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Abstract Extensively studied since the early nineties, cable-driven robots have attracted the growing

interest of the industrial and scientific community due to their desirable and peculiar attributes. In

particular, underconstrained and planar cable robots can find application in several fields, and specif-

ically, in the packaging industry. The planning of dynamically feasible trajectories (i.e., trajectories

along which cable slackness and excessive tensions are avoided) is particularly challenging when dealing

with such a topology of cable robots, which rely on gravity to maintain their cables in tension. This

paper, after stressing the current relevance of cable robots, presents an extension and a generalization

of a model-based method developed to translate typical cable tension bilateral bounds into intuitive

limits on the velocity and acceleration of the robot end effector along a prescribed path. Such a new

formulation of the method is based on a parametric expression of cable tensions. The computed kine-

matic limits can then be incorporated into any trajectory planning algorithm. The method is developed

with reference to a hybrid multi-body cable robot topology which can be functionally advantageous but

worsen the problem of keeping feasible tensions in the cables both in static and dynamic conditions.

The definition of statically feasible workspace is also introduced to identify the positions where static

equilibrium can be maintained with feasible tensions. Finally, some aspects related to the practical

implementation of the method are discussed.
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1 Introduction and State of the Art

1.1 Cable Robots: Advantages and Applications

Cable-driven robots, or simply cable robots, are relatively simple robotic manipulators
formed by attaching multiple cables to an end effector. In cable robots the cables are usu-
ally active, in the sense that they are driven by motors that can extend or retract the cables
by winding or unwinding them from pulleys or winches. Cable robots have several desirable
advantages over conventional robots, which have been recognized since the early studies in the
field[1, 2]. Primarily, they can be designed to have a very large workspace (because the winches
may unwind a large amount of cable), a very high load capacity (comparable to that of construc-
tion cranes), or to generate very high speed motions (because of their low inertial properties).
Additionally, their simple design makes them relatively inexpensive, modular, transportable,
and easily reconfigurable. Finally, their minimal moving mass makes them very energy efficient,
and their low invasiveness makes them good candidates for interaction with human operators,
for example in medical robotics. All these advantages are promoting the deployment of cable
robots in several real-world applications such as:

1) heavy payload handling[1, 3], including unloading cargo from a ship[4] and load transporta-
tion[5];

2) high speed manipulation[6, 7];
3) aircraft maintenance and large-scale inspection[8, 9];
4) positioning and measuring systems in wind tunnels[10];
5) haptics[11–13];
6) metrology[9, 14];
7) surgery[15];
8) rehabilitation[16, 17];
9) large scale radio telescopes[18];
10) sport and entertainment[19, 20];
11) rescue and emergency services[21, 22];
12) building painting and servicing[23].
The aforementioned applications, which represent just a partial list, are not simply prospec-

tive applications: lots of these ideas have been put into practice through working prototypes.
In particular, a number of cable robot families has been successfully developed to date:

• The RoboCrane developed by the American National Institute of Standards and Tech-
nology (NIST)[1]. Such a cable robot family was probably the first to be presented, in
the early 90’s, and was subsequently applied to numerous applications including, but not
limited to, heavy or light material handling, macro and micro machining through dual
manipulators, airplane inspection and repair, and field inspection.

• The IPAnema by the Fraunhofer IPA in Germany[9]. The major goal in the development of
this family of cable robots has been using only industrial grade components which, on the
one hand, can assure a considerable reliability and robustness in industrial applications,
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but, on the other hand, pose large restrictions to the complexity of the algorithms adopted
to operate a robot. This family of robots is being designed to operate within a very large
working area, at high speeds and extreme accelerations, and with a very wide payload
range. Several applications, ranging from airplane maintenance to building of enormous
solar-thermal plants, have been predicted for this cable robot family.

• The Marionet designed in France at the INRIA[22]. This family of cable robots includes
small size prototypes for high speed applications, but it is better known for a portable
crane for rescue, and components for home assistance of people with disability.

The appropriateness of cable robots to medical and welfare use has been widely recognized
and has led to some other very interesting prototypes, mainly in the rehabilitation field: one
family of rehabilitation robots for post-stroke patients has been developed in Italy and includes
the NeReBot and the MariBot[16]. In particular, the MariBot, is basically a hybrid robot
with an active SCARA-like serial support and a cable suspended end effector. A completely
different design of cable robot for rehabilitation, which operates as an exoskeleton, has been
instead proposed in [17] and named CAREX.

A very challenging concept and design of cable robot which is also worth mentioning and
which is expected to be operative by 2016, is the light-weight feed cabin of the Chinese Five-
hundred-meter Aperture Spherical radio Telescope (FAST)[18]. The FAST will be built in a
natural karst depression and is designed to become the most sensitive single dish radio telescope
ever built. From the engineering viewpoint the design of the cable-driven feed cabin of the
FAST is extremely demanding since the huge size of the telescope does not allow relying on
some typical assumptions made when studying cable robots, such as that cables are massless
and perfectly stiff. Hence, modeling, trajectory planning, and motion control become much
more complicate.

1.2 Cable Robot Topologies

Different cable robot topologies have been proposed to date. The alternative topologies lead
to possible classifications of cable robots. So far, there is no single classification universally
recognized, not even the terminology adopted is unified.

