, and mm, respectively

According to Algorithm VP CETA, we first compute the CEVLC with the maximal cen-
tripetal acceleration, which is shown in Figure 7(c). The final velocity curve computed with
Algorithm VP CETA is shown in Figure 7(d), which consists of thirty two pieces, where the
4, 8, 11, 14, 16, 21, 23, 25, 31-th pieces are feasible CEVLC segments, and the others are con-
trolled by the tangential acceleration. Figure 7(e) is the chord error of the optimal velocity
curve. Figure 7(f) is its tangential acceleration. From these two figures, we can see that the
control is “Bang-Bang.”

We now consider a space tool path (x(u), y(u), z(u)), u ∈ [0, 2] shown in Figure 8(a), which
is from the blade of the impeller shown in Figure 8(b) and consists of two quadratic B-splines
with 13 and 14 curve segments, respectively[9]. The tangential acceleration bound is AT =
1500mm/s2, the chord error bound is δ = 1μm, and the sampling period is T = 2ms. Then
the centripetal acceptilation bound AN = 2000mm/s2 can be computed with (4). Figure 8(c)
is its CEVLC. Figure 8(d) is the optimal velocity curve computed with Algorithm VP CETA.
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Figures 8(e) and 8(f) are the chord error and the tangential acceleration of the optimal velocity
curve.

(a) A quadratic B-spline (b) The blade

(c) The CEVLC (d) Velocity curve v(u)

(e) Chord error δ(u) (f) Tangential acceleration

Figure 8 Optimal velocity planing for quadratic B-splines with confined chord error

and acceleration. Units are the same as that of Figure 7

4.2 Velocity Planning for Cubic PH-Splines with Confined Acceleration

Let C(u), u ∈ [0, 1] be a cubic PH-spline. Since a cubic PH-spline only has C1 continuity,
the connection points of the PH-splines are all the key points of first or second type of the
CEVLC.

Let r(u) be a piece of cubic PH-curve of C(u). Then, r′(u) has the following representation[26]:

r′(u) = (f(u)2 + g(u)2 − m(u)2 − n(u)2, 2(f(u)n(u) + g(u)m(u)),

2(g(u)n(u) − f(u)m(u))), (35)

where f(u), g(u), m(u), n(u) are linear functions in u.
The curvature of r(u) is k(u) = |r′×r′′|

σ3 = E
σ2 , where σ = |r′| = f(u)2+g(u)2+m(u)2+n(u)2

and E is a constant. The CEVLC of r(u) is

q = v2 =
AN

|k(u)| = Gσ2,
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where G is a constant. The tangential acceleration along the CEVLC is: alim = (Gσ2)′

2σ = Gσ′.
Since σ is of degree two, alim(u) is a linear function in the parameter u. The key points of the
third type can be computed by solving linear equations alim = ±AT directly.

For a cubic PH-curve, the AT integration trajectory is a polynomial in u with degree three.
The integration trajectory is the solution of the following differential equation:

q′ = ±2AT σ = ±2AT (au2 + bu + c), (36)

where a, b, c are constants. Let i(u) = ±2AT (1/3 au3 + 1/2 bu2 + cu). Then, q(u) = i(u) −
i(u∗) + q(u∗) is the solution to the differential equation (36) with initial value (u∗, q(u∗)).

Now, we give an illustrative example. The curve C(u) = (x(u), y(u)), u ∈ [0, 1] shown in
Figure 9(a) is a cubic PH-spline consisting of two pieces of PH-curves with C1 continuity. The
tangential acceleration bound is AT = 3000mm/s2, the chord error bound is δ = 1μm, and the
sampling period is T = 2ms. Then the centripetal acceptilation bound AN = 2000mm/s2 can be
computed with (4). The CEVLC is shown in Figure 9(b) and the final velocity curve shown in
Figure 9(c) has four segments, where the 1, 3, 5-th segments are AT integration trajectories and
the 2, 4-th pieces are feasible CEVLC segments. The chord error and the tangential acceleration
of the optimal velocity curve are given in Figure 9(d) and Figure 9(e) respectively.

