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Abstract A finite-time tracking control scheme is proposed in this paper based on the terminal slid-

ing mode principle for motor servo systems with unknown nonlinear dead-zone inputs. By using the

differential mean value theorem, the dead-zone is represented as a time-varying system and thus the

inverse compensation approach is avoided. Then, an indirect terminal sliding mode control (ITSMC)

is developed to guarantee the finite-time convergence of the tracking error and to overcome the singu-

larity problem in the traditional terminal sliding mode control. In the proposed controller design, the

unknown nonlinearity of the system is approximated by a simple sigmoid neural network, and the ap-

proximation error is diminished by employing a robust term. Comparative experiments on a turntable

servo system are conducted to show the superior performance of the proposed method.

Key words Dead zone, finite-time control, neural network, servo system.

1 Introduction

As a nonlinear element, the dead-zone is widely encountered in motor servo systems and
the existence of dead-zones may lead to the performance deterioration or even instability of the
systems[1]. In order to improve the control performance of servo systems, many research works
were proposed for the compensation and control of the dead-zones[2−7]. Tao and Kokotovic[2]

built the dead-zone inverse model for linear systems and designed an adaptive controller to
compensate for the negative effect of the dead-zone. However, it is difficult to obtain the precise
inverse model of the dead-zone for nonlinear systems. Then, Wang, et al.[3] developed a robust
adaptive control scheme for a class of nonlinear systems with a symmetric dead-zone by modeling
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the dead-zone as a linear time-varying system with a disturbance term. In References [4] and [5],
the compensation methods of unknown non-symmetric dead-zones were further investigated
based on the idea of [3]. However, among all of those schemes aforementioned, it is assumed
that the maximum and the minimum values of dead-zone slopes should be known or estimated
for the controller design. Recently, Zhang and Ge[6], and Na, et al.[7] transformed the unknown
dead-zone into a time-varying system via the differential mean value theorem, and the inverse
compensation approach was thus avoided. Moreover, the characteristic parameters of dead-
zones were only used for the character analysis rather than the controller design.

Sliding mode control (SMC) scheme is one of the most useful approaches to deal with
system uncertainties and bounded disturbances, and has been widely used in many fields,
such as robots, motors, and so on[8,9]. The traditional linear sliding mode control scheme
can guarantee the asymptotical convergence of tracking errors and thus the system states can
converge to the desired trajectories when time goes to the infinity. Recently, many research
works have focused on the finite-time convergence of tracking errors. Man and Yu[10] proposed
a terminal sliding mode control (TSMC) scheme by introducing a nonlinear term in the SMC
design and the tracking error can be guaranteed to converge in a finite time. Feng, et al.[11]

and Yu, et al.[12] proposed nonsingular terminal sliding mode control methods to overcome the
singularity problem, which was applied in the control of permanent magnet synchronous motor
(PMSM) servo systems[13−16]. In [17] and [18], an indirect TSMC scheme was developed to
avoid the singularity problem by switching from terminal to linear sliding manifold, but the
fractional power p = p1/p2 may lead to the error term ep /∈ R and thus ė /∈ R for e < 0.

However, most of the controllers mentioned above require that the model of mechanical
system is known or partially known. Therefore, the approaches aforementioned cannot be used
in the control of PMSM servo systems directly when both model uncertainties and nonlinear
dead-zones are encountered. Due to the capability of approximating any smooth functions over
a compact set to arbitrary accuracy, neural networks (NNs) have been widely employed to
handle the system uncertainties and nonlinearities[19−24]. Inspired by previous work, this paper
mainly focuses on the finite-time tracking control for a PMSM servo system with unknown dead-
zone input as well as model uncertainties. By using the differential mean value theorem, the
dead-zone is represented as a time-varying system and thus the inverse compensation approach
is avoided. Then, an indirect terminal sliding mode control (ITSMC) with NN approximation
is developed to guarantee the finite-time convergence of the tracking error and overcome the
singularity problem in the traditional terminal sliding mode control.

The main contributions of this paper are listed as follows.
1) The singularity problem and the problem of ė /∈ R for e < 0 are both overcome by

switching between the terminal and general sliding manifolds.
2) A finite-time tracking control is developed for PMSM servo systems with unknown dead-

zone inputs. Experimental results validate the superior performance of the proposed control
scheme by comparing it with a linear sliding mode (LSM) controller and a proportional-integral-
derivative (PID) controller.
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The rest of this paper is organized as follows. The PMSM servo system, nonlinear dead-
zone and neural network are briefly described in Section 2. Section 3 proposes a finite-time
tracking control scheme for the PMSM motor system with an unknown nonlinear dead zone.
The stability analysis is given in Section 4. Comparative simulations and experimental results
are provided in Section 5, followed by conclusions in Section 6.