Generally speaking, cable robots can be either planar or spatial. In other words, cable
robots may operate in planar or spatial arrangements. In the first case (see, e.g., [24]) the end
effector is forced to move within a plane of motion, while in spatial cable robots (see, e.g., [25])
the end effector can move in a three dimensional workspace.

Planar and spatial cable robots are said to be translational (see, e.g., [26]) when no rotational
degrees of freedom (dofs) can be given to the end effector because, for example, all the cables
converge in a single point (see, e.g., [27]).

Cable robots are usually said to be fully actuated (see, e.g., [28]) if they have a number
of actuating cables, and hence of motors, equal to the number of dofs of the end effector.
Conversely, redundant (or redundantly actuated) robots (see, e.g., [29]) have a number of active
cables which is greater than the number of dofs of the end effector. A cable robot can also be
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underactuated if the number of degrees of freedom of the end effector is greater than the number
of active cables. Indeed, a cable robot can also become underactuated if some active cables
become slack during the motion. The computation of the pose of the end effector starting from
the lengths of the cables or, in other words, the solution of the forward kinematics problem
for underactuated cable robots is not trivial, and may lead to several real solutions in spatial
arrangements. Additionally, the solutions depend on the forces applied, which complicates the
analysis considerably[30].

When focusing on the restraining capability of the cables, it is possible to distinguish between
underconstrained and fully constrained cable robots. Generally speaking, a cable robot is fully
constrained if, assuming unbounded cable tensions, it can maintain equilibrium against all
external wrenches. The advantage of fully constrained configurations is apparent: while an
underconstrained cable robot must rely on gravity to keep positive tensions in the cables, fully
constrained cable robots can take advantage of the redundant cable to set a desired tension
distribution in the cables[31]. As a matter of fact, in order to fully constrain the end effector of
a cable robot, it is required that the number of cables is greater by one than the number of dofs
of the end effector (see, e.g., [13]). A higher number of cables may also lead to overconstrained
configurations (see, e.g., [32]). It is important to underline that the aforementioned conditions
on the number of cables are only necessary but not sufficient: in some cable arrangements a
cable robot can be underconstrained even if the number of cables is greater than the number of
dofs; in other words, a cable robot can concurrently be redundant and underconstrained (see,
e.g., [33]). Clearly, when the number of cables is less than or equal to the number of dofs (see,
e.g., [34]), the robot is necessarily underconstrained (sometimes also called cable-suspended),
and hence, there exists a wrench against which equilibrium is not maintained.

Finally, cable robots can be classified as single-body and multi-body cable robots[35]. In all
the references quoted so far, the cable robots considered are single-body ones, i.e., all the cables
are attached to a rigid-body end effector. Conversely, in multi-body cable robots the cables are
attached to different links of a multi-body, typically a serial manipulator (see, e.g., [36, 37]).

1.3 Cable Robot Chief Weaknesses

As previously underlined, cable robots have some very desirable advantages, however they
also experience certain limitations which can be more or less severe based on the topology.

Firstly, in all cable robots an important additional constraint applies to motion planning
and control: cables can pull but are unable to push the end effector, which obliges to keep
the forces in all cables positive during normal operation. Additionally, not only cables should
be prevented from becoming slack, but excessive cable tensions should be also avoided during
motion.

Another limitation derives from the fact that usually, the end effector position cannot be
measured directly. Inaccuracies at the end effector can therefore result from cable stretching
and sagging, variation in cable spool properties (e.g., spool diameter increases with the number
of windings if no dedicated design is adopted[9]), and calibration issues.

A further disadvantage is the limited force application in some configurations and directions
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(e.g., in underconstrained robots the downward force capabilities depend on the gravity force
and hence are limited to the payload weight).

Additionally, the coordination of redundant cables, and the avoidance of cable interference
may require complex control schemes and more sensors. Cable interference can also limit
the orientation capacity of the robot end effector, and generally speaking can limit the robot
workspace.

Finally, the worksite where a cable robot is to be installed needs to be suitably prepared:
not only there must not be obstacles which can be hit by the cables, but the structures to
which motors, winches, and guiding pulleys are fitted must be suitably designed, since cable
tensions can become extremely high (in particular in heavy payload handling), and it can be
very dangerous to fix a cable robot on structures that were not meant for that use[38].

1.4 A Hybrid Multi-Body Cable Robot Topology for High-Speed Manipulation

Further research efforts and design refinements are needed to overcome the aforementioned
limitations, however, in consequence of their advantages cable robots are likely to find successful
application in industrial and service robotics, and promise to significantly increase performances
in terms of payload, workspace and dynamics[9]. In particular, with reference to the improve-
ment of the dynamic performances, it is known that it is an ever increasing requirement for
augmenting the throughput and the efficiency of production systems. This is particularly true
in the fast moving consumer goods (FMCG) industry, and in particular in the packaging indus-
try, where a very successful effort has been made to increase robot speed to make it suitable
for in-process operations (such as picking, collating, and sorting) where traditional serial robots
cannot be employed because they do not have adequate speed. Planar robots are extensively
employed in these operations. With either serial or parallel topology, they are typically used
to manipulate parts over the belt. There end effectors possess a minimum of two translational
dofs. An additional rotational dof is given in case object orientation must be changed. A
great effort has been devoted to try to keep moving inertia to a minimum in these robots by
employing very light-weight materials and mounting the heaviest motors on the frame.