(a) Cubic PH-spline (b) The CEVLC

(c) Velocity curve v(u) (d) Chord error δ(u)
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(e) Tangential acceleration of velocity curve

Figure 9 Optimal velocity planning for a cubic PH-spline with confined chord error

and acceleration. Units are the same as that of Figure 7

4.3 Velocity Planning for Cubic PH-Splines with Confined Jerk

Let C(u), u ∈ [0, 1] be a cubic PH-spline. Similar to Section 4.2, the connection points of
the PH-spline are all the key points of first or second type of the CEVLC. Let r(u) be a piece
of a cubic PH-curve C(u) of form (4.2). Then the jerk of the CEVLC is

jlim(u) =
vlim

σ
a′
lim = G3/2σ′′,

which is a constant. Then there generally exist no key points of types three and four. The key
points of the fifth type can be computed by solving linear equations alim = 0 directly.

Now, we use the cubic PH-spline in Figure 9(a) to illustrate the Algorithm VP CETJ.
Let the jerk and the chord error bounds be J=30000mm/s3 and 1μm, respectively. If the

sampling period is T = 2ms, then the centripetal acceptilation bound is AN = 2000mm/s2. The
CEVLC is the same as Figure 9(b). Figure 10(a) is the velocity curve obtained with the first
phase of Algorithm VP CETJ. After connecting the adjacent curve segments of this velocity
curve by J− trajectories in the second phase of Algorithm VP CETJ, we obtain the final velocity
curve v(u) as shown in Figure 10(b), which has continuous tangential accelerations. The chord
error and the jerk of v(u) are shown in Figures 10(c) and (d) respectively.

(a) Velocity curve obtained in phase one (b) Velocity curve v(u)
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(c) Chord error δ(u)

J

(d) The jerk of v(u)

Figure 10 Velocity planning for a cubic PH-spline with a jerk bound. Units are the

same as that of Figure 7. The unit for the jerk is mm/s3

The total machining time for the PH-spline 9(a) with chord error bound 1μm and tangential
acceleration bound 3000mm/s2 using Algorithm VP CETA is 0.382s. The total machining time
for the same curve segment with the same chord error bound and jerk bound 30000mm/s3 using
Algorithm VP CETJ is 0.44s. So, when we use jerk limitations, the machining time is longer,
as expected.

We compare Algorithm VP CETJ with another velocity planning method in Figure 11.
Figure 11(a) is the velocity curve v(u) for the cubic PH-spline in Figure 9(a) under the same
bounds obtained with a method of detecting the limit speeds at sensitive corners. The method is
similar to that given in [13]. Firstly, we detect the local minimal velocity for the CEVLC and the
connection points for the spline, in this example, the parametric value of these sensitive points
are u = 0, 0.33, 0.5, 0.97, 1. Then compute the length between every two adjacent points, and
use a backtracking method with jerk bound to delete the useless sensitive points and adjust the
velocity of these sensitive points. In this example, the point corresponding to u = 0, 0.33, 0.5, 1
is useful. Then between every two adjacent points, use the starting and ending speeds, the
curve length between these two points, and the jerk bound to compute the speed for each
point between these two adjacent points. Figure 11(b) is the chord error of v(u), from which
we can see that the chord error is beyond the bound at about 50% of the parametric values.
Furthermore, the machining time is 0.432s which is longer than the machining time 0.382s using
Algorithm VP CETJ.

(a) Velocity curve v(u) (b) The chord error δ(u)
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J

(c) The jerk of v(u)

Figure 11 Velocity planning for a cubic PH-spline with sensitive corner method. The

dash line in (b) is the chord error bound δ = 1μm. We can see that the

jerk is confined, but the chord error is beyond the given precision in about

50% of the points

5 CNC Machining with Confined Chord Error and Acceleration

In this section, we show how to implement Algorithm VP CETA for quadratic B-splines in a
commercial CNC controller and conduct real CNC machining in two three-axis CNC machines
for metal cut and wood cut respectively.

