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Abstract The paper is concerned with the stabilization of a class of coupled PDE-ODE systems with

spatially varying coefficient, via state-feedback or output-feedback. The system is more general than

that of the related literature due to the presence of the spatially varying coefficient which makes the

problem more difficult to solve. By infinite-dimensional backstepping method, both state-feedback and

output-feedback stabilizing controllers are explicitly constructed, which guarantee that the closed-loop

system is exponentially stable in the sense of certain norm. It is worthwhile pointing out that, in the

case of output-feedback, by appropriately choosing the state observer gains, the severe restriction on

the ODE sub-system in the existing results is completely removed. A simulation example is presented

to illustrate the effectiveness of the proposed method.

Key words Coupled PDE-ODE systems, infinite-dimensional backstepping transformation, spatially

varying coefficient, stabilization.

1 Introduction

In this paper, the stabilization is considered for the following coupled systems consisting
of an ordinary differential equation (ODE) system and a parabolic partial differential equation
(PDE):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẋ(t) = AX(t) + Bu(0, t),
y(t) = CX(t),
ut(x, t) = uxx(x, t) + λ(x)y(t),
ux(0, t) = 0,

u(D, t) = U(t),

(1)

where X(t) ∈ Rn and u(x, t) with the initial values X(0) = X0 and u(x, 0) = u0(x) are the
vector state and scalar state of the ODE sub-system and the PDE sub-system, respectively;
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y(t) ∈ R is the output of the ODE sub-system; U(t) is the scale input to the entire system;
ut = ∂u

∂t , ux = ∂u
∂x , and uxx = ∂2u

∂x2 ; A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n are known constant
matrices and the pair (A, B) is stabilizable; λ(x) is a continuous function defined on [0, D]; D
is an arbitrary positive constant which denotes the length of the PDE domain.

From coupled equations (1), we see that, the output of the PDE sub-system (i.e., u(0, t))
acts as the input of the ODE sub-system, and the output of the ODE sub-system (i.e., y(t)),
affects the PDE sub-system in [0, D] with a specified influence function λ(x). Coupled equa-
tions (1) can also be viewed as a nontrivial extension of those in [1] and [2] where boundary
controller acts on the plant through a diffusion-dominated actuator and the plant does not
affect the diffusion equation (i.e., λ(x) ≡ 0). In fact, the action from the plant to the actua-
tor cannot be avoided or ignored sometimes in practice (i.e., interaction exists in the coupled
equations), and if no relevant treatment is offered, the performance of the closed-loop system
would become unexpected. Therefore, it is worthy of studying how to design control for the
coupled equations (1), and simultaneously to effectively eliminate the negative effect caused by
the interaction.

The controls of coupled PDE-ODE systems have attracted continuous attention (see e.g., [3–
18] and the references therein), and recently, the stabilization for a system of ODE coupled with
parabolic PDE has received investigation (see [3] and [4]). Quite different from System (1), in [3],
the input of the ODE sub-system is the Neumann boundary value (i.e., ux(0, t)) of the PDE
sub-system, rather than the Dirichlet boundary value (i.e., u(0, t)), and the action from the
ODE sub-system to the PDE one only takes effect at one end of the PDE domain, rather than
inside the domain. This shows that some steps should be taken to prevent PDE sub-system
from being affected by the ODE one inside the domain. Moreover, just as System (1), the ODE
sub-system affects the PDE one inside the domain in [4], but the action is identical in the whole
domain (i.e., λ(x) ≡ 1), which will exclude many cases from practice. More generally, in this
paper, the action from ODE sub-system to PDE one has a spatially varying coefficient λ(x)
which clearly includes the studied case λ(x) ≡ 1 in the literature and causes more difficulties
in control design and performance analysis.

In this paper, both state-feedback and output-feedback stabilizing controllers are proposed
for the coupled System (1). First, by introducing an infinite-dimensional backstepping trans-
formation, the state-feedback controller is constructed explicitly and the original closed-loop
system is changed into a stable target system whose stability implies that of the original closed-
loop system in the same sense. Then, when only the PDE sub-system output u(0, t) is available
for feedback, a state observer is designed by the infinite-dimensional backstepping method.
Based on the observation of system states and the state-feedback controller designed, the
output-feedback controller is constructed with the help of separation principle, which guar-
antees the desirable stability of the closed-loop system. It is worthwhile emphasizing that the
presence of the spatially varying coefficient λ(x) makes the controller parameters (i.e., kernel
functions of the infinite-dimensional backstepping transformations) can not be explicitly de-
rived by the method in [4], and hence makes the stabilization of System (1) more difficult to
solve. Moreover, the restriction on the system matrix A in [4] is completely removed for the
case of output-feedback by choosing appropriate observer gains.

The reminder of the paper is organized as follows. Sections 2 and 3 present the state-feedback
and output-feedback control design, respectively. Section 4 provides a numerical simulation to
illustrate the effectiveness of the proposed method. Section 5 gives the concluding remarks.
The paper ends with an appendix which collects useful inequalities and the proofs of important
propositions.
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2 State-Feedback Control Design

In this section, state-feedback control design for System (1) is presented. Motivated by [4],
an infinite-dimensional backstepping transformation is found to change System (1) into a new
stable target system whose stability implies the stability of the original closed-loop system in
the same sense. However, the presence of the spatially varying coefficient λ(x) makes the kernel
equations can not be solved by the existing methods.

For System (1), we adopt the following infinite-dimensional backstepping transformation:

w(x, t) = u(x, t) −
∫ x

0

k(x, y)u(y, t)dy − γ(x)X(t), (2)

where kernel functions k(x, y) and γ(x) will be determined later. With appropriate kernel
functions, System (1) can be changed into the following stable system (see Theorem 1 of [4])
under the above transformation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bw(0, t),
wt(x, t) = wxx(x, t),
wx(0, t) = 0,

w(D, t) = 0,

(3)

with K ∈ R1×n such that A + BK is Hurwitz, from which, it is more convenient to analyze
the stability of the original closed-loop system. Once the desirable transformation is obtained,
by (2) and the fourth equation of (3), we obtain the following controller:

U(t) =
∫ D

0

k(D, y)u(y, t)dy + γ(D)X(t). (4)

To derive the desirable kernel functions k(x, y) and γ(x), a sufficient condition will be found
to guarantee that original System (1) with control (4) in loop can be transformed to System (3)
under transformation (2), which is given by the following proposition.

Proposition 1 The sufficient condition, which guarantees that System (1) can be changed
into System (3) under transformation (2), is that kernel functions γ(x) and k(x, y) should
respectively satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ(x)′′ − γ(x)A −
∫ x

0

∫ x−y

0

γ(ξ)Bdξλ(y)Cdy + λ(x)C = 0,

γ(0)′ = 0,

γ(0) = K,

(5)

(the above equations are called kernel equations) and

k(x, y) =
∫ x−y

0

γ(ξ)Bdξ, (6)

where γ(x)′ = dγ(x)
dx , γ(x)′′ = dγ(x)′

dx .
Proof See Section B of Appendix in the paper.
From the above two equations, we see that once the desirable γ(x) is specified from (5),

the desirable k(x, y) will be obtained from (6). However, Equation (5) can not be solved
explicitly by the methods in [4] due to the presence of the spatially varying coefficient λ(x)
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which makes the equations being non-homogeneous integro-differential equations with spatially
varying coefficient. By the method of successive approximation, the explicit solution of (5) is
obtained in the form of the infinite series.