2 Problem Formulation and Preliminaries

2.1 System Description

As shown in Figure 1, the motor servo system is composed of a permanent magnet syn-
chronous motor (PMSM, HC-UFS13), an encoder and pulse width modulation (PWM) ampli-
fiers in the motor drive card (MR-J2S-10A), a digital signal processing unit (DSP, TMS3202812)
performing as the controller, and a Pentium 2.8-GHz PC operating for display. The schematic
diagram of the proposed control system is depicted in Figure 2. The PMSM is driven by a
PWM voltage source inverter, and the id and iq control loops are controlled by two identical
PI controllers which make the current transients negligible with respect to the mechanical dy-
namics (i.e., i∗d = id = 0 and i∗q = iq = u(t) where superscript ‘*’ denotes reference signals and
u indicates controller output). The output of current controllers are voltages which are applied
to the motor by means of a PWM three phase inverter.

Personal 
computer

2812DSP
controller

PWM
amplifier

Two-axis turntable servo 
system

EncoderQEP circuit
Position and speed feedback

Figure 1 Two-axis turntable motor servo system



FINITE-TIME TRACKING CONTROL FOR MOTOR SERVO SYSTEMS 943

M

IPM

U V W

3/2
ia
ib
ic

i

i
/ dq

PWM

PW M 1

PW M 2

PW M 3

PW M 4

PW M 5

PW M 6

/dq

u

u

PI

PI

qu

du
qi

di

*
qi

* 0di

Finite-time tracking control schemedy
y

Encoder

Rotor 
position

Motor speed

Motor position

Figure 2 Schematic diagram of the proposed control system

The mechanical dynamics of the motor servo system can be described as follows:

mẍ + f∗(x, t) + d∗(x, t) = k∗
0u(t), (1)

where x = [x, ẋ]T ∈ R2, u(t) ∈ R, y = x(t) ∈ R are state variables, the control input voltage to
the motor and the output from the motor, respectively; x is the position, m is the inertia, k∗

0

is a positive control gain (the force constant), f∗(x, t) is the friction force; d∗(x, t) represents
a bounded disturbance modeling nonlinear elastic forces generated by coupling and protective
covers, measurement noise, power electronics disturbances, and other uncertainties.

For notational convenience, (1) can be normalized as:

ẍ = k0u(t) − f(x, t) − d(x, t),

y = x(t),
(2)

where f(x, t) = f∗(x, t)/m, d(x, t) = d∗(x, t)/m and k0 = k∗
0/m. It should be noted that k0

is positive but unknown due to the change of the payload. Grouping the uncertain functions
f(x, t) and d(x, t) in a single function h(x, t), we have

h(x, t) = f(x, t) + d(x, t). (3)

Substitute (3) into (2), and we can obtain:

ẍ = −h(x, t) + k0u(t),

y = x(t).
(4)
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2.2 Nonlinear Dead-Zone Model

As shown in Figure 3, the control input u(t) ∈ R is the output of the following nonlinear
dead-zone

u(t) = G(v(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

gr(v), if v(t) ≥ br,

0, if bl < v(t) < br,

gl(v), if v(t) ≤ bl,

(5)

where v(t) ∈ R is the input of the dead-zone (practical control signal), gl(v), gr(v) are unknown
nonlinear smooth functions, and bl, br are unknown width parameters of the dead-zone. Without
loss of generality, it is assumed that bl < 0, br > 0.

( )rg v

( )lg v

( )v t

( )u t

lb
rb

Figure 3 Nonlinear dead-zone model

To facilitate the control system design, the following assumption is needed.

Assumption 1 The functions gl(v) and gr(v) are smooth, and there exist unknown pos-
itive constants gl0, gl1, gr0, and gr1 such that

0 < gl0 ≤ g′l(v) ≤ gl1, ∀v ∈ (−∞, bl], (6)

0 < gr0 ≤ g′r(v) ≤ gr1, ∀v ∈ [br, +∞), (7)

where g′l(v) = dgl(z)/dz|z=v and g′r(v) = dgr(z)/dz|z=v.