It is apparent that cable-driven robots have a great potential in this field since they benefit
from minimal moving inertia. Of course, if a planar cable robot has to be designed for high-
speed manipulation, it is of paramount importance that it is adequately stiff against loading
normal to the motion plane. In cable robots stiffness is usually achieved through redundant
actuation. However, redundant actuation has some major limitations: first of all it is expensive,
additionally cables tend to obstruct the workspace, and sometimes cable interference can be
difficult to avoid.

The hybrid and underconstrained design initially proposed in [39] (and derived from the
one introduced in [40] for a redundant translational planar cable robot) can overcome these
limitations while exploiting the advantages of cable actuation. The proposed design could be
thought of as a merger of a serial and parallel planar manipulator, both moving in the vertical
plane, where, however, the rigid links of the parallel manipulator are replaced by two active
cables. As a matter of fact, as shown in the scheme in Figure 1 (on the left), the robot consists
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of two actuated winches mounted on a fixed frame which are used to control the extension of
two coplanar active cables. The cable output (or “attachment”) points are fixed and coincide
with the vertices A1 and A2 at the top of the rectangular base polygon which is plotted in gray
and whose side lengths are LA and LB. The two cables, whose angles are θ1 and θ2, drive the
end effector which is modeled as a point mass located at the free end of a two-dof serial linkage.
The serial linkage is passive in the sense that both the revolute joints of the serial linkage are
passive. Contrary to a few hybrid multi-body cable robots already appeared in [35–37], in this
robot the two coplanar active cables drive directly the end effector rather than the links of the
serial manipulator, which basically supports the end effector to reduce out-of-plane compliance.
The robot has therefore two cables, driven by two actuated winches, providing two translational
motions to the end effector in the vertical plane. Hence, the robot is fully actuated and non
redundant: it does not have more cables than necessary to control the two translational degrees
of freedom of the end effector, which are the two Cartesian coordinates of its tool center point
(TCP). The TCP is assumed coinciding with the point where cables converge.

This hybrid multi-body topology has some desirable advantages that can be summarized as
follows:

• a reduced out-of-plane compliance thanks to the serial linkage,

• a minimum use of actuators making the robot relatively inexpensive,

• a limited cable obstruction in the workspace and a completely free workspace below the
end effector thanks to the non redundant design,

• a high payload-to-weight ratio (the components of the serial linkage can be lightweight
because the links do not have to sustain dynamic loading),

• improved accuracy in the measurement of the end effector position, since the serial linkage
can also serve as an independent metrology system when adding encoders to its passive
joints. This prevents measuring errors due to cable elasticity,

• moment resistance at the end effector is provided by the serial linkage.

These features are likely to make such a hybrid multi-body design suitable not only for
industrial use, but also for medical and welfare use, in particular for rehabilitation.

A prototype of such a robot has been presented in [41] (see Figure 1, on the right), to which
the interested reader is referred for the details on the robot geometrical and inertial features.
Here only some basic information is provided: the robot cables are made of Dyneema� and
are driven by brushless servomotors, the links of the serial linkage are made of aluminum and,
just to convey the idea of the size of the robot prototype, LA = 1.108m, LB = 0.712m, and the
lengths of the two links are identical and equal to 0.622m.
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Figure 1 Scheme of the hybrid cable robot (on the left) and

picture of a laboratory prototype (on the right)

2 Motivation and Objectives

A major requirement that has to be met in cable robots is ensuring that during operation
all cables are under tension, and that such a tension is below the maximum permissible value
related to the torque limits of the actuators or to the tensile force limits of the cables.

There is a large body of work addressing the issue of maintaining positive tensions in cables
(see, e.g., [29, 40, 42]), including the work in [43] which focused on a time-optimal trajectory
planning strategy capable of assuring that cable forces can be maintained tensile along a pre-
scribed paths. In general, in fully constrained and overconstrained cable robots it is possible to
rely on redundant cables to guarantee positive cable tensions, but this opportunity raises an-
other issue: at any point in a trajectory there exists an infinity of possible sets of cable tensions
and one generally needs a computationally efficient algorithm capable to find a feasible set,
possibly satisfying some optimality criterion and guaranteeing the continuity of cable tensions
along a given trajectory[31].

As previously mentioned, assuring feasible tensions in all cables along a trajectory (a trajec-
tory is feasible if the tensions in all cables are not only positive, but also bounded) is particularly
difficult in underconstrained robots, where redundancy cannot been exploited (as for example
in [40]). In the hybrid multi-body topology presented above, such a problem is exacerbated by
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the presence of the serial linkage, which considerably affects the robot workspace and dynamics.
As a matter of fact, the serial linkage produces a reaction force acting on the end effector which
is neither constant in amplitude nor in direction. As a consequence, such a force does not
necessarily increase the tensions in the cables, as gravity usually does, but it can have either
beneficial or detrimental effects on tensions depending on the configuration and the prescribed
motion of the cable robot. These effects must be accounted for both during motion and at
rest. Indeed, to be feasible, a rest-to-rest trajectory also imposes that static equilibrium can
be maintained at the start point and the end point. Therefore studying the features of the
workspace is an essential preliminary activity which is also addressed in this paper.