To implement our method in CNC controllers, we compute the velocity curves off-line first
and then use the velocity curves as parts of the input to the CNC controllers to achieve real-time
interpolation. This strategy is adopted by many existing work such as [3, 9, 21].

We first design a new G-code which is of the following form:

G65.5 a0 a1 a2

b0 b1 b2

c0 c1 c2

flag k m n l

c∗

u1 u2

(37)

When the interpreter reads a G65.5 code, the parameters are interpreted as follows. The tool
path is represented by the curve segment C(u) = (x(u), y(u), z(u)), u ∈ [u1, u2], where

x(u) = a0 + a1u + a2u
2, y(u) = b0 + b1u + b2u

2, z(u) = c0 + c1u + c2u
2.

The corresponding velocity curve at point C(u) is v(u), u ∈ [u1, u2], where

v(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
kπ(u) + c∗, if flag = 0,

√
k(mu2 + nu + l)3/2

c∗
, if flag = 1.

(38)

In the above equations, if flag = 0, k = ±2AT and π(u) is from (34), and c∗ is the integration
constant. In this case, v(u) is the integration trajectory controlled by k = ±AT . If flag = 1,
k = AN , c∗ = |C′(u) × C′′(u)|, and v(u) is the CEVLC of C(u), u ∈ [u1, u2] given in (32).
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Since the velocity v(u) at point C(u) is known, Algorithm 2.7 can be used to do real-time
interpolation.

The CNC controller used in our experiment is an LT-CNC controller shown in Figure 12(a),
which is a commercial product of Shenyang LanTian CNC Corporation. The controller is
based on Linux OS and is implemented with C language. Therefore, Algorithm VP CETA is
implemented with the C language.

Two CNC models are machined with our method. The first model manufactured in the
experiment is a Greek letter Ω shown in Figure 12(b), which consists of 19 pieces of quadratic
curve segments as shown in Figure 13(a). The chord error bound is 0.5μm, the tangential
acceleration bound is 200mm/s2 and the maximal feedrate is 33.3mm/s. The CEVLC, optimal
velocity curve, acceleration, and chord error are respectively given in Figure 13(b), (c), (d),
and (e). It is easy to see that the chord error bound is reached around u = 0.2 and u = 0.8,
which shows that the CEVLC is used to guaranteed the accuracy of machining around these
two sharp corners. The machined Ω is shown in Figure 12(b).

(a) LT CNC-Controller (b) Metal cut of Ω (c) Wood cut of the vase

Figure 12 CNC Controller used in the experiments and the two machined workpieces
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(a) A quadratic B-spline
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(e) Chord error δ(u)

Figure 13 Optimal velocity planing for the Ω curve, Except (a),

the units for the velocity, acceleration, and chord er-

ror are mm/s, mm/s2, and μm, respectively

The second model manufactured in the experiment is the vase shown in Figure 7(b). The
precision of wood cut is relatively low. The main purpose of this experiment is to test the
ability of our algorithm to machine complex CNC models. The vase is a CNC model consists
of more than 116000 G01 codes with total tool path length of 46.67m. Its B-spline represen-
tation consists of more than 42000 quadratic curve segments[9]. The G01 codes and the spline
representation of the model can be found in the following webpage

http://www.mmrc.iss.ac.cn/ xgao/cnc/vase.html

(a) Quadratic B-splines r(u) = (x(u), y(u)), u = 0..10

(b) Velocity limited curve vlim(u), u = 0..10 (c) Velocity curve v(u), u = 0..10
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(d) Chord error δ(u), u = 0..10