Proposition 2 The kernel Equation (5) has the following unique solution:

γ(x) =
+∞∑

i=0

γi(x), (7)

with γ0(x) = K − ∫ x

0

∫ η

0 λ(ξ)Cdξdη,

γi+1(x) =
∫ x

0

∫ η

0

γi(ξ)Adξdη +
1
2

∫ x

0

∫ x−y

0

(x − y − ξ)2γi(ξ)Bdξλ(y)Cdy, i = 0, 1, · · · . (8)

Moreover, there exists a positive constant M1 such that γ(x) and k(x, y) have the following
properties:

⎧
⎪⎨

⎪⎩

sup
x∈[0, D]

‖γ(x)‖ ≤ M1, sup
x∈[0, D]

‖γ(x)′‖ ≤ M1,

sup
x∈[0, D],y∈[0, D]

|k(x, y)| ≤ M1, sup
x∈[0, D],y∈[0, D]

|kx(x, y)| ≤ M1,
(9)

where ‖ · ‖ denotes the Euclidean norm for column vectors, or the corresponding induced norm
for row vectors or matrices.

Proof See Section C of Appendix in the paper.
It is necessary to point out that an inverse backstepping transformation exists for (2):

u(x, t) = w(x, t) +
∫ x

0

l(x, y)w(y, t)dy + β(x)X(t), (10)

(which will be used in the stability analysis of the closed-loop system) where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β(x) = K [I 0] exp
([

0 A + BK
I 0

]

x

)

[I 0]T

+
∫ x

0

[0 − λ(τ)C] exp
([

0 A
I 0

]

(x − τ)
)

[I 0]T dτ,

l(x, y) =
∫ x−y

0

β(ξ)Bdξ.

From the above two equations, it can be verified that kernel functions β(x) and l(x, y) have the
following properties:

⎧
⎪⎨

⎪⎩

sup
x∈[0, D]

‖β(x)‖ ≤ M2, sup
x∈[0, D]

‖β(x)′‖ ≤ M2,

sup
x∈[0, D],y∈[0, D]

|l(x, y)| ≤ D‖B‖M2, sup
x∈[0, D],y∈[0, D]

|lx(x, y)| ≤ ‖B‖M2,
(11)

where M2 = exp (D max{1, ‖A + BK‖}) (‖K‖ + nD‖C‖maxx∈[0, D] |λ(x)|).
Remark 1 The inverse backstepping transformation (10) guarantees that target system (3)

can be changed into the original closed-loop System (1) and (4). This can be verified by substi-
tuting (10) into (1) and using (3). Then, kernel functions l(x, y) and β(x) should respectively
satisfy

⎧
⎪⎨

⎪⎩

lxx(x, y) − lyy(x, y) = 0,

l(x, x) = 0,

ly(x, 0) = −β(x)B,
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and
⎧
⎪⎨

⎪⎩

β(x)′′ − β(x)(A + BK) + λ(x)C = 0,

β(0)′ = 0,

β(0) = K.

In view of the proof of Theorem 1 in [4], target system (3) is exponentially stable in the

sense of norm
(‖X(t)‖2 +

∫D

0
w(x, t)2dx +

∫ D

0
wx(x, t)2dx

) 1
2 , from which, it can be concluded

the stability of the closed-loop system in the same sense. This is summarized in the following
theorem.

Theorem 1 For any initial condition X0 and u0(x) satisfying
∫D

0
u0(x)2dx < +∞ and

∫ D

0

(du0(x)
dx

)2
dx < +∞, the closed-loop system consisting of (1) and (4) is exponentially stable

in the sense of norm
(‖X(t)‖2 +

∫D

0
u(x, t)2dx +

∫D

0
ux(x, t)2dx

) 1
2 .

Proof From (10), we have

⎧
⎪⎨

⎪⎩

u(x, t)2 ≤ 3w(x, t)2 + 3
∫ x

0

l(x, y)2dy

∫ x

0

w(y, t)2dy + 3‖β(x)‖2‖X(t)‖2,

ux(x, t)2 ≤ 3wx(x, t)2 + 3
∫ x

0

lx(x, y)2dy

∫ x

0

w(y, t)2dy + 3‖β(x)′‖2‖X(t)‖2.

Integrating both sides of the above inequalities over [0, D] and noting 0 ≤ x ≤ D, there hold

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ D

0

u(x, t)2dx ≤ 3
(

1 +
∫ D

0

∫ x

0

l(x, y)2dydx

)∫ D

0

w(x, t)2dx

+3
∫ D

0

‖β(x)‖2dx‖X(t)‖2,
∫ D

0

ux(x, t)2dx ≤ 3
∫ D

0

wx(x, t)2dx + 3
∫ D

0

∫ x

0

lx(x, y)2dydx

∫ D

0

w(x, t)2dx

+3
∫ D

0

‖β(x)′‖2dx‖X(t)‖2,

(12)

which, together with (11), yields

‖X(t)‖2 +
∫ D

0

u(x, t)2dx +
∫ D

0

ux(x, t)2dx

≤ 3
(

1 +
∫ D

0

∫ x

0

(
l(x, y)2 + lx(x, y)2

)
dydx

)∫ D

0

w(x, t)2dx + 3
∫ D

0

wx(x, t)2dx

+
(

1 + 3
∫ D

0

(‖β(x)‖2 + ‖β(x)′‖2
)
dx

)

‖X(t)‖2

≤ 1
δ
E(t), (13)

where δ = 1/ max{3+3D2M2
2 ‖B‖2(D2 +1), 1+6DM2

2} and E(t) = ‖X(t)‖2 +
∫D

0
w(x, t)2dx+

∫ D

0
wx(x, t)2dx.
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From (2), by the similar way in deriving (12), we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ D

0

w(x, t)2dx ≤ 3
(

1 +
∫ D

0

∫ x

0

k(x, y)2dydx

)∫ D

0

u(x, t)2dx + 3
∫ D

0

‖γ(x)‖2dx‖X(t)‖2,
∫ D

0

wx(x, t)2dx ≤ 3
∫ D

0

ux(x, t)2dx + 3
∫ D

0

∫ x

0

kx(x, y)2dydx

∫ D

0

u(x, t)2dx

+3
∫ D

0

‖γ(x)′‖2dx‖X(t)‖2,

which, together with (9), yields

E(t) ≤ 3
(

1 +
∫ D

0

∫ x

0

(
k(x, y)2 + kx(x, y)2

)
dydx

)∫ D

0

u(x, t)2dx + 3
∫ D

0

ux(x, t)2dx

+
(

1 + 3
∫ D

0

(‖γ(x)‖2 + ‖γ(x)′‖2
)
dx

)

‖X(t)‖2

≤ δ

(

‖X(t)‖2 +
∫ D

0

u(x, t)2dx +
∫ D

0

ux(x, t)2dx

)

,

where δ = max
{
3 + 6D2M2

1 , 1 + 6DM2
1

}
. This and (13) imply that

δ

(

‖X(t)‖2 +
∫ D

0

u(x, t)2dx +
∫ D

0

ux(x, t)2dx

)

≤ E(t)

≤ δ

(

‖X(t)‖2 +
∫ D

0

u(x, t)2dx +
∫ D

0

ux(x, t)2dx

)

. (14)

By the aforementioned exponential stability of the target system (3), there exists a positive
constant ε1 such that E(t) ≤ E(0)e−ε1t. Hence, by (14), there holds

‖X(t)‖2 +
∫ D

0

u(x, t)2dx +
∫ D

0

ux(x, t)2dx

≤ δ

δ

(

‖X0‖2 +
∫ D

0

u0(x)2dx +
∫ D

0

(du0(x)
dx

)2
dx

)

e−ε1t,

which implies the original System (1) with controller (4) in loop is exponentially stable in the

sense of norm
(‖X(t)‖2 +

∫D

0 u(x, t)2dx +
∫D

0 ux(x, t)2dx
) 1

2 . This completes the proof.