A successful approach to prevent cable slackness and excessive tensions in underconstrained
cable robots may consist in making use of the dynamic model of a cable robot to translate
cable tension bilateral bounds (i.e., positive and bounded tensile cable forces) into bounds on
the velocity and acceleration of the robot end effector along an assigned path. Such kinematic
limits can then be incorporated into any trajectory planning algorithm. This approach has been
introduced in [39] and experimentally validated in [41] by applying it to the hybrid multi-body
robot presented above, which is used as a representative example of translational, planar and
underconstrained cable robot for which, as previously mentioned, the planning of dynamically
feasible trajectories is particularly challenging. In both [39] and [41] the formulation has been
restricted to two paths of industrial interest: the straight line and the circular paths. Here
a more general formulation is inferred which is valid for any path and relies on a parametric
formulation of the cable tensions along a generic path. In particular, the method allows defining
a criterion to set a limit to the maximum velocity achievable by the end effector TCP along the
path and allows computing positive upper bounds and negative lower bounds for the acceleration
of the end effector TCP. As long as these kinematic limits are satisfied it is proved that proper
cable tensioning is assured.

Hence, the method proposed is not a so-called trajectory verifier, i.e., an algorithm deter-
mining whether a defined trajectory can be reached, but a method to a-priori satisfy cable
tension constraints. Indeed, in a real robot the actual tensions can match the theoretical ones
only if an effective motion controller is available (as for example the centralized one proposed
in [40]). The controller must ensure limited tracking error, which is however a conventional
specification in robotics.

Another advantage of the method is its low computational complexity which makes it suit-
able for implementation in real time systems. This feature is of paramount importance for
prospective industrial use.

The organization of the paper is as follows. In Section 3, the definition of statically feasible
workspace (SFW) is introduced and applied to the hybrid multi-body cable robot here employed
as an example of generic translational planar and underconstrained cable robot. In Section 4,
the expression of the cable tensions during motion is developed in parametric form (i.e., as a
function of the scalar path parameter). The kinematic limits ensuring positive and bounded
cable tensions for any path through space are then computed in Section 5. Aspects related
to the practical application of the theory developed are discussed in Section 6. Concluding
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remarks are finally given in Section 7.

3 The Statically Feasible Workspace (SFW)

3.1 Workspace Definitions

In cable robotics literature, several definitions of workspace have been proposed and the
terminology is far from being unified. In this section only the most popular definitions are
recalled before introducing the new definition of Statically Feasible Workspace (SFW).

The static equilibrium workspace (SEW)[27] or simply static workspace[44] is defined as the
set of end effector poses for which static equilibrium can be obtained while maintaining tension
in all cables. This definition assumes infinite maximum cable lengths and tensions, additionally
only the effect of gravity is usually considered. By including in the SEW definition the effect of
external wrenches (i.e., forces and torques applied to the end effector) one gets the definition
of wrench-closure workspace (WCW)[45], which is the set of poses for which any wrench can be
generated at the end effector while maintaining tension in all cables. Sometimes the WCW is
also called controllable workspace[35]. In the WCW definition both cable tensions and wrench
sets are unbounded, if one considers the more practical case in which both cable tensions
and wrench sets are bounded, it is possible to get the definition of wrench-feasible workspace
(WFW)[46] as the set of end effector poses in which a specified range of external wrenches can
be generated using a limited range of cable tensions. The force-closure workspace (FCW)[47] is
instead a special case of WFW whose required set of wrenches is the whole set of wrenches and
the only constraint on the cable tensions is non-negativity. Another workspace definition which
does not have an equivalent in traditional serial robotics is the dynamic workspace[44] which
is defined as the set of end effector configurations for which a specific dynamic equilibrium is
possible, or, in other words as the set of poses that the end effector can reach with at least one
kinematic state (position, velocity, and acceleration)[48].

To the author’s best knowledge, in literature there lacks a suitable definition of workspace in
the case static equilibrium is considered, no external wrenches are applied to the end effector,
and both the positivity and boundedness constraints on cable tensions are imposed. It is
therefore useful to introduce the statically feasible workspace (SFW), defined as the set of end
effector poses for which static equilibrium against gravity can be obtained using a limited range
of cable tensions. Clearly, the SFW may be thought of as a special case of WFW when just the
gravity wrench is considered: in the SFW static equilibrium can be maintained against gravity
with positive and bounded cable tensions. It is recognized that the term “statically feasible
workspace” was first applied to cable robots in [49] where, however, no formal definition was
provided.

3.2 Computation of the SFW for the Studied Cable Robot

Now, refer to the free body diagram of the end effector shown in Figure 2, where the end
effector is modelled as a point mass. Henceforth it will be assumed that Coulomb friction can
be neglected, that all the links are rigid and that all the cables are massless and perfectly stiff.
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Additionally, boldfaced lower-case letters will be used to represent vectors while boldfaced
upper-case letters will be reserved for matrices. The scalars and the entries of vectors and
matrices will instead be denoted with lowercase italic letters.

The static equilibrium equation for the end effector takes the form:

pE + pS + fT = 0, (1)

where:

• vector pE is the weight force vector applied to the end effector. Within the whole
workspace it takes the constant form pE = { 0 −Mg }T, with M the overall mass
of the end effector, also including the pay-load.

• vector pS is the static component (i.e., the gravitational one) of the force exerted by the
passive serial linkage on the end effector. It can be computed through the equilibrium
equations of the serial manipulator links[39]. Both the magnitude and the direction of pS

vary within the workspace.