According to the differential mean value theorem, there exist ξl ∈ (−∞, bl) and ξr ∈
(br, +∞) such that

gl(v) = gl(v) − gl(bl) = g′l(ξl)(v − bl), ∀v ∈ (−∞, bl], (8)

gr(v) = gr(v) − gr(br) = g′r(ξr)(v − br), ∀v ∈ [br, +∞). (9)
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As stated in [6], the definitions of gl(v) and gr(v) can be extended as:

gl(v) = g′l(bl)(v − bl), ∀v ∈ (bl, br], (10)

gr(v) = g′r(br)(v − br), ∀v ∈ [bl, br). (11)

From (8)–(11), it can be concluded that

gl(v) = g′l(ξ
′
l)(v − bl), ∀v ∈ (−∞, br] (12)

with ξ′l ∈ (−∞, bl], and

gr(v) = g′r(ξ
′
r)(v − bl), ∀v ∈ [bl, +∞) (13)

with ξ′r ∈ [br, +∞).
According to (12), (13) and Assumption 1, the dead zone (5) can be rewritten as:

u = ϕ(v)v + ρ(v), ∀t ≥ 0, (14)

where |ρ(v)| ≤ ρN , ρN is an unknown positive constant with ρN = (gr1 + gl1)max{br,−bl} and

ϕ(v) = ϕr(v) + ϕl(v), (15)

where

ϕr(v) =

⎧
⎪⎨

⎪⎩

g′r(ξr), if v(t) ≥ bl,

0, if v(t) < bl,
(16)

ϕl(v) =

⎧
⎪⎨

⎪⎩

g′l(ξl), if v(t) ≤ br,

0, if v(t) > br,
(17)

ρ(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−g′r(ξr)br, if v(t) ≥ br,

−[g′l(ξl) + g′r(ξr)]v(t), if bl < v(t) < br,

−g′l(ξl)bl, if v(t) ≤ bl.

(18)

Substituting (14) into (4), we have

ẍ = −h(x, t) + k0(ϕ(v)v + ρ(v)),

y = x(t).
(19)

From Assumption 1, it is easy to verify that ϕ(v) ∈ [ϕ0, ϕ1] ⊂ (0, +∞) with ϕ0 =
min(gl0, gr0) and ϕ1 = gl1 + gr1, |ρ(v)| ≤ ρN and ρN = (gl1 + gr1)max{br,−bl} being pos-
itive constants.
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Let yd be a given twice differentiable desired trajectory and define the tracking error as

e = yd − y. (20)

The control objective is to design an adaptive finite-time neural network controller v for
System (19) such that the tracking error e converges to zero within finite time, while all signals
in the closed-loop systems are bounded.

2.3 Neural Network Approximation

Due to the good capabilities in function approximation, neural networks (NNs) are usually
used for the approximation of nonlinear functions. The following neural network with a simple
structure and a fast convergence property will be used to approximate the continuous function
H(X) : Rn1 → Rn2 :

H(X) = W ∗Tφ(X) + ε, (21)

where W ∗ ∈ Rn1×n2 is the ideal weight matrix, φ(X) ∈ Rn1×1 is the basis function of the
neural network, ε is the neural network approximation error satisfying |ε| ≤ εN , φ(X) can be
chosen as the commonly used sigmoid function, which is in the following form:

φ(X) =
a

b + e(−X/c)
+ d (22)

with a, b, c, and d being appropriate parameters.
Remark 1 The employed neural network with sigmoid function represents a class of lin-

early parameterized approximation methods, and can be replaced by any other approximation
approaches such as spline functions, RBF functions or fuzzy systems. However, the structure of
the employed neural network in the this paper is simpler than the other neural networks that
are commonly used in other works. There is no hidden layer in the employed NN, in which five
inputs and one output are included and the corresponding weight matrix is 5 × 1. Although
consuming a little more time than PID method, the proposed method is still easy to run in the
DSP (TMS3202812) unit.

3 Finite Time Tracking Control Design

In this section, a finite-time tracking control scheme is designed based on the terminal sliding
mode principle and neural network approximation.