3 Output-Feedback Control Design

In this section, output-feedback control design is presented for System (1) when only the
output u(0, t) of the system is available for feedback. Specifically, a state observer is first con-
structed by infinite-dimensional backstepping method, based on which observation for the states
of the system are obtained. Then, an output-feedback controller for System (1) is constructed
by using the separation principle, which ensures the desirable stability of the closed-loop sys-
tem. It is necessary to point out that, by choosing appropriate observer gains, the restriction
on the system matrix A in [4] is completely removed.
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The state observer is constructed as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̂
X(t) = AX̂(t) + Bu(0, t) + L(u(0, t) − û(0, t)),

ŷ(t) = CX̂(t),
ût(x, t) = ûxx(x, t) + λ(x)ŷ(t) + p(x)(u(0, t) − û(0, t)),
ûx(0, t) = 0,

û(D, t) = U(t),

(15)

where X̂(t) ∈ Rn and û(x, t) with their initial values X̂0 and û0(x) are the vector state and
scalar state, respectively; ŷ(t) is the output of the ODE sub-system; L ∈ Rn such that the
pair (A, L) is stabilizable and p(x) : [0, D] → R will be determined later. Once the desirable
p(x) is specified, we obtain the reconstruction of the unobservable states of System (1) with the
following observation errors:

X̃(t) = X(t) − X̂(t), ũ(x, t) = u(x, t) − û(x, t),

which satisfy the following equations (called error system):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃
X(t) = AX̃(t) − Lũ(0, t),

ũt(x, t) = ũxx(x, t) + λ(x)CX̃(t) − p(x)ũ(0, t),
ũx(0, t) = 0,

ũ(D, t) = 0.

(16)

Next, we will search for the desirable p(x) which guarantees that the above error system is
stable in the sense of certain norm. For this, we introduce the following transformation:

w̃(x, t) = ũ(x, t) − q(x)X̃(t), (17)

where

q(x) = K1 [I 0] exp
([

0 A
I 0

]

x

)

[I 0]T

+
∫ x

0

[0 − λ(τ)C] exp
([

0 A
I 0

]

(x − τ)
)

[I 0]T dτ, (18)

with K1 ∈ R1×n such that A−LK1 is Hurwitz. From the above equation, we can see that q(x)
satisfies:

⎧
⎪⎨

⎪⎩

q(x)′′ − q(x)A + λ(x)C = 0,

q(0)′ = 0,

q(0) = K1,

(19)

and

supx∈[0, D] ‖q(x)‖ ≤ M3, supx∈[0, D] ‖q(x)′‖ ≤ M3, (20)

where M3 = exp (D max{1, ‖A‖}) (‖K1‖ + nD‖C‖maxx∈[0, D] |λ(x)|), which will be useful in
the later stability analysis of the error system.

Under transformation (17) and by choosing appropriate p(x), error system (16) can be
changed into a new system which is given by the following proposition.
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Proposition 3 By choosing p(x) = q(x)L, System (16) can be changed into the following
target system under transformation (17):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃
X(t) = (A − LK1)X̃(t) − Lw̃(0, t),
w̃t(x, t) = w̃xx(x, t),
w̃x(0, t) = 0,

w̃(D, t) = −q(D)X̃(t).

(21)

Proof See Section D of Appendix in the paper.
It can be proven that System (21) is exponentially stable in the sense of certain norm, which

implies the stability of the original observer system (16) in the same sense (i.e., the states of
observer system (15) converge to the actual states of System (1) in certain sense). This is
summarized in the following theorem.

Theorem 2 For any initial condition X̃(0) and ũ(x, 0) satisfying
∫ D

0
ũ(x, 0)2dx < +∞ and

∫ D

0
ũx(x, 0)2dx < +∞, observer (15) with gains L chosen such that the pair (A, L) is stabilizable

and p(x) = q(x)L guarantees that error system (16) is exponentially stable in the sense of the
following norm:

(

‖X̃(t)‖2 +
∫ D

0

ũ(x, t)2dx +
∫ D

0

ũx(x, t)2dx

) 1
2

.

Proof We will first prove the stability of target system (21), and then show that of original
error system (16). For this, we choose the following Lyapunov function:

Ṽ (t) = X̃(t)TPX̃(t) +
γ

2

∫ D

0

w̃(x, t)2dx +
1
2

∫ D

0

w̃x(x, t)2dx, (22)

where γ is a to-be-specified positive constant, P = PT > 0 satisfies the following Lyapunov
equation:

(A − LK1)TP + P (A − LK1) = −Q,

for some to-be-specified Q = QT > 0.
By computing the time derivative of Ṽ (t) along the solutions of System (21) and using the

integration by parts, we have

˙̃
V (t) = ˙̃

X(t)TPX̃(t) + X̃(t)TP
˙̃
X(t) + γ

∫ D

0

w̃(x, t)w̃xx(x, t)dx +
∫ D

0

w̃x(x, t)w̃xt(x, t)dx

= −X̃(t)TQX̃(t) − 2X̃(t)TPLw̃(0, t) + γw̃(D, t)w̃x(D, t) − γ

∫ D

0

w̃x(x, t)2dx

+w̃x(D, t)w̃t(D, t) −
∫ D

0

w̃xx(x, t)2dx. (23)

From (21), we see that w̃(D, t) = −q(D)X̃(t), and hence w̃t(D, t) = −q(D)(A − LK1)X̃(t) +
q(D)Lw̃(0, t). Then by (23) and Young’s Inequality, we get

˙̃
V (t) = −X̃(t)TQX̃(t) − 2X̃(t)TPLw̃(0, t) − γq(D)X̃(t)w̃x(D, t) − γ

∫ D

0

w̃x(x, t)2dx
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−q(D)(A − LK1)X̃(t)w̃x(D, t) + q(D)Lw̃(0, t)w̃x(D, t) −
∫ D

0

w̃xx(x, t)2dx

≤ −λmin(Q)‖X̃(t)‖2 +
γ

8(1 + 4D2)
w̃(0, t)2 +

8(1 + 4D2)
γ

‖PL‖2‖X̃(t)‖2

+
γ

8(1 + 4D2)
w̃(0, t)2 +

2(1 + 4D2)
γ

|q(D)L|2w̃x(D, t)2 +
1
γ

w̃x(D, t)2

+
γ3

4
‖q(D)‖2‖X̃(t)‖2 +

1
γ

w̃x(D, t)2 +
γ

4
‖q(D)(A − LK1)‖2‖X̃(t)‖2

−γ

∫ D

0

w̃x(x, t)2dx −
∫ D

0

w̃xx(x, t)2dx

= −
(

λmin(Q) − 8(1 + 4D2)
γ

‖PL‖2 − γ3

4
‖q(D)‖2 − γ

4
‖q(D)(A − LK1)‖2

)

‖X̃(t)‖2

+
γ

4(1 + 4D2)
w̃(0, t)2 − γ

∫ D

0

w̃x(x, t)2dx

+
2 + 2(1 + 4D2)|q(D)L|2

γ
w̃x(D, t)2 −

∫ D

0

w̃xx(x, t)2dx, (24)

where λmin(Q) denotes the minimum eigenvalue of Q.
By Agmon’s Inequality (i.e., Lemma A.3 in Section A of Appendix in the paper) and com-

pleting the square, we obtain

w̃(0, t)2 ≤ w̃(D, t)2 + 2

√
∫ D

0

w̃(x, t)2dx

∫ D

0

w̃x(x, t)2dx

≤ w̃(D, t)2 +
∫ D

0

w̃(x, t)2dx +
∫ D

0

w̃x(x, t)2dx.

