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Abstract This paper considers a stochastic optimal control problem of a forward-backward system

with regular-singular controls where the set of regular controls is not necessarily convex and the regular

control enters the diffusion coefficient. This control problem is difficult to solve with the classical method

of spike variation. The authors use the approach of relaxed controls to establish maximum principle

for this stochastic optimal control problem. Sufficient optimality conditions are also investigated.
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1 Introduction

Stochastic singular control was first introduced by Bather and Chernoff[1] who considered
a simplified model of spaceship control. Benes, et al.[2] were the first to solve rigorously an
example of a finite-fuel singular control problem. Since then, stochastic singular control problem
has attracted considerable research interest due to its wide applicability in a number of areas.
See, for example, [3–7] and the references therein.

In most cases, stochastic optimal singular control problem was solved by dynamic pro-
gramming. It was shown in particular that the value function is the solution of a variational
inequality and the optimal state is a reflected diffusion at the free boundary.

Maximum principle for stochastic optimal control problems has been studied by many au-
thors, including Peng[8, 9], Shi and Wu[10, 11], Wu[12], Xu[13], etc. It’s worth pointing out that,
Bahlali[14] reconsidered the stochastic optimal control problem studied in [8], and he solved the
problem with the relaxed control method under certain conditions. In that paper, the author
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replaced the U -valued regular control process (ut) by a P(U)-valued process (qt), where P(U) is
the space of probability measures on U equipped with the topology of stable convergence. The
set of these new processes, which are called relaxed controls, has a nice structure of convex-
ity. Then the original optimal control problem is replaced by a new stochastic optimal relaxed
control problem, and the maximum principle for this new problem can be obtained by the
classic method of convex perturbation. With the help of the celebrated chattering lemma, the
maximum principle for the original stochastic optimal control problem is easily obtained under
certain conditions. Bahlali[14] established the maximum principle by using only the first-order
expansion and the associated adjoint equation, which improved the result of Peng[8] to some
extent.

Maximum principle for optimal control problems of forward-backward systems, in which the
control variable enters the diffusion coefficient and the control domain is not convex, remained to
be an open problem. The main difficulty of solving this open problem is how to use a suitable
variational technique to treat the variable z. If the approach developed by Peng[8] is used,
the second order expansion leads to a nonlinear problem, and hence it is difficult to deduce
the second-order variational inequality. Recently, two works have made important progress
in solving this problem. Wu[15] solved this problem by transferring it to a forward optimal
control problem with state constraint. Yong[16] studied a stochastic optimal control problem
of forward-backward system with mixed initial-terminal conditions. However, the proofs in the
previous two works are lengthy and technical. It’s worth pointing out that Bahlali[17] solved
this problem with the relaxed control method under certain conditions.

The first result in stochastic maximum principle for singular optimal control problems was
obtained in [18], in which linear dynamics, convex cost criterion, and convex state constraint
were assumed. Bahlali and Chala[19] generalized the result of [18] to the nonlinear case with
a convex state constraint, for which the maximum principle was obtained by a convex pertur-
bation. Bahlali and Mezerdi[20] extended the previous two works to the nonlinear dynamics
case, in which the regular control enters the diffusion coefficient and the domain of the regular
controls is non-convex. The authors used the second order adjoint equation and the second or-
der variational inequality to derive the maximum principle, which is a generalization of Peng[8]

to singular control problems. It’s worth pointing out that the control systems in these works
are stochastic differential equations with singular controls, while stochastic singular control
problems of forward-backward systems have not been studied.

In this paper, inspired by the references [14] and [17], we consider a stochastic optimal
control problem of a forward-backward system in which the control variable consists of two
components: the regular control and the singular control. It’s assumed that the set of regular
controls is not necessarily convex and the regular control enters the diffusion coefficient. We
use the approach of relaxed controls to establish necessary as well as sufficient optimality
conditions for this stochastic optimal control problem. Firstly, we replace the regular control
by a relaxed control and consider a new stochastic relaxed-singular control problem. Since the
set of relaxed controls has a nice structure of convexity, the maximum principle, and sufficient
optimality conditions can be easily obtained by using the convex perturbation. Under certain
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conditions, necessary and sufficient optimality conditions for the original regular-singular control
problem are obtained from the corresponding results for relaxed-singular controls by virtue of
the celebrated chattering lemma. Our result can be regarded as a generalization of [14] and [17]
to singular control problems.

This paper is organized as follows. In Section 2, we formulate the regular-singular control
problem and the relaxed-singular control problem, and give the main assumptions. As a prelim-
inary, we consider stochastic differential equations (SDEs) and backward stochastic differential
equations (BSDEs) with singular controls. In Section 3, we establish necessary and sufficient
optimality conditions for the optimal relaxed-singular control problem. In Section 4, we derive
necessary and sufficient optimality conditions for the regular-singular control problem under
certain conditions.

2 Preliminaries

Let (Ω ,F ,P) be a probability space and E stand for the expectation with respect to the
probability measure P. Let T > 0 be a fixed finite time and {Ft, , 0 ≤ t ≤ T } be the natural
filtration of a d-dimensional standard Brownian motion {Bt, 0 ≤ t ≤ T }, augmented by the
P-null sets of F . We will use α · β to denote the inner product of two vectors α and β which
are of the same dimension. For n ∈ N, we denote by S2(Rn) the set of n-dimensional Ft-
adapted processes {φt, 0 ≤ t ≤ T } such that E

[
sup0≤t≤T |φt|2

]
< ∞, and by H2(Rn) the

set of n-dimensional Ft-adapted processes {ψt, 0 ≤ t ≤ T } such that E

[∫ T

0
|ψt|2dt

]
< ∞.

Let U1 be a nonempty subset of R
k and U2 = ([0,∞))n. Let U1 be the class of measurable

adapted processes v : [0, T ] × Ω → U1 such that sup0≤t≤T E|vt|2 < ∞. Denote by U2 the class
of measurable adapted processes η : [0, T ] × Ω → U2 such that η(·) is of bounded variation,
nondecreasing, left-continuous with right limits, with η0 = 0 and E|ηT |2 < ∞. An admissible
regular-singular control is a pair of processes (v(·), η(·)) ∈ U .= U1 × U2. In what follows, we
denote by c a positive constant which can be varied in different lines.

Given a ∈ R
n and η(·) ∈ U2, let us consider the following SDE:

xt = a+
∫ t

0

b(s, xs)ds+
∫ t

0

σ(s, xs)dBs +
∫ t

0

Csdηs, 0 ≤ t ≤ T, (1)

where b : [0, T ]×Ω ×R
n → R

n and σ : [0, T ]×Ω ×R
n → R

n×d are measurable mappings, and
C : [0, T ] → R

n×n is a continuous function.

Proposition 2.1 Assume that b, σ are uniformly Lipschitz in x, b(·, 0) ∈ H2(Rn) and
σ(·, 0) ∈ H2(Rn×d). Then SDE (1) admits a unique solution x(·) ∈ S2(Rn).

Proof Set b1(t, x) = b
(
t, x +

∫ t

0 Csdηs

)
and σ1(t, x) = σ

(
t, x +

∫ t

0 Csdηs

)
. Then, b1 and

σ1 are uniformly Lipschitz in x. Moreover, we can easily check that b1(·, 0) ∈ H2(Rn) and
σ1(·, 0) ∈ H2(Rn×d). Consequently, the following SDE:

Xt = a+
∫ t

0

b1(s,Xs)ds+
∫ t

0

σ1(t,Xs)dBs, 0 ≤ t ≤ T



MAXIMUM PRINCIPLE