3.1 Terminal Sliding Manifold

As shown in Figure 4, a terminal sliding manifold is defined as:

s = ė + λ|e|γsgn(e), (23)

where e ∈ R, λ > 0, γ = q/p, p, q > 0 are positive odd numbers satisfying q < p.
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According to finite-time stability theory[25], the equilibrium point e = 0 of differential
equation (23) is globally finite-time stable, i.e., for any given initial condition e(0) = e0, the
tracking error can converge to zero in finite time:

T =
1

λ(1 − γ)
|e0|1−γ . (24)
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Figure 4 The terminal sliding manifold

To facilitate the controller design, a new command vector xr and its time derivative ẋr are
defined as:

xr = ẏd + λ|e|γsgn(e) (25)

and
ẋr = ÿd + λγ|e|γ−1ė, (26)

where e ∈ R, λ > 0, γ = q/p, p, q > 0 are positive odd numbers satisfying q < p.
Then, the terminal sliding mode s and its time derivative ṡ are given as

s = xr − ẋ (27)

and
ṡ = ẋr − ẍ. (28)

3.2 Controller Design

From (19), the equation (28) can be rewritten as

ṡ = ẋr + h(x, t) − k0ϕ(v)v − k0ρ(v)

= −k0ϕ(v)v + κ, (29)
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where the nonlinear function is

κ = ẋr + h(x, t) − k0ρ(v). (30)

Without loss of generality, two technical assumptions are made to pose the problem in a
tractable manner:

1) The desired position trajectory yd, the time derivative ẏd and ÿd are both bounded and
smooth signals.

2) The angular position and velocity, x and ẋ, are measurable.
Since k0, ϕ(t), and κ are not easily known, the model-based controllers cannot be ap-

plied directly. Hence, we adopt a neural network to approximate the nonlinear function
H = κ/(k0ϕ(v)).

Assume that there exists a constant ideal weight matrix W ∗ so that the nonlinear function
H can be expressed as

H = W ∗Tφ(X) + ε, (31)

where the input vector X = [xT, ẋT, yT
d , ẏT

d , ÿT
d ]T ∈ R5.

In the following, an adaptive finite-time neural control approach is developed for tracking
control of the PMSM servo system described by Equation (19). The expression of the designed
controller is given by:

v = v0 + v1 + v2 (32)

with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v0 = ŴTφ(x),

v1 = k1|s|γsgn(s),

v2 = (δ1 + δ2)sgn(s),

(33)

where Ŵ is the estimate of the ideal weight W ∗, v0 is the NN uncertainty estimator, v1 is a
feedback control for guaranteeing the finite-time convergence of sliding mode s, v2 is a robust
term which is designed to provide robustness in the presence of the approximation and weight
estimation errors of NN, k1 > 0 are control parameters, δ1 > εN , and δ2 is a positive constant
satisfying δ2 > ‖W̃Tφ(x)‖F where W̃ = W ∗ − Ŵ is the weight estimation error of the neural
network.

The weight update law is provided by

˙̂
W = Γφ(x)s, (34)

where Γ is a positive definite and diagonal matrix.
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Substituting (32), (33) into (29) yields the following equation:

ṡ = k0ϕ(v)
[
W̃Tφ(x) − k1|s|γsgn(s) + ε − (δ1 + δ2)sgn(s)

]
. (35)

From the expression (26), it can be seen that |e|γ−1ė is included in the design of ẋr. Due to
γ−1 < 0, singularity will occur as e = 0 and ė �= 0, that is, lime→0 |e|γ−1ė → ∞, i = 1, 2, · · · , n.

To overcome the singularity problem, the following definition er ∈ R is defined as

er =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|e|γ−1ė, e �= 0 and ė �= 0,

|Δ|γ−1ė, e = 0 and ė �= 0,

0, ė = 0,

(36)

where Δ > 0 is a small positive constant.
Remark 2 According to the definition of er, the singularity problem can be avoided in

the design of command vector ẋr. By using a small positive number Δ, the proposed method
is different from the conventional TSMC[10], in which the command vector is set to be 0 as
arbitrary position error e = 0. The switch scheme is an approximation method to avoid the
singularity when e = 0 and ė �= 0, so the main disadvantage is that the selection of the positive
number Δ is a little sensitive. If the value of Δ is set too high, the finite-time convergence speed
will become lower, while if is selected too small, the singularity problem will not be avoided
well. Thus, the selection of Δ should be careful and an appropriately small positive value of Δ
is needed to avoid the singularity.

Under the definition of er, the time derivative of command vector ẋr can be rewritten as
follows:

ẋr = ÿd + λγer. (37)

Remark 3 In order to avoid the chattering problem caused by the use of signum functions
in the controller design, we employ the following continuous saturation function instead to
design the controller in the experiment section:

sat(s) =

⎧
⎪⎨

⎪⎩

sgn(s), if |s| > ζ,

s

ζ
, if |s| ≤ ζ,

(38)

where ζ is a small positive constant.