Then, by Poincaré’s Inequality (i.e., Lemma A.2 in section A of Appendix in the paper), there
holds

w̃(0, t)2 ≤ (1 + 2D)w̃(D, t)2 + (1 + 4D2)
∫ D

0

w̃x(x, t)2dx. (25)

Moreover, noting that w̃x(0, t) = 0, from Poincaré’s Inequality and Agmon’s Inequality, we have
∫ D

0

w̃x(x, t)2dx ≤ 4D2

∫ D

0

w̃xx(x, t)2dx, (26)

w̃x(D, t)2 ≤ 2

√
∫ D

0

w̃x(x, t)2dx

∫ D

0

w̃xx(x, t)2dx

≤ 4D

∫ D

0

w̃xx(x, t)2dx. (27)

Substituting (25) and (27) into (24) yields

˙̃
V (t) ≤ −

(

λmin(Q) − 8(1 + 4D2)
γ

‖PL‖2 − γ3

4
‖q(D)‖2 − γ

4
‖q(D)(A − LK1)‖2

)

‖X̃(t)‖2

+
γ(1 + 2D)
4(1 + 4D2)

w̃(D, t)2 − 3γ

4

∫ D

0

w̃x(x, t)2dx

−
(

1 − 2 + 2(1 + 4D2)|q(D)L|2
γ

× 4D

)∫ D

0

w̃xx(x, t)2dx.
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Choosing

γ > 8D(1 + (1 + 4D2)M2
3 ‖L‖2), (28)

and by (26) and Poincaré’s Inequality while noting w̃(D, t) = −q(D)X̃(t), we have

˙̃
V (t) ≤ −

(

λmin(Q) − 8(1 + 4D2)
γ

‖PL‖2 − γ3

4
‖q(D)‖2 − γ

4
‖q(D)(A − LK1)‖2

)

‖X̃(t)‖2

+
γ(1 + 2D)
4(1 + 4D2)

w̃(D, t)2 +
3γ

8D
w̃(D, t)2 − 3γ

16D2

∫ D

0

w̃(x, t)2dx

− 1
4D2

(

1 − 2 + 2(1 + 4D2)|q(D)L|2
γ

× 4D

)∫ D

0

w̃x(x, t)2dx

≤ −
(

λmin(Q) − 8(1 + 4D2)
γ

‖PL‖2 −
(

γ3

4
+

γ(1 + 2D)
4(1 + 4D2)

+
3γ

8D

)

‖q(D)‖2

−γ

4
‖q(D)(A − LK1)‖2

)

‖X̃(t)‖2 − 3γ

16D2

∫ D

0

w̃(x, t)2dx

− 1
4D2

(

1 − 2 + 2(1 + 4D2)|q(D)L|2
γ

× 4D

)∫ D

0

w̃x(x, t)2dx.

To make ˙̃
V non-positive, we choose λmin(Q) > η = 8(1+4D2)

γ ‖PL‖2 +
(

γ3

4 + γ(1+2D)
4(1+4D2) +

3γ
8D

)
M2

3 + γ
4 ‖(A − LK1)‖2M2

3 . Then, by (28) and noting X̃(t)TPX̃(t) ≤ λmax(P )‖X̃(t)‖2, we
have

˙̃
V (t) ≤ −λmin(Q) − η

λmax(P )
X̃(t)TPX̃(t) − 3γ

16D2

∫ D

0

w̃(x, t)2dx

− 1
4D2

(

1 − 2 + 2(1 + 4D2)|q(D)L|2
γ

× 4D

)∫ D

0

w̃x(x, t)2dx

≤ −ε2Ṽ (t), (29)

where ε2 = min
{

λmin(Q)−η
λmax(P ) , 3

8D2 , 1
2D2

(
1 − 2+2(1+4D2)|q(D)L|2

γ × 4D
)}

, λmax(P ) denotes the
maximum eigenvalue of P . Then, we have

Ṽ (t) ≤ Ṽ (0)e−ε2t. (30)

We are now ready to prove the stability of error system (16). First, from transformation (17)
and by completing the square, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ D

0

w̃(x, t)2dx ≤ 2
∫ D

0

ũ(x, t)2dx + 2
∫ D

0

‖q(x)‖2dx‖X̃(t)‖2,
∫ D

0

w̃x(x, t)2dx ≤ 2
∫ D

0

ũx(x, t)2dx + 2
∫ D

0

‖q(x)′‖2dx‖X̃(t)‖2,
∫ D

0

ũ(x, t)2dx ≤ 2
∫ D

0

w̃(x, t)2dx + 2
∫ D

0

‖q(x)‖2dx‖X̃(t)‖2,
∫ D

0

ũx(x, t)2dx ≤ 2
∫ D

0

w̃x(x, t)2dx + 2
∫ D

0

‖q(x)′‖2dx‖X̃(t)‖2.

Then, we conclude that

θ

(

‖X̃(t)‖2 +
∫ D

0

ũ(x, t)2dx +
∫ D

0

ũx(x, t)2dx

)
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≤ Ṽ (t)

≤ θ

(

‖X̃(t)‖2 +
∫ D

0

ũ(x, t)2dx +
∫ D

0

ũx(x, t)2dx

)

, (31)

where

θ =
γλmin(P )

max {γ (1 + 4DM2
3 ) , 4λmin(P ), 4γλmin(P )} , θ = max

{
λmax(P ) + DM2

3 (1 + γ), γ, 1
}
.

This, together with (30), yields

‖X̃(t)‖2 +
∫ D

0

ũ(x, t)2dx +
∫ D

0

ũx(x, t)2dx

≤ θ

θ

(

‖X̃(0)‖2 +
∫ D

0

ũ(x, 0)2dx +
∫ D

0

ũx(x, 0)2dx

)

e−ε2t, (32)

which implies the desirable stability of System (16). This completes the proof.
It is worthwhile emphasizing that, by choosing appropriate observer gains and backstepping

transformation, the original error system is changed into a stable target system which is different
from that of [4], and hence the restriction on matrix A in the literature is completely removed. In
fact, the state observer designed in [4] is applicable under certain restriction on the eigenvalues
of matrix A (see Theorems 2 and 3 in [4]). This implies that the output-feedback controller in
the literature is effective only for specified system.

We are now in a position to design the output-feedback controller for System (1). In state-
feedback controller (4), by respectively replacing X(t) and u(x, t) with their observations X̂(t)
and û(x, t), the output-feedback controller is described as follows:

U(t) =
∫ D

0

k(D, y)û(y, t)dy + γ(D)X̂(t). (33)

To prove the stability of System (1) with the above controller in the loop, we introduce the
following infinite-dimensional backstepping transformation:

ŵ(x, t) = û(x, t) −
∫ x

0

k(x, y)û(y, t)dy − γ(x)X̂(t), (34)

where k(x, y) and γ(x) are the same as (6) and (7). Under the above transformation, System (15)
can be changed into the other target system, from which, it is more convenient to prove the
stability of the closed-loop System (1), (15), and (33).

Proposition 4 Under infinite-dimensional backstepping transformation (34), System (15)
with controller (33) in loop can be changed into the following target system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̂
X(t) = (A + BK)X̂(t) + Bŵ(0, t) + (B + L)(w̃(0, t) + K1X̃(t)),

ŵt(x, t) = ŵxx(x, t) + M(x)(w̃(0, t) + K1X̃(t)),
ŵx(0, t) = 0,

ŵ(D, t) = 0,

(35)

where M(x) = p(x) − ∫ x

0
k(x, y)p(y)dy − γ(x)(B + L).

Proof See Section E of Appendix in the paper.
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We next show that the above target system is exponentially stable in the sense of certain
norm, which implies the stability of the closed-loop system in the same sense.

Theorem 3 For any initial condition X0, u0(x), X̂(0) and û(x, 0) satisfying
∫ D

0

(
u0(x)2 +

û0(x)2
)
dx < +∞ and

∫D

0

(du0(x)
dx

)2 +
(dû0(x)

dx

)2
dx < +∞, the closed-loop system consisting of

(1), (15), and (33) is exponentially stable in the sense of the following norm:

(

‖X(t)‖2 + ‖X̂(t)‖2 +
∫ D

0

(
u(x, t)2 + ux(x, t)2 + û(x, t)2 + ûx(x, t)2

)
dx

) 1
2

.