• vector fT is the resultant force exerted by cable tensions on the end effector. If we
denote by τ the vector of the cable tensions, this simple relation holds between fT and
τ : fT = Sτ , where S is the pseudostatics Jacobian, whose elements are trigonometric
functions of the cable angles θ1 and θ2

[40]. Since the robot is underconstrained, S is a
square matrix of order two. If the robot were fully constrained or overconstrained, because
actuated, for example, by three or four cables, such a matrix would be rectangular, and
there would not exist a unique solution to the problem of determining the set of cable
tensions exerting a desires force on the end effector. As discussed earlier, the problem of
choosing the best set of cable tensions would become an important issue.

θ1

τ2τ1

fT
θ2

τ2
M
1

p
Sp

E

Figure 2 Free body diagram of the end effector

Equation (1) can also be rewritten in this form Sτ = fT = −(pS + pE) which is represented
graphically in Figure 3. It is apparent that a pose belongs to the SEW only if vector fT (which
is the sum of the cable forces τ1 and τ2, and is opposite to the sum of pS and pE) belongs to the
region delimited by the two cables and filled in light gray in Figure 3. For the determination of
the SEW, it is therefore necessary to combine the static equilibrium equation with kinematics:
the region to which vector fT must belong is indeed univocally defined once the cable angles θi
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(i = 1, 2) are known. Such angles depend on the Cartesian position {x, y} of the end effector
TCP through the equation θi = arctan2((y −Aiy), (x−Aix)), where Aix and Aiy (i = 1, 2) are
the Cartesian coordinates of the two attachment points (see Figure 1).

No equilibrium
can be obtained
No equilibrium
can be obtained

Equilibrium
can be obtained

Equilibrium
can be obtained

τ
τ

τ

( )

fT

fT

τ
(pS +pE )

(pS +pE )

Figure 3 Graphical representations of examples of equilibrium and non-equilibrium conditions

In the absence of the serial linkage the determination of the SEW would by straightforward:
only the vertical pE weight force would be applied to the end effector and the SEW would
coincide with the rectangular base polygon whose upper vertices are A1 and A2. The presence
of the serial linkage, instead, considerably affects the SEW, since it introduces an external force
pS on the end effector whose direction is usually far from being vertical. Figure 4 shows the
direction taken by pS in the base polygon.

It can be noticed that the horizontal component of pS is often predominant. Hence the
presence of pS makes obtaining static equilibrium while maintaining tension in all cables con-
siderably more difficult. Generally speaking, the heavier the overall mass M of the payload and
the end effector, the wider the SEW. This can be appreciated through the subplots in Figure 5
which show how the SEW changes by varying M . In the figures, as an example, M is increased
from 2kg (i.e., the value adopted in the prototype discussed in [41]) up to 10kg.

Figure 4 Direction of vector pS within the robot base polygon (all dimensions in meters)
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M = 10 kg M = 7 kg 

M = 5 kg M = 2 kg 

Figure 5 Dependence of the SEW on the mass M (all dimensions in meters)

By observing these figures it would appear preferable increasing considerably the mass M

of the payload and the end effector in order to extend the SEW and minimize the impact of
the serial linkage. Unfortunately, however, the heavier the mass at the end effector the higher
the forces in the cables, and hence the toques that need to be exerted by the motors to obtain
static equilibrium. The two subplots in Figure 6 clarify this point: they show the contour-plots
(isolines) of the cable forces that are needed to obtain equilibrium when M is 2kg. Both positive
and negative forces have been represented. Obviously, when the forces are negative it is not
possible to maintain tension in the cables and hence no equilibrium is, in practice, possible.
If one recalls the direction of vector pS, shown in Figure 4, it is not surprising that negative
forces mainly arise in the cable on the right.

Another important feature to be observed is that at the top of the workspace the cable
forces increase very swiftly. Here, for clarity, the force isolines up to 300N have been plotted.
Clearly if, for instance, the maximum permissible cable tension was 200N, trying to reach those
positions, even in quasi-static conditions, would imply breaking the cables or overcoming the
maximum motor torques.
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Figure 6 Static cable forces in cable 1, on the left, and cable 2,

on the right (axis dimensions in meters, forces in N)

As previously mentioned, the concept of statically feasible workspace allows accounting for
both the positivity and boundedness constraints on cable tensions. As an example, Figure 7
shows in gray the SFW of the studied robot having set a 200N maximum force in the cables
and a 2kg payload mass M. In the figure, a schematic representation of the robot is overlapped
to the SFW to clarify its meaning.

Indeed, only the set of poses belonging to the SFW are poses from which a rest-to-rest
motion of the end effector can either start or end. Hence, identifying the SFW is an essential
preliminary activity to motion planning. In the following, the planning of dynamically feasible
trajectories between two points belonging to the SFW is addressed.

 

Figure 7 The SFW of the hybrid multi-body cable robot (all dimensions in meters)
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4 Parametric Expression of Cable Tensions Along a Generic Path

Let us deduce the parametric expression of the cable tensions for the studied hybrid multi-
body cable robot, here employed as an example of generic underconstrained, fully actuated,
translational and planar cable robot moving on a vertical plane. The equations reported in this
section originate from the ones presented in [39]. However, here the notation has been slightly
modified to improve the clarity and prevent confusion with the symbols adopted in the new
parametric formulation.

Once a world coordinate frame has been defined, the two dynamic equilibrium equations for
the end effector may be stacked in the following matrix form:

pE + fS + fT = Mẍ, (2)

where the meaning of pE and fT has already been clarified above, after Equation (1), and:

• fS is the force exerted by the passive linkage on the end effector (also including the static
component pS).