(e) Tangential acceleration aT (u), u = 0..10

Figure 14 Optimal velocity planing for quadratic B-splines from a vase with confined

chord error and acceleration. Units are the same as that of Figure 7

The tool path in Figure 14(a) is a complete segment C(u) = (x(u), y(u)), u ∈ [0, 10] of the
vase in Figure 7(b) from top to bottom and consists of five quadratic B-splines with 57 quadratic
curve segments and 5 long straight line segments. The tool path of the vase fluctuates violently
making the optimal speed velocity planning difficult. The CEVLC, chord error, optimal velocity
curve, acceleration are respectively given in Figures 14(b), (c), (d), and (e). The chord error
bound is reached at many places to guaranteed the accuracy of machining around these sharp
corners. Note that in the connection point of two quadratic B-splines, the velocity decreases to
zero. This can be improved. But, we will not discuss the issue here.

Experiments are done for six sets of values of AT and δ and the machining times for these
parameters are given in Table 1. The sampling period is T = 2ms and the maximal feedrate is
200mm/s. From Table 1, we can see that the machining time for larger AT is shorter, which is
expected. Also, the machining time for larger chord error δ is shorter. The affect of δ on the
machining time is less significant than that of AT .

Table 1 The machining time of the vase

AT (mm/s2) δ(mm) machining time

1000 0.001 23′33′′

1000 0.0015 22′48′′

1000 0.002 22′25′′

2000 0.001 18′52′′

2000 0.0015 17′54′′

2000 0.002 17′23′′
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6 Conclusion

In this paper, we give a time-optimal velocity planning method for parametric tool pathes
with confined chord error, feedrate, and acceleration. We adopt the simplest acceleration mode:
the linear acceleration for tangential accelerations. With the CEVLC introduced in this paper,
it is not difficult to give a time-optimal velocity planning method with chord error and multi-axis
acceleration bounds.

The key idea is to reduce the chord error bound to a centripetal acceleration bound. When
the centripetal acceleration reaches its bound, the velocity curve is an algebraic curve and
is called the CEVLC. With the CEVLC, the final velocity curve is the minimum of all the
integration trajectories starting from the key points of the CEVLC, the start point, and the
end point. We also give a practical algorithm to compute the time-optimal velocity curve and
implemented the algorithm for two types of simple tool pathes. For quadratic B-splines and
cubic PH-splines, the explicit formulas for the time-optimal solutions are given. Real industrial
CNC machining are conducted show the feasibility of our algorithm.

In a similar way, we also give a velocity planning algorithm with the chord error and jerk
bounds under a greedy rule. It is interesting to investigate whether the velocity curve thus
obtained is time-optimal or not. In principle, the methods in Sections 2 and 3 can be combined
to give a velocity planning method with confined feedrate, acceleration, and jerk.
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Appendix: Proof of Theorems 1 and 2

In this appendix, we will show that the velocity curve given by Algorithm VP CETA in
Section 2.4 is the only solution to the optimization problem (8). The proof is divided into two
parts. We first show that the velocity curve computed by the algorithm is the curve defined in
(13) and then prove that this velocity curve is the solution to Problem (8). In order to prove
this, we need the following result.

Theorem 5 (see [27]) Let y, z be solutions of the following differential equations

y′ = F (x, y), z′ = G(x, z),

respectively, where F (x, y) ≤ G(x, y), a ≤ x ≤ b, and F or G satisfies Lipschitz’s condition.
If y(a) = z(a), then y(x) ≤ z(x) for any x ∈ [a, b].

In our case, the above theorem implies the following result.

Lemma 6.1 Let v1(u) and v2(u) be two velocity curves for the tool path C(u) defined
on [u1, u2] and a1T (u), a2T (u) their tangential accelerations respectively. If v1(u1) ≤ v2(u1)
and a1T (u) ≤ a2T (u) for u ∈ [u1, u2], then v1(u) ≤ v2(u) for u ∈ [u1, u2]. Furthermore, if
v1(u1) < v2(u1), then v1(u) < v2(u) for u ∈ [u1, u2].