Proof In order to prove the desired stability of system (X̂, û, X̃, ũ), we will first show that
of the system (X̂, ŵ, X̃, w̃). For this, we choose the following Lyapunov function:

V̂ (t) = X̂(t)TP̂ X̂(t) +
1
2

∫ D

0

ŵ(x, t)2dx +
1
2

∫ D

0

ŵx(x, t)2dx + êṼ (t),

where ê is a to-be-specified positive constant, P̂ = P̂T > 0 satisfies the following Lyapunov
equation:

(A + BK)TP̂ + P̂ (A + BK) = −Q̂, (36)

for some to-be-specified Q̂ = Q̂T > 0.
By computing the time derivative of V̂ (t) along the solutions of (21), (35), and using inte-

gration by parts, we have

˙̂
V (t) = ˙̂

X(t)TP̂ X̂(t) + X̂(t)TP̂
˙̂
X(t) +

∫ D

0

ŵ(x, t)ŵt(x, t)dx

+
∫ D

0

ŵx(x, t)ŵxt(x, t)dx + ê
˙̃
V (t)

= −X̂(t)TQ̂X̂(t) + 2X̂(t)TP̂Bŵ(0, t) + 2X̂(t)TP̂ (B + L)(w̃(0, t) + K1X̃(t))

−
∫ D

0

ŵx(x, t)2dx +
∫ D

0

ŵ(x, t)M(x)dx(w̃(0, t) + K1X̃(t))

−
∫ D

0

ŵxx(x, t)2dx −
∫ D

0

ŵxx(x, t)M(x)dx(w̃(0, t) + K1X̃(t)) + ê
˙̃
V (t).

Then, using Young’s Inequality, we obtain

˙̂
V (t) ≤ −λmin(Q̂)‖X̂(t)‖2 +

1
16D

ŵ(0, t)2 + 16D‖P̂B‖2‖X̂(t)‖2 + ‖P̂ (B + L)‖2‖X̂(t)‖2

+(w̃(0, t) + K1X̃(t))2 −
∫ D

0

ŵx(x, t)2dx +
1

16D2

∫ D

0

ŵ(x, t)2dx

+4D2

∫ D

0

M(x)2dx(w̃(0, t) + K1X̃(t))2 −
∫ D

0

ŵxx(x, t)2dx

+
1
2

∫ D

0

ŵxx(x, t)2dx +
1
2

∫ D

0

M(x)2dx(w̃(0, t) + K1X̃(t))2 + ê
˙̃
V (t)

= −
(
λmin(Q̂) − 16D‖P̂B‖2 − ‖P̂ (B + L)‖2

)
‖X̂(t)‖2 +

1
16D

ŵ(0, t)2

+
1

16D2

∫ D

0

ŵ(x, t)2dx + (w̃(0, t) + K1X̃(t))2
(

1 +
(
4D2 +

1
2

)∫ D

0

M(x)2dx

)
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−
∫ D

0

ŵx(x, t)2dx − 1
2

∫ D

0

ŵxx(x, t)2dx + ê
˙̃
V (t). (37)

Noting ŵ(D, t) = 0, by Poincaré’s Inequality and Agmon’s Inequality, there hold

∫ D

0

ŵ(x, t)2dx ≤ 4D2

∫ D

0

ŵx(x, t)2dx, ŵ(0, t)2 ≤ 4D

∫ D

0

ŵx(x, t)2dx. (38)

Substituting this into (37) and by (39) and completing the square, we have

˙̂
V (t) ≤ −

(
λmin(Q̂) − 16D‖P̂B‖2 − ‖P̂ (B + L)‖2

)
‖X̂(t)‖2 − 1

2

∫ D

0

ŵx(x, t)2dx

−1
2

∫ D

0

ŵxx(x, t)2dx + M(w̃(0, t) + K1X̃(t))2 − êε2Ṽ (t)

≤ −
(
λmin(Q̂) − 16D‖P̂B‖2 − ‖P̂ (B + L)‖2

)
‖X̂(t)‖2 − 1

2

∫ D

0

ŵx(x, t)2dx

−1
2

∫ D

0

ŵxx(x, t)2dx + 2Mw̃(0, t)2 + 2M‖K1‖2‖X̃(t)‖2

−êε2

(

λmin(P )‖X̃(t)‖2 +
γ

2

∫ D

0

w̃(x, t)2dx +
1
2

∫ D

0

w̃x(x, t)2dx

)

,

where M = 1 + D
(
4D2 + 1

2

)
(M3‖L‖(1 + DM1) + M1‖B + L‖)2.

Noting that ŵx(0, t) = 0, by Poincare’s Inequality, we have

∫ D

0

ŵx(x, t)2dx ≤ 4D2

∫ D

0

ŵxx(x, t)2dx.

Then, by (25) and (38), we have

˙̂
V (t) ≤ −

(
λmin(Q̂) − 16D‖P̂B‖2 − ‖P̂ (B + L)‖2

)
‖X̂(t)‖2 − 1

8D2

∫ D

0

ŵ(x, t)2dx

− 1
8D2

∫ D

0

ŵx(x, t)2dx + 2M(1 + 2D)‖q(D)‖2‖X̃(t)‖2

+2M(1 + 4D2)
∫ D

0

w̃x(x, t)2dx + 2M‖K1‖2‖X̃(t)‖2

−êε2

(

λmin(P )‖X̃(t)‖2 +
γ

2

∫ D

0

w̃(x, t)2dx +
1
2

∫ D

0

w̃x(x, t)2dx

)

= −
(
λmin(Q̂) − 16D‖P̂B‖2 − ‖P̂ (B + L)‖2

)
‖X̂(t)‖2 − 1

8D2

∫ D

0

ŵ(x, t)2dx

− 1
8D2

∫ D

0

ŵx(x, t)2dx − êε2γ

2

∫ D

0

w̃(x, t)2dx

−
( êε2

2
− 2M(1 + 4D2)

) ∫ D

0

w̃x(x, t)2dx

−
(
êε2λmin(P ) − 2M(1 + 2D)‖q(D)‖2 − 2M‖K1‖2

)
‖X̃(t)‖2.

By choosing

λmin(Q̂) > 16D‖P̂B‖2 + ‖P̂ (B + L)‖2,
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ê >
1
ε2

max
{

2M(‖K1‖2 + (1 + 2D)M2
3 )

λmin(P )
, 4M(1 + 4D2)

}

,

it is concluded that

˙̂
V (t) ≤ −

(
λmin(Q̂) − 16D‖P̂B‖2 − ‖P̂ (B + L)‖2

) 1

λmax(P̂ )
X̂(t)TP̂ X̂(t)

− 1
8D2

∫ D

0

ŵ(x, t)2dx − 1
8D2

∫ D

0

ŵx(x, t)2dx

− (êε2λmin(P ) − 2M(1 + 2D)‖q(D)‖2 − 2M‖K1‖2
) 1

λmax(P )
X̃(t)TPX̃(t)

− êε2γ

2

∫ D

0

w̃(x, t)2dx −
( êε2

2
− 2M(1 + 4D2)

) ∫ D

0

w̃x(x, t)2dx

≤ −ε3V̂ (t),

with

ε3 = min
{

λmin(Q̂) − 16D‖P̂B‖2 − ‖P̂ (B + L)‖2

λmax(P̂ )
,

1
4D2

,

êε2λmin(P ) − 2M((1 + 2D)‖q(D)‖2 + ‖K1‖2)
êλmax(P )

, ε2 − 4M(1 + 4D2)
ê

}

,

which yields

V̂ (t) ≤ V̂ (0)e−ε3t.

This implies that (X̂, ŵ, X̃, w̃) is exponentially stable in the sense of the following norm:

(

‖X̃(t)‖2 + ‖X̂(t)‖2 +
∫ D

0

(
w̃(x, t)2 + w̃x(x, t)2 + ŵ(x, t)2 + ŵx(x, t)2

)
dx

) 1
2

.