• M is the Cartesian mass matrix of the end effector.

• ẍ is the Cartesian acceleration vector of the end effector TCP.

By replacing vector fT with the expression involving the square pseudostatic Jacobian J

and the vector of the motor torques τ , Equation (2) can hence be rearranged as follows:

pE + fS + Sτ = Mẍ. (3)

In [39] it has been proved that when a two-link serial support is employed, it exerts a reaction
force fS which takes the following form:

fS = ISẍ + NS(J−1
S ẋ)2 + pS, (4)

where the meaning of vector pS has already been clarified above, after Equation (1), and:

• ẋ and ẍ are the end effector TCP Cartesian velocities and accelerations.

• The elements of the matrices IS and NS depend on the inertial and geometrical properties
of the serial linkage and the positions of its links (and hence, in the end, on the Cartesian
position x of the end effector TCP).

• The elements of matrix JS only depend on the lengths and the positions of the links.

The following general expression for the tension vector τ can hence be written:

τ = S−1
[
(M − IS)ẍ − NS(J−1

S ẋ)2 − (pS + pE)
]
. (5)

A more compact expression for τ can be obtained by setting B = S−1(M−IS), C = S−1NS ,
and d= −S−1(pS + pE):

τ = Bẍ − C(J−1
S ẋ)2 + d. (6)
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Now, let us introduce the path parameter l, i.e., a scalar parameter used to specify the
geometric path to be followed by the TCP: x = x(l). l can also be interpreted as the position
variable, i.e., the coordinate specifying the TCP position along the path. The following are the
expressions of ẋ and ẍ as functions of l:

ẋ = l̇x′, ẍ = l̈x′ + l̇2x′′. (7)

In Equation (7), as usual, overdots denote time derivatives and primes denote derivatives
with respect to the path parameter; additionally, the explicit dependence of x′ and x′′ on l has
been omitted. The first (l̇) and second (l̈) time derivatives of the path parameter l along the
path are sometimes called respectively the pseudo-velocity and the pseudo-acceleration of the
path. By introducing these expression in Equation (6), we are finally given the cable tensions
in parametric form:

τ = Bx′l̈ − [C(J−1
S x′)2 − Bx′′]l̇2 + d := pl̈ − ql̇2 + d (8)

with the obvious meaning for p and q.
A cable tension vector τ is feasible when all its components are constrained between min-

imum and maximum tension values. In cable robots such a condition must hold both at rest
and during motion.

5 Constraints on the First and Second Derivatives of

the Path Parameter

Once the parametric expression of the cable tension vector is available, it is possible to
impose the constraints which allow avoiding cable slackness (τ � 0) and excessive tensioning
(τ ≺ τmax). The following bilateral inequality holds:

0 ≺ pl̈ − ql̇2 + d ≺ τmax. (9)

The symbol ≺ stands for the componentwise inequality. It should be noted that τmax is the
vector of the maximum permissible tensions, related to the torque limits of the actuators or to
tensile force limits of the cables, while, referring to the lower bound, a minimum allowed tension
could replace to the null value for safer operation. Here, however, without lack of generality,
the null value is considered. It is also worth observing that:

• d only depends on the end effector TCP position in the planar workspace(x).

• p depends on both x and the first derivative of x with respect to the path parameter l

(i.e., x′).

• q depends on x, and on both the first and second derivatives of x with respect to l (i.e.,
x′ and x′′).

Equation (9) may be also written in the following form, referred to the ith cable:

0 < τi := pi l̈ − qil̇
2 + di < τimax . (10)
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Remark 5.1 Each element di of d corresponds to the ith cable tension in static conditions
(see Equation (10)). Hence, di > 0 in the SFW.

The inequalities in Equation (10) hold for any path and trajectory, and explicitly relate
the pseudo-velocity l̇ and the pseudo-acceleration l̈ along the path. They can therefore be
employed to translate the physical constraints on the cable tensions into limits on the velocity
and acceleration of the end effector TCP along the path. To this purpose, it is convenient to
rewrite the inequalities in Equation (10) as follows:

pil̈ > ui := qi l̇
2 − di, i = 1, 2, (11)

pil̈ < si := qil̇
2 − di + τimax , i = 1, 2, (12)

where the two new functions ui and si have been defined.

Lemma 5.2 At any point of the SFW:

∃l̇lim > 0|∀0 < |l̇| ≤ l̇lim ⇒ ui < 0, si > 0, i = 1, 2.

Proof Let i be either 1 or 2. Assume qi ≤ 0. Since di > 0 (see Remark 5.1), Equation (11)
shows that ui < 0 for any l̇. Let then define l̇ui lim = l̇maxi = +∞. As far as si is concerned, since
−di + τimax > 0 (otherwise cable tensions would equal or overcome the maximum permissible
values in static conditions, which cannot happen in the SFW), Equation (12) shows that it is
possible to reduce l̇ until si > 0. As a matter of fact, ∃l̇si lim > 0|qil̇

2
si lim

> di − τimax , hence,
∀l̇|0 < |l̇| ≤ l̇si lim ⇒ si > 0.