4 Stability Analysis

Theorem 1 Consider the motor servo system (19), the terminal sliding manifold (23), the
controllers (32) and (33), and the weight update law (34), then all signals of the closed loop
system are bounded.
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Proof Select the following Lyapunov function candidate:

V (t) =
1

2k0ϕ0
s2 +

1
2
W̃TΓ−1W̃ . (39)

Differentiating (39) with respect to time and using (35), we have

V̇ (t) =
1

k0ϕ0
sṡ + W̃TΓ−1 ˙̃

W

=
1

k0ϕ0
s
{
k0ϕ(v)

[
W̃Tφ(x) + ε − k1|s|γsgn(s)

] − (δ1 + δ2)sgn(s)
} − W̃TΓ−1 ˙̂

W

≤ W̃Tφ(x)s − (δ1 + δ2)|s| − k1|s|γ+1 + sε − W̃TΓ−1 ˙̂
W

= −W̃TΓ−1
[ ˙̂
W − Γφ(x)s

] − (δ1 + δ2)|s| + sε − k1|s|γ+1. (40)

Substituting (34) into (40) yields

V̇ (t) ≤ −k1|s|γ+1 − δ2|s| ≤ 0. (41)

Inequality (41) implies that both s and W̃ are bounded. Meanwhile, considering (23) and
the boundedness of W ∗, we can conclude e, ė, and Ŵ are bounded, and thus v is bounded from
(32) and (33). Furthermore, the boundedness of yd, ẏd, and ÿd can lead to the boundedness
of xr and ẋr according to (25) and (26). As a result, ṡ is bounded due to the boundedness of
ϕ(v). Therefore, all signals of the closed loop system are bounded.

In Theorem 1, the stability of the system (19) with control laws (32), (33) and weight update
law (34) has been proved. However, it is not necessary for the terminal sliding manifold s to
converge to zero in finite time. Therefore, a second theorem is given to guarantee that the
terminal sliding manifold s converge to zero in finite time.

From (22), we can see that the sigmoid function φ(x) is bounded by 0 < φi(x) < n0,
i = 1, 2, · · · , n1, with n0 = max{|ab + d|, | a

b+1 + d|}. Therefore, φ(x) is bounded by

‖φ(x)‖ ≤ n0
√

n1, (42)

where ‖ · ‖ denotes the Euclidean norm of a vector, φ(x) = [φ1(x), φ2(x), · · · , φn1(x)]T.
From the property of Forensics norm, it can be obtained that

‖W̃Tφ(x)‖F ≤ ‖W̃‖F‖φ(x)‖. (43)

According to (42), (43), and Theorem 1, we can concluded ‖W̃Tφ(x)‖F is bounded.

Lemma 1[12] Suppose that a continuous, positive-definite function V (t) satisfies the fol-
lowing differential inequality:

V̇ (t) ≤ −αV η(t), ∀t ≥ t0, V (t0) ≥ 0, (44)

where α > 0, 0 < η < 1 are constants. Then, for any given t0, V (t) satisfies the following
inequality:
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V 1−η(t) ≤ V 1−η(t0) − α(1 − η)(t − t0), t0 ≤ t ≤ t1 (45)

and
V (t) ≡ 0, ∀t ≥ t1 (46)

with t1 given by

t1 = t0 +
V 1−η(t0)
α(1 − η)

. (47)

Theorem 2 is provided to guarantee the terminal sliding manifold s converge to zero in finite
time by using controllers (32) and (33).

Theorem 2 Considering the dynamic model (19), the controllers are chosen as (32) and
(33), and the NN weight update law is chosen as (34). If the design parameters δ1 and δ2 satisfy
δ1 > εN , and δ2 ≥ ‖W̃Tφ(x)‖F , respectively, then the terminal sliding manifold s can converge
to zero in finite time.

Proof Select another Lyapunov function candidate

V1 =
1

2k0ϕ0
s2. (48)

Differentiating (48) with respect to time and using (35), we have

V̇1 =
1

k0ϕ0
s
{
k0ϕ(v)

[
W̃Tφ(x) + ε − (δ1 + δ2)sgn(s) − k1|s|γsgn(s)

]}

≤ sW̃Tφ(x) + sε − (δ1 + δ2)|s| − k1|s|γ+1

= −k1|s|γ+1 +
[
sW̃Tφ(x) + sε − (δ1 + δ2)|s|

]

≤ −k1|s|γ+1 < 0. (49)

Furthermore, (49) can be rewritten as

V̇1 ≤ −k1|s|γ+1

≤ −k1(2k0ϕ0)
γ+1
2

(
1
2

1
k0ϕ0

s2

) γ+1
2

≤ −kV
γ+1
2

1 (50)

with k = k1(2k0ϕ0)
γ+1
2 .