By the similar way in deriving (32), we obtain that system (X̂, û, X̃, ũ) is exponentially
stable in the same sense. Therefore, by noting the fact u(x, t) = û(x, t) + ũ(x, t) and X(t) =
X̂(t) + X̃(t), we conclude that system (X, u, X̂, û) is exponentially stable in the sense of the
norm defined by (36). This completes the proof.

4 Simulation Results

In this section, an example is given to verify the effectiveness of theoretical results for the
following simple system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẋ(t) = X(t) + u(0, t),
y(t) = X(t),
ut(x, t) = uxx(x, t) + xX(t),
ux(0, t) = 0
u(1, t) = U(t),

(39)

where X(t) ∈ R, the initial conditions are X0 = 0.5 and u0(x) = x2.
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From (4) and (33), we see that, to design controllers for (39), the controller parameters, i.e.
γ(·) and k(·) should be determined. However, the sum of the infinite series defined in (7) is
difficult to calculate even for simple nonconstant function λ(x). On the other hand, appropriate
truncation of the series is sufficient for the practical implementation. Therefore, we replace γ(x)
by its approximation γ(x) =

∑4
i=0 γi(x) in the controllers. Choosing K = −2 and by (8), we

have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ0(x) = −2 − x3

3!
,

γ1(x) = −x2 − 3x5

5!
− x8

8!
,

γ2(x) = −2x4

4!
− 5x7

7!
− 4x10

10!
− x13

13!
,

γ3(x) = −2x6

6!
− 7x9

9!
− 9x12

12!
− 5x15

15!
− x18

18!
,

γ4(x) = −2x8

8!
− 9x11

11!
− 16x14

14!
− 14x17

17!
− 6x20

20!
− x23

23!
.

Then by (4) and (7), we obtain the state-feedback controller:

U(t) =
∫ 1

0

∫ 1−y

0

γ(ξ)dξu(y, t)dy − 3.2789X(t). (40)

Moreover, by (18) and choosing K1 = 1, we conclude q(x) = x + e−x. Then, by choosing
L = 3, p(x) = 3(x + e−x) follows directly. Hence, by (15), we obtain the following observer for
System (39) when only u(0, t) is available for measurement:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̂
X(t) = X̂(t) + u(0, t) + 3(u(0, t) − û(0, t)),

ŷ(t) = X̂(t),
ût(x, t) = ûxx(x, t) + xŷ(t) + 3(x + e−x)(u(0, t) − û(0, t)),
ûx(0, t) = 0,

û(1, t) = U(t),

(41)

with initial estimates X̂(0) = 0.2 and û(x, 0) = ex. Then, by (33), we obtain the following
output-feedback controller:

U(t) =
∫ 1

0

∫ 1−y

0

γ(ξ)dξû(y, t)dy − 3.2789X̂(t). (42)

By using the explicit forward Euler method (see, e.g., Page 406 of [19]) with 20-step dis-
cretization in space, four simulation figures are obtained for the closed-loop system signals.
Specifically, Figures 1 and 2 show that states u(x, t) and X(t) of (39) with state-feedback con-
troller (40) in the loop converge to zero, and meanwhile, Figures 3 and 4 show that both the
states u(x, t) and X(t) of closed-loop system (39), (41), and (42) converge to zero.

5 Concluding Remarks

In this paper, the stabilization of a class of coupled PDE-ODE systems with spatially varying
coefficient has been investigated. By infinite-dimensional backstepping method, both state-
feedback and output-feedback controllers have been successfully constructed, which ensure the
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desirable stability of the closed-loop systems. It is worthy pointing out that, the control design
is more difficult to solve since the presence of the spatially varying coefficient makes controllers
parameters can not be derived by the method in the related literature. Moreover, restriction
on the ODE sub-system parameter in the related literature is completely removed in the paper.
Since spatially varying coefficients arise frequently in PDEs, extension of the methods and ideas
in the paper to more complicated coupled systems, such as coupled PDE-PDE systems with
spatially varying coefficients, will be meaningful and deserve investigation.
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Appendix

A Useful Inequalities

Lemma A.1 For any matrix function A(x) = (aij(x)) : [0, D] → Rm×n which is continuous
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and integrable on [0, D], the following inequality holds:
∥
∥
∥
∥

∫ D

0

A(x)dx

∥
∥
∥
∥ ≤

√
m n

∫ D

0

‖A(x)‖dx.

Proof Let ‖A(x)‖F =
√

Tr(A(x)TA(x)). Then noting that λi(A(x)TA(x)) ≥ 0, i =
1, 2, · · · , n, we have

‖A(x)‖ =
√

λmax(A(x)TA(x)) ≤
√
√
√
√

n∑

i=1

λi(A(x)TA(x)) =
√

Tr(A(x)TA(x)) = ‖A(x)‖F . (A.1)

Moreover,

‖A(x)‖F =

√
√
√
√

n∑

i=1

λi(A(x)TA(x)) ≤
√

n λmax(A(x)TA(x)) =
√

n‖A(x)‖. (A.2)

Therefore, by (A.1), we have

∥
∥
∥
∥

∫ D

0

A(x)dx

∥
∥
∥
∥

2

≤
∥
∥
∥
∥

∫ D

0

A(x)dx

∥
∥
∥
∥

2

F

=
m∑

i=1

n∑

j=1

∣
∣
∣
∣

∫ D

0

aij(x)dx

∣
∣
∣
∣

2

,

by which, and noting that
∣
∣
∫D

0
aij(x)dx

∣
∣ ≤ ∫D

0
|aij(x)|dx, after some direct calculations, we

obtain
∥
∥
∥
∥

∫ D

0

A(x)dx

∥
∥
∥
∥

2

≤
m∑

i=1

n∑

j=1

(∫ D

0

|aij(x)|dx

)2

≤
( m∑

i=1

n∑

j=1

∫ D

0

|aij(x)|dx

)2

=
(∫ D

0

m∑

i=1

n∑

j=1

|aij(x)|dx

)2

≤ mn

(∫ D

0

√
√
√
√

m∑

i=1

n∑

j=1

|aij(x)|2dx

)2

= mn

(∫ D

0

‖A(x)‖F dx

)2

.

Substituting (A.2) into the above inequality yields

∥
∥
∥
∥

∫ D

0

A(x)dx

∥
∥
∥
∥

2

≤ mn2

(∫ D

0

‖A(x)‖dx

)2

,

which directly implies the desirable inequality.
Lemma A.2[20] (Poincaré’s Inequality) For any w ∈ C1[0, D]§, there hold

⎧
⎪⎪⎨

⎪⎪⎩

∫ D

0

w(x)2dx ≤ 2Dw(0)2 + 4D2

∫ D

0

wx(x)2dx,

∫ D

0

w(x)2dx ≤ 2Dw(D)2 + 4D2

∫ D

0

wx(x)2dx.

§C1[0, D] denotes the set of all continuously differentiable functions defined on [0, D].
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Lemma A.3[20] (Agmon’s Inequality) For any w ∈ C1[0, D], there hold
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w(x)2 ≤ w(0)2 + 2

√
∫ D

0

w(x)2dx

∫ D

0

wx(x)2dx,

w(x)2 ≤ w(D)2 + 2

√
∫ D

0

w(x)2dx

∫ D

0

wx(x)2dx.

B Proof of Proposition 1

Letting x = 0 in (2), we obtain u(0, t) = w(0, t) + γ(0)X(t). Substituting this into the first
equation of (1), we have

Ẋ(t) = (A + Bγ(0))X(t) + Bw(0, t).