Proof We may assume that v1(u1) = v2(u1), since if v1(u1) < v2(u1), we may consider
v2(u) = v2(u) − v2(u1) + v1(u1) which satisfies the conditions of the lemma. Since C(u) is
differentiable to the order of three, σ(u) and a1T (u) must be bounded in [u1, u2]. From (7),
q′1(u) = 2σ(u)a2T (u) and q′2(u) = 2σ(u)a2T (u). Then, we have q1(u1) = v1(u1)2 = q2(u1) =
v2(u1)2, 2σ(u)a2T (u) ≤ 2σ(u)a2T (u) for u ∈ [u1, u2], and 2σ(u)a1T (u) satisfies the Lipschitz’s
condition. Using Theorem 5, we have v1(u) ≤ v2(u) for u ∈ [u1, u2]. The second part of the
lemma can be proved similarly.

Before proving Theorem 2, we first explain the key steps of the algorithm. Besides the in
initial steps, new velocity trajectories are generated in Steps 7, 8, 9. We will show that these
steps are correct in the sense that they will really generate new velocity trajectories. Step 7
is obvious, since we will use the next feasible CEVLC segment as the velocity trajectory. Two
cases lead to Step 8: Cases 5.2) and 6.2). In Case 5.2), we have v+

lim(ul) = vs(ul) < v−lim(ul),
which means that there exists a parameter un > ul such that vlim(u) > vs(ul) for u ∈ (ul, un).
As a consequence, starting from (ul, vs(ul)), a segment of the AT integration trajectory is below
the CEVLC (See Figure 2(a)). In Case 6.2), there exists a parameter un > ul such that the
tangential acceleration of the CEVLC must be strictly larger than AT for u ∈ (ul, un). By
Lemma 6.1, starting from point (ul, vs(ul)), the AT integration trajectory is below the CEVLC
for u ∈ (ul, un) (See Figure 2(b)). We thus prove the correctness of Step 8. The correctness
Step 9 can be proved in a similar way.

The following two lemmas show that the intersection of an integration trajectory and a
CEVLC segment or another integration trajectory behaves nicely.

Lemma 6.2 Let (ul, vlim(ul)) and (un, vlim(un)) be two adjacent key points of the CEVLC.
Then an integration trajectory can intersect the curve segment vlim(u), u ∈ (ul, un) once at most.
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Proof We denote by i(u) an integration trajectory. Without loss of generality, we assume
that i(u) is an AT integration trajectory; otherwise, consider the −u direction. Let us assume
that u∗ be the parameter for a possible intersection point.

Since the two key points are adjacent, there are three cases: (a): alim(u) > AT , u ∈ (ul, un),
(b): alim(u) < −AT , u ∈ (ul, un), or (c): −AT < alim(u) < AT , u ∈ (ul, un). In Case (a), since
i(u) is an AT integration trajectory and alim(u) > AT , by Lemma 6.1, we have i(u) < vlim(u)
for u ∈ (u∗, un]. In the −u direction, i(u) is a −AT integration trajectory and alim(u) < −AT .
By Lemma 6.1, we have i(u) > vlim(u) for u ∈ [ul, u∗). That is, if they intersect then they only
intersect once. Cases (b) and (c) can be proved similarly.

Lemma 6.3 In Step 9 of the algorithm, the backward integration trajectory vb intersects
vs only once.

Proof Two situations lead to Step 9: step 5.3) and step 6.3). In Case 5.3), the key point at
un is discontinuous and v+

lim(un) ≥ vs(un) > v−lim(un). In the interval [0, un] in the −u direction,
vb(u) is an AT integration trajectory and vs(u) consists of −AT integration trajectories and
feasible CEVLC segments. Also note that vs(0) = 0. Then vb(u) and vs(u) must intersect in
[0, un]. By Lemma 6.1, they can intersect only once. Case 6.3) can be proved similarly.