Now assume the opposite: qi > 0. Equation (12) proves that si > 0 for any l̇. As done before,
let us define l̇si lim = l̇maxi

= +∞. Equation (11) shows that a suitably low value of l̇ can ensure
ui < 0. In symbols, ∃l̇ui lim > 0|qil̇

2
ui lim

< di, and consequently, ∀l̇|0 < |l̇| ≤ l̇ui lim ⇒ ui < 0.
The four values l̇ui lim (i = 1, 2) and l̇si lim (i = 1, 2) are usually different, however, by

defining the limit velocity l̇lim = min(l̇u1 lim , l̇s1 lim , l̇u2 lim , l̇s2 lim) one proves the lemma.
In practice, l̇maxi

cannot be set equal to +∞ but it is a velocity constraint which should be
related to the ith actuator performances[50], or to more conservative and safe design specifica-
tions. In general, such values are however much higher than l̇ui lim and l̇si lim , whose maximum

values are respectively
√

di

qi
and

√
di−τimax

qi
.

Theorem 5.3 As long as the absolute value of the pseudo-velocity is less than, or equal
to, l̇lim, at any point of the SFW the bilateral bounds on cable tensions can be translated into
bilateral bounds on the pseudo-acceleration along the prescribed path. At any point of the SFW
the upper bound of the acceleration is positive and the lower bound is negative:

∀l̇|0 < |l̇| ≤ l̇lim : ∃l̈lb < 0, l̈ub > 0|l̈lb < l̈ < l̈ub ⇒ 0 < τi < τimax , i = 1, 2.

Proof Let i be either 1 or 2. Assume pi ≤ 0. By applying Lemma 5.2 twice, Equations
(11) and (12) provide respectively a possible positive upper bound l̈iub

= ui

pi
> 0 and a possible

negative lower bound l̈ilb
= si

pi
< 0 for the pseudo-acceleration l̈ along the path. Positive or

negative infinity solutions are theoretically acceptable.
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Now assume pi > 0. Through the same reasoning it is proved that ui

pi
< 0 becomes a possible

negative lower bound l̈ilb
for l̈, while si

pi
> 0 becomes a possible positive upper bound l̈iub

.
Then, by taking the most restrictive interval defined through the four bounds l̈iub

(i = 1, 2)
and l̈ilb

(i = 1, 2), i.e., by defining l̈ub = min
(
l̈1ub

, l̈2ub

)
and l̈lb = max

(
l̈1lb

, l̈2lb

)
one obtains

the pseudo-acceleration interval ]l̈lb, l̈ub[ ensuring 0 < τi < τimax . This proves the theorem.
In summary, at any point of the SFW, once an upper bound l̇lim ensuring both negative ui

functions and positive si functions has been determined for the end effector pseudo-velocity l̇,
there always exist a positive upper bound l̈ub and a negative lower bound l̈lb for the pseudo-
acceleration l̈, guaranteeing that, as long as 0 < |l̇| ≤ l̇lim and l̈lb < l̈ < l̈ub, each cable tension τi

is simultaneously positive and below the maximum permissible value, i.e., 0 < τi < τimax (i =
1, 2). In general, these bounds are not constant but vary along the path, so they should be
computed as functions of a path coordinate l by adopting a suitable discretization of the path
itself. The fact that l̈lb < 0 and l̈ub > 0 simplifies the planning of the trajectory because it
allows increasing, reducing or keeping constant the velocity at any point.

6 Theory Application

The theoretical achievements discussed above represent a generalization of the method pre-
sented in [39] and experimentally validated in [41], which was originally confined to straight
line and circular paths. The numerical results presented in [39] and the experimental proofs
discussed in [41] can therefore be considered an adequate validation of this theory: the same
results can be obtained by applying this more general approach to the test cases discussed in
such papers.

Generally speaking, any trajectory planning method yielding a trajectory in time l(t) meet-
ing the pseudo-velocity and pseudo-acceleration bounds computed above can assure that cable
tensions are always positive and below the maximum permissible values along the path. The so-
lution of this problem goes beyond the scope of this paper but, just with the aim of providing a
representative example, the case of l(t) expressed through a quintic polynomial is discussed here.
Such an expression is particularly suitable to point-to-point planning and leads to trajectories
that can be made smooth enough not to excite the vibrational phenomena induced by cable
elasticity. Additionally, minimum travel time can be easily computed. Hence, let us express the
path coordinate l through the following polynomial: l(t) = b0 + b1t + b2t

2 + b3t
3 + b4t

4 + b5t
5,

where 0 ≤ l ≤ Lt and Lt is the path length. Let 0 and tf be respectively the initial and
final trajectory time and let us impose zero velocity and acceleration at 0 and tf . It can be
verified that the coefficients satisfying such boundary conditions are: b0 = 0, b1 = 0, b2 = 0,
b3 = 10Lt

t3
f

, b4 = −15Lt

t4
f

, and b5 = 6Lt

t5
f

. The resulting trajectory is symmetric with respect

to the mean time tm = tf

2 : at t = tm the maximum velocity l̇max = 15Lt

8tf
is achieved and

the acceleration is zero. In the first half of the trajectory the acceleration is always positive
while in the second half the acceleration is always negative. The maximum acceleration and
deceleration values are identical in absolute value: l̈max = 10Lt

t2f
√

3
. Hence, in order to meet
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both the velocity and the acceleration constraints, tf should be chosen so that l̇max ≤ l̇lim

and l̈max ≤ min
(

min
(

l̈ub|
Lt
2

0

)
,

∣∣∣∣max
(

l̈lb|Lt
Lt
2

)∣∣∣∣
)

. The minimum travel time tf can hence be

computed as follows: max
(√

10Lt

l̈max
√

3
, 15Lt

8l̇max

)
.