Hence, to obtain the first equation of (3), there must hold γ(0) = K.
To obtain the other three equations of (3), we first compute wx(x, t), wxx(x, t), and wt(x, t)

from (2), that is,

wx(x, t) = ux(x, t) − k(x, x)u(x, t) −
∫ x

0

kx(x, y)u(y, t)dy − γ(x)′X(t), (B.1)

wxx(x, t) = uxx(x, t) − d

dx
k(x, x)u(x, t) − k(x, x)ux(x, t)

−kx(x, x)u(x, t) −
∫ x

0

kxx(x, y)u(y, t)dy − γ(x)′′X(t) (B.2)

wt(x, t) = ut(x, t) −
∫ x

0

k(x, y)ut(y, t)dy − γ(x)Ẋ(t)

= ut(x, t) −
∫ x

0

k(x, y)uyy(y, t)dy −
∫ x

0

k(x, y)λ(y)CX(t)dy − γ(x)Ẋ(t)

= uxx(x, t) + λ(x)CX(t) − k(x, x)ux(x, t) + ky(x, x)u(x, t)

−ky(x, 0)u(0, t) −
∫ x

0

kyy(x, y)u(y, t)dy −
∫ x

0

k(x, y)λ(y)CX(t)dy

−γ(x)(AX(t) + Bu(0, t)). (B.3)

Then, letting x = 0 in (B.1) and noting ux(0, t) = 0, we have

wx(0, t) = k(0, 0)u(0, t) + γ(0)′X(t) = 0.

Hence, the sufficient condition to guarantee the trueness of the third equation of (3) is

k(0, 0) = 0, γ(0)′ = 0. (B.4)

Moreover, subtracting the two sides of (B.2) from the two sides of (B.3) separately, there holds

wt(x, t) − wxx(x, t) =
(

γ(x)′′ − γ(x)A −
∫ x

0

k(x, y)λ(y)Cdy + λ(x)C
)

X(t)

− (ky(x, 0) + γ(x)B) u(0, t) + 2
d

dx
k(x, x)u(x, t)

+
∫ x

0

(kxx(x, y) − kyy(x, y))u(y, t)dy,
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by which and noting (B.4) and γ(0) = K, the sufficient condition for the trueness of the second
equation of (3) is that γ(x) and k(x, y) must satisfy the following equations (called kernel
equations):

⎧
⎪⎪⎨

⎪⎪⎩

γ(x)′′ − γ(x)A −
∫ x

0

k(x, y)λ(y)Cdy + λ(x)C = 0,

γ(0)′ = 0,

γ(0) = K,

(B.5)

and
⎧
⎪⎨

⎪⎩

kxx(x, y) − kyy(x, y) = 0,

k(x, x) = 0,

ky(x, 0) = −γ(x)B.

(B.6)

It is easily to verify that (6) is the solution of Equation (B.6). Then, substituting this into the
first equation of (B.5) directly concludes (5).

C Proof of Proposition 2

By the first equation of (5), we have

γ(x)′′ = γ(x)A +
∫ x

0

∫ x−y

0

γ(ξ)Bdξλ(y)Cdy − λ(x)C.

Integrating both sides of the above equation on [0, x] twice and noting γ(0) = K, γ(0)′ = 0,
after some simple managements, we conclude

γ(x) = γ0(x) +
∫ x

0

∫ η

0

γ(ξ)Adξdη +
1
2

∫ x

0

∫ x−y

0

(x − y − ξ)2γ(ξ)Bdξλ(y)Cdy. (C.1)

Thus, to prove the proposition, it suffices to show that (7) is the unique solution of the above
equation, and the absolute and uniform convergence of the series defined by (7) must be ensured.
For this, we will estimate γi(x) by induction. First, for γ0(x), using Lemma A.1 and noting
0 ≤ x ≤ D, we have

‖γ0(x)‖ ≤ ‖K‖+
∥
∥
∥
∥

∫ x

0

∫ η

0

λ(ξ)Cdξdη

∥
∥
∥
∥

≤ ‖K‖+ n2

∫ x

0

∫ η

0

|λ(ξ)| · ‖C‖dξdη

≤ ‖K‖+ n2D2‖C‖ max
x∈[0,D]

|λ(x)| = M4. (C.2)

Then, suppose that for all x ∈ [0, D], there holds

‖γi(x)‖ ≤ M4M
i
5

x2i

(2i)!
, (C.3)

where M5 = n2
(‖A‖ + 1

2D2‖B‖ · ‖C‖maxx∈[0, D] |λ(x)|), by which and (8), we have,

‖γi+1(x)‖
≤
∥
∥
∥
∥

∫ x

0

∫ η

0

γi(ξ)Adξdη

∥
∥
∥
∥ +

1
2

∥
∥
∥
∥

∫ x

0

∫ x−y

0

(x − y − ξ)2γi(ξ)Bdξλ(y)Cdy

∥
∥
∥
∥
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≤ n2

∫ x

0

∫ η

0

‖γi(ξ)A‖dξdη +
1
2
n2D2

∫ x

0

∫ x−y

0

|γi(ξ)B|dξ|λ(y)| · ‖C‖dy

≤ n2‖A‖M4M
i
5

∫ x

0

∫ η

0

ξ2i

2i!
dξdη +

1
2
n2D2‖B‖ · ‖C‖ max

x∈[0,D]
|l(x)|M4M

i
5

∫ x

0

∫ x−y

0

ξ2i

2i!
dξdy

= n2‖A‖M4M
i
5

x2(i+1)

2(i + 1)!
+

1
2
n2D2‖B‖ · ‖C‖ max

x∈[0, D]
|l(x)|M4M

i
5

x2(i+1)

2(i + 1)!

= n2

(

‖A‖ +
1
2
D2‖B‖ · ‖C‖ max

x∈[0, D]
|l(x)|

)

M4M
i
5

x2(i+1)

2(i + 1)!

= M4M
i+1
5

x2(i+1)

2(i + 1)!
. (C.4)

Therefore, (C.3) is proven. Then, noting 0 ≤ x ≤ D, we have

sup
x∈[0, D]

+∞∑

i=0

‖γi(x)‖ ≤
+∞∑

i=0

M4
(D

√
M5)2i

(2i)!
. (C.5)

It is not hard to verify that the series on the right-hand side of (C.5) converges. Hence, by the
well known Weierstrass M-test, the series defined by (7) converges absolutely and uniformly on
[0, D]. By substituting (7) into (C.1) and noting (8), it is not hard to verify that (7) is the
solution of (C.1). Then, the existence of the solution to Equation (5) is concluded.

To show the uniqueness, we assume that γ(x) and γ̃(x) are two different solutions of (5)
with error Δγ(x) = γ(x) − γ̃(x). Substituting these two solutions into (C.1) and after some
direct calculation, we have

Δγ(x) =
∫ x

0

∫ η

0

Δγ(ξ)Adξdη +
1
2

∫ x

0

∫ x−y

0

(x − y − ξ)2Δγ(ξ)Bdξλ(y)Cdy. (C.6)

From (C.3) and (C.5), there holds supx∈[0, D] ‖γ(x)‖ ≤ M4 exp(D
√

M5), and then
supx∈[0, D] ‖Δγ(x)‖ ≤ 2M4 exp(D

√
M5). Next, we will estimate Δγ(x) by induction. Suppose

that for all x ∈ [0, D], there holds

‖Δγ(x)‖ ≤ 2M4 exp(D
√

M5)M i
5

x2i

(2i)!
. (C.7)

Substituting this into (C.6) and along the similar process to obtain the estimate (C.4), for all
x ∈ [0, D], we have

‖Δγ(x)‖ ≤
∥
∥
∥
∥

∫ x

0

∫ η

0

Δγ(ξ)Adξdη

∥
∥
∥
∥ +

1
2

∥
∥
∥
∥

∫ x

0

∫ x−y

0

(x − y − ξ)2Δγ(ξ)Bdξλ(y)Cdy

∥
∥
∥
∥

≤ n2

∫ x

0

∫ η

0

‖Δγ(ξ)A‖dξdη +
1
2
n2D2

∫ x

0

∫ x−y

0

|Δγ(ξ)B|dξ|λ(y)| · ‖C‖dy

≤ 2n2‖A‖M4 exp(D
√

M5)M i
5

∫ x

0

∫ η

0

ξ2i

2i!
dξdη

+n2D2‖B‖ · ‖C‖ max
x∈[0, D]

|λ(x)|M4 exp(D
√

M5)M i
5

∫ x

0

∫ x−y

0

ξ2i

2i!
dξdη

= n2

(

‖A‖ +
1
2
D2‖B‖ · ‖C‖ max

x∈[0, D]
|λ(x)|

)

2M4 exp(D
√

M5)M i
5

x2(i+1)

2(i + 1)!