Similarly, we can show that vs and ve in Step 4 of the algorithm only intersect once if there
exist no overlap curve segments.

Since Theorem 1 is a direct corollary of Theorem 2, we only need to prove Theorem 2 which
is repeated below.

Theorem 6 The velocity curve computed with Algorithm VP CETA is the velocity curve
defined in Equation (13) and is the only solution to the optimization problem (8).

Proof Let v(u) be the velocity curve computed with the algorithm. It is clear that v(u) is
below the CEVLC and the tangential acceleration aT (u) of v(u) satisfies |aT (u)| ≤ AT . Also, if
|aT (u)| �= AT , the corresponding v(u) must be a segment of feasible CEVLC. As a consequence,
v(u) satisfies Conditions (9) and (10) and is Bang-Bang.

From the algorithm, it is clear that v(u) consists of pieces of CEVLC and that of vP (u) for
all key points P of the CEVLC including the start point (0, 0) and the end point (1, 0). To
prove (13), it suffices to show that for each key point P , if vP (u∗) �= v(u∗) for a parametric
value u∗, then vP (u∗) > v(u∗). From the algorithm, it is clear that all key points including the
start and end points are on or above v(u). Let P = (u0, v0) be a key point. Then v0 ≥ v(u0).
In [u0, 1], the tangential acceleration of vP (u) is AT and |aT (u)| ≤ AT . Then by Lemma 6.1,
vP (u) ≥ v(u) for u ∈ [u0, 1]. In [0, u0], if we consider the movement from u0 to 0, then the
acceleration of vP (u) is also AT , and hence vP (u) ≥ v(u) for u ∈ [0, u0]. As a consequence,
vP (u) cannot be strictly smaller v(u) at any u. We thus prove that v(s) is the curve in (13).

We now prove that v(u) is an optimal solution. We will prove a stronger result, that is,
the velocity curve q(u) = v2(u) obtained by the algorithm is the maximally possible velocity at
each parametric value u. Assume the contrary, then there exists another velocity curve v∗(u)
satisfying the constraints (9) and (10), and there exists a u∗ ∈ [0, 1] such that v∗(u∗) > v(u∗).
Let q∗(u) = v2

∗(u).
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The parametric interval [0, 1] is divided into sub-intervals by the key points of CEVLC
on the final velocity curve and intersection points in Steps 4, 8, 9 of the algorithm. From the
algorithm, we can see that on each of these intervals, v(u) could be a segment of the CEVLC, an
AT integration trajectory in the +u direction, which is called an increasing interval, or a −AT

integration trajectory in the +u direction, which is called a decreasing interval. Furthermore, if
[u1, u2] is an increasing interval, the start point (u1, v(u1)) must be a key point of the CEVLC;
if [u1, u2] is a decreasing interval, the end point (u2, v(u2)) must be a key point of the CEVLC.

According to the definition of the CEVLC, u∗ cannot be on the CEVLC and thus must be
in an increasing or decreasing interval. Firstly, let u∗ be in an increasing interval [u1, u2]. Since
(u1, v(u1)) is a key point on the CEVLC, we have v∗(u1) ≤ v(u1). Since v∗(u∗) > v(u∗) and
v∗, v are continuous curves, there exists a u0 ∈ [u1, u∗] such that v∗(u0) = v(u0). On [u0, u∗],
since v(u) is an AT integration trajectory and the acceleration a∗(u) of v∗(u) satisfies |a∗(u)| ≤
AT , using Lemma 6.1, we have v(u∗) ≥ v∗(u∗), a contradiction. Secondly, let u∗ ∈ [u1, u2]
and [u1, u2] be a decreasing interval. We can consider the movement from u2 to u1 and the
acceleration of v becomes AT and the theorem can be proved similarly to the case of increasing
intervals.