For continuous trajectory planning the method proposed in [51] (which makes use of a
concatenation of fifth-order polynomials) might be extended to cope with not only constant but
path-dependent velocity and acceleration limits. Before planning the trajectory, it is therefore
crucial to choose an appropriate value of the limit velocity l̇lim. Such a choice affects both the
size of the subset of the SFW where it is possible to move (i.e., where there exist l̈ub and l̈lb),
and the values of the acceleration bounds, which, in turn, affect the travel time. As proved
in Lemma 5.2, l̇lim must be chosen so that negative ui and positive si functions are obtained
in the whole subset of the SFW where the end effector of the robot needs to be moved. As
an example, Figure 8 shows the contour plots of the limit velocity values ensuring ui < 0 in
the studied robot for any straight line path (i.e., a path with constant x′ and x′′ = 0). At
each position the value plotted represents the most stringent constraint obtained by varying
the path direction x′ while keeping x′′ = 0. A similar plot could be obtained also for the si

functions, however, ensuring negative ui functions introduces more stringent constraints on the
velocity, and so the plot referring to si functions is omitted for brevity. In Figure 8 it is also
highlighted that in all the gray area negative ui functions cannot be assured if the limit velocity
is set, for example, equal to or higher than 1.5m/s. The gray area creates a discontinuity
between regions where negative ui functions are assured. A different choice of l̇lim could either
enlarge or decrease the wideness of such a discontinuity and hence would allow coping with it if
necessary. It is however interesting to observe that what happens in such a gray region is that
it is not possible to get, concurrently, negative lower bounds and positive upper bounds for the
acceleration. It could happen, however, that in order to get positive and bounded tensions both
the acceleration limits should be either positive or negative. Which does not imply, in general,
that it is impossible to cross the gray region while moving in a straight line from a start point
to an end point both belonging to the SFW. Of course the planning of feasible trajectories in
such a case becomes more difficult, and will be a matter of future investigation.

Whichever is the limit velocity l̇lim chosen, it follows from Theorem 5.3 that it is possible to
compute the acceleration bounds. As a representative example Figure 9 shows the worst case
acceleration bounds with l̇lim = 1.5m/s for a generic straight line path, i.e., the lowest upper
bounds and the highest lower bounds that can be computed at any position of the workspace
by varying the path direction (x′). This plot gives a visual representation of the areas where
performing feasible trajectories is undemanding. Indeed, this is just a global evaluation, an
effective planning instead imposes computing the exact bounds for the specific path. Examples
can be found in [39] and [41].
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Figure 8 l̇lim values assuring ui < 0 (axis dimensions in meters, velocity values in m/s)

X Y 

Figure 9 Strictest acceleration range for a straight line path with l̇lim = 1.5m/s

At first glance, on the basis of what has been presented above, low l̇lim values appear prefer-
able: not only do they extend the SFW subset where it is possible to concurrently accelerate
and decelerate, but also they lead to wider bounds on l̈ (see the acceleration bound expressions
in the proof of Theorem 5.3). It is however apparent that low l̇lim values may lead to over-
conservative trajectory planning and poor travel time. A suitable tradeoff should therefore be
sought. Different strategies for choosing l̇lim might be proposed: at a minimum, either a single
value holding for the whole SFW subset of interest or different “path selective” values might
be adopted.
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7 Conclusions

Cable robots have a great potential and promise to significantly increase performances in
terms of payload, workspace and dynamics compared to serial industrial robots. It has been
observed that underconstrained and planar cable robots can find application in several fields and
in particular in the fast moving consumer goods industry. The hybrid multi-body cable robot
topology discussed in this paper belongs to the family of underconstrained and planar cable
robots and allows combining some important advantages of traditional and cable manipulators,
but, at the same time, worsen the problem of proper cable tensioning both in static and dynamic
conditions. This problem has been tackled by developing an approach ensuring dynamically
feasible trajectories within the statically feasible workspace (SFW), whose definition has also
been introduced in the paper. The SFW definition accounts for the positivity and boundedness
constraints on the cable tensions in the presence of just the gravity wrench. The approach
proposed to plan dynamically feasible trajectories is based on translating cable tension bilateral
bounds into limits on the velocity and acceleration of the end effector along the path, which
is assumed to be known. A general and novel formulation of the approach has been proposed
in this paper, which is based on a parametric formulation of the cable tensions along a generic
path. It has been proved that as long as the pseudo-velocity of the end effector is below a
limit depending on some functions named ui and si, and the pseudo-acceleration is within a
range identified through the dynamic model, proper cable tensioning is assured. It has also
been proved that the limit velocity always exists in the SFW and that the lower bounds of
the acceleration range are always negative while the upper bounds are always positive. These
kinematic limits can then be incorporated into any trajectory planning algorithm.

It is important to underline that the method developed is not a trajectory verifier, but a
method to a-priori satisfy cable tension constraints. In other words, the method a-priori ensures
that cable tensions neither drop to zero nor exceed the maximum permissible tension during the
motion, provided that an effective motion controller allows tracking the planned trajectory with
negligible errors. What is more important the low computational complexity of this method
makes it suitable for implementation in real time systems. Which paves the way for industrial
use.
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