= 2M4 exp(D
√

M5)M i+1
5

x2(i+1)

2(i + 1)!
, (C.8)
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Therefore, (C.7) is proven. Noting that 0 ≤ x ≤ D, by (C.8), we have

sup
x∈[0, D]

‖Δγ(x)‖ ≤ 2M4 exp(D
√

M5)M i+1
5

D2(i+1)

2(i + 1)!
, (C.9)

which implies Δγ(x) ≡ 0 since limi→+∞ 2M4 exp(D
√

M5)M i+1
5

D2(i+1)

2(i+1)! = 0. Then (7) is the
unique solution of (C.1).

Next, we turn to showing the estimates in (9). Noting that 0 ≤ x ≤ D and supx∈[0, D] ‖γ(x)‖ ≤
M4 exp(D

√
M5), we have

sup
x∈[0, D],y∈[0, D]

|k(x, y)| ≤ sup
x∈[0, D],y∈[0, D]

∫ x−y

0

|γ(ξ)B|dξ ≤ DM4‖B‖ exp(D
√

M5) (C.10)

and

sup
x∈[0, D],y∈[0, D]

|kx(x, y)| = sup
x∈[0, D],y∈[0, D]

|γ(x − y)B| ≤ M4‖B‖ exp(D
√

M5).

Moreover, integrating the first equation of (B.5) over [0, x], we obtain

γ(x)′ =
∫ x

0

(γ(x)A − λ(x)C) dx +
∫ x

0

∫ ξ

0

k(ξ, y)λ(y)Cdydξ,

which together with (C.10) yields

sup
x∈[0, D],y∈[0, D]

‖γ(x)′‖ ≤ nD max
x∈[0, D]

|l(x)| · ‖C‖ + nDM4eD
√

M5

·
(

‖A‖ + nD2 max
x∈[0, D]

|l(x)| · ‖B‖ · ‖C‖
)

= M6.

Then, choosing M1 = max{M4 exp(D
√

M5), DM4‖B‖ exp(D
√

M5), M4‖B‖ exp(D
√

M5), M6},
we directly conclude (11).

D Proof of Proposition 3

We will first show the first, third, and fourth equations of (21), and then prove the second
one.

Letting x = 0 in (17) yields ũ(0, t) = w̃(0, t) + q(0)X̃(t), substituting this into the first
equation of (16) and noting q(0) = K1 directly yield the first equation of (21).

Computing w̃x(x, t) from (17) and letting x = 0, we have

w̃x(0, t) = ũx(0, t) − q(0)′X̃(t).

Noting ũx(0, t) = q(0)′ = 0, w̃x(0, t) = 0 follows from the above equation.
Moreover, letting x = D in (17) and noting ũ(D, t) = 0, the fourth equation of (21) can be

directly concluded.
To show the second equation of (21), we first compute w̃t(x, t) and w̃xx(x, t), respectively,

w̃t(x, t) = ũt(x, t) − q(x) ˙̃
X(t)

= ũxx(x, t) + λ(x)CX̃(t) − p(x)ũ(0, t) − q(x)AX̃(t) + q(x)Lũ(0, t),
w̃xx(x, t) = ũxx(x, t) − q(x)′′X̃(t).
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Thus, we have

w̃t(x, t) − w̃xx(x, t) = (q(x)′′ − q(x)A + λ(x)C) X̃(t) − (p(x) − q(x)L)ũ(0, t).

Then, by (19) and noting p(x) = q(x)L, w̃t(x, t) = w̃xx(x, t) can be obtained, which is the
second equation of (21).

E Proof of Proposition 4

We first show the first, third, and fourth equations of (35), and then prove the second one.
Letting x = 0 in (34), we have û(0, t) = ŵ(0, t) + KX̂(t). Then, there holds

u(0, t) = ũ(0, t) + û(0, t) = ũ(0, t) + ŵ(0, t) + KX̂(t).

Substituting this into the first equation of (15) yields

˙̂
X(t) = (A + BK)X̂(t) + Bŵ(0, t) + (B + L)ũ(0, t).

Letting x = 0 in (17), we have ũ(0, t) = w̃(0, t) + K1X̃(t). Substituting this into the above
equation directly yields the first equation of (35).

Computing ŵx(x, t) from (34) and letting x = 0 concludes

ŵx(0, t) = ûx(0, t) − k(0, 0)û(0, t) − γ(0)′X̂(t),

By (B.5), (B.6), and noting ûx(0, t) = 0, ŵx(0, t) = 0 can be directly obtained.
Letting x = D in (34) and by (33) directly yield the fourth equation of (35).
To derive the second equation of (35), we first compute ŵt(x, t) along the solutions of

System (15),

ŵt(x, t) = ût(x, t) −
∫ x

0

k(x, y)ût(y, t)dy − γ(x) ˙̂
X(t)

= ûxx(x, t) + λ(x)CX̂(t) + p(x)ũ(0, t) − γ(x)
(
AX̂(t) + Bu(0, t) + Lũ(0, t)

)

−
∫ x

0

k(x, y)
(
ûyy(y, t) + λ(y)CX̂(t) + p(y)ũ(0, t)

)
dy.

Using integration by parts twice yields

ŵt(x, t) = ûxx(x, t) + λ(x)CX̂(t) + p(x)ũ(0, t) − γ(x)
(
AX̂(t) + Bu(0, t) + Lũ(0, t)

)

−k(x, x)ûx(x, t) + ky(x, x)û(x, t) − ky(x, 0)û(0, t) −
∫ x

0

kyy(x, y)û(y, t)dy

−
∫ x

0

k(x, y)λ(y)CdyX̂(t) −
∫ x

0

k(x, y)p(y)dyũ(0, t).

Noting ky(x, 0) = −γ(x)B and û(0, t) = u(0, t)− ũ(0, t), after some simple managements, there
holds

ŵt(x, t) = ûxx(x, t) +
(

λ(x)C − γ(x)A −
∫ x

0

k(x, y)λ(y)Cdy

)

X̂(t)

+
(

p(x) −
∫ x

0

k(x, y)p(y)dy − γ(x)(B + L)
)

ũ(0, t)

−k(x, x)ûx(x, t) + ky(x, x)û(x, t) −
∫ x

0

kyy(x, y)û(y, t)dy.



174 LI JIAN · LIU YUNGANG

Moreover, by computing ŵxx(x, t) from (34), there holds

ŵxx(x, t) = ûxx(x, t) − d

dx
k(x, x)û(x, t) − k(x, x)ûx(x, t)

−kx(x, x)û(x, t) −
∫ x

0

kxx(x, y)û(y, t)dy − γ(x)′′X̂(t).

Using the above equations, we obtain

ŵt(x, t) − ŵxx(x, t) = 2
d

dx
k(x, x)û(x, t) −

∫ x

0

(kyy(x, y) − kxx(x, y)) û(y, t)dy

+
(

p(x) −
∫ x

0

k(x, y)p(y)dy − γ(x)(B + L)
)

ũ(0, t)

+
(

γ(x)′′ + λ(x)C − γ(x)A −
∫ x

0

k(x, y)λ(y)Cdy

)

X̂(t).

By (B.5), (B.6), and noting ũ(0, t) = w̃(0, t) + K1X̃(t), we yield

ŵt(x, t) − ŵxx(x, t) =
(

p(x) −
∫ x

0

k(x, y)p(y)dy − γ(x)(B + L)
)

(w̃(0, t) + K1X̃(t)),

which is the second equation of (35).