From Lemma 1, it can be obtained that the terminal sliding manifold s can converge to zero
in finite time t1 given by

t1 =
V

[1−(1+γ)/2]
1 (t0)

k[1 − (1 + γ)/2]
. (51)
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Remark 4 From (51), we can see that the reaching time t1 is independent of the error
dynamics, but only related to the constant k0 and ϕ0.

Theorem 3 When the terminal sliding manifold s reaches zero, the tracking error e will
converge to the neighborhood of the equilibrium point in finite time.

Proof Once the states arrive at the sliding surface s = 0, they will remain on it and the
system has invariant properties. On the sliding surface s = 0, we can obtain

ė = −λ|e|γsgn(e). (52)

Consider the following Lyapunov function:

V2 =
1
2
e2. (53)

Differentiating V2 along (52) yields:

V̇2 = −λ|e|γ+1 = −λ2
γ+1
2 V

γ+1
2

2 . (54)

Set β1 = λ2
γ+1
2 and β2 = γ+1

2 , (54) can be rewritten as

V̇2 + β1V
β2
2 ≤ 0. (55)

From Lemma 1, it can be concluded that the tracking error e can converge to the neighbor-
hood of the equilibrium point in finite time t2 given by

t2 =
1

β1(1 − β2)
V 1−β2

2 (t0). (56)

5 Experimental Results

In this section, experiments are performed on the two-axis turntable motor servo system to
evaluate the superior performance of the proposed finite-time control scheme. Besides, an LSM
control scheme and a PID control scheme are also given for the comparison.

The detailed implementation for the PMSM servo system is presented as follows:
1) Initialize the system conditions, neural network, and some relevant control parameters;
2) Derive the tracking error e = yd −y and the corresponding terminal sliding mode s based

on (20) and (23);
3) Calculate the neural network estimator output according to (21)–(22) and the control

input signal v via (32)–(33);
4) Update the neural network weight based on (34) and go back to Step 2) for the next

sampling interval.
The proposed tracking control algorithm is implemented by a C-program in CCS3.0 pro-

gramming environment. The total run time is 15s with the step size 0.01. Some initial conditions
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and states of the system are set as (x(0), ẋ(0)) = (0, 0), yd = sin 0.4πt, ẏd = 0.4π cos 0.4πt, and
ÿd = −0.16π2 sin 0.4πt, respectively. In the proposed control scheme, the relevant control pa-
rameters are chosen as k1 = 0.6, γ = 9/11, δ1 = δ2 = 0.001, λ = 10, Δ = 0.01, and ζ = 0.0001.
The parameters of NN are given by Γ = 0.05, a = 2, b = 10, c = 1, and d = −10.

The compared LSM controller is expressed as

v = ŴTφ(x) + k1s + (δ1 + δ2)sgn(s), (57)

where the linear sliding mode is selected as

s = ė + λe (58)

with the parameters Ŵ , k1, δ1, δ2, and λ being chosen the same as those of the proposed TSM
scheme for fair comparison.

The expression of PID controller is given by

v = kP e + kD ė + kI

∫ t

0

e(t)dt, (59)

where kP = 12, kD = 0.6, and kI = 0.4.
The experimental results are shown in Figures 5–7. Figure 5 describes the tracking perfor-

mance of the proposed control scheme. The tracking errors and control signals of three different
schemes are depicted by Figures 6 and 7, respectively. Through the comparison, we can see that
the proposed method can provide better tracking performance than the other two controllers
for the motor servo systems with nonlinear dead-zones. The proposed ITSMC scheme has a
faster convergence speed and smaller tracking error in comparison with LSM and PID control
schemes.
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Figure 5 Tracking performance of the proposed scheme
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Figure 6 Tracking errors of three different schemes
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Figure 7 Control signals of three different schemes

6 Conclusions

In this paper, we present a finite-time tracking control for motor servo systems with unknown
input dead-zones. None of dead-zone inverse compensation approach is needed by regarding
the dead-zone as a simple linear time-varying system. Based on the terminal sliding mode
principle, the finite-time controller is designed by using a simple neural network to approximate
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the unknown nonlinearities. With the proposed control approach, the singularity problem in
the initial TSMC is eliminated and the approximation error is compensated by employing a
robust term. Finite time convergence and stability of the closed loop system can be guaranteed
based on the Lyapunov theory. Experiments results show that the proposed method has better
tracking performance in comparison with LSM and PID controls.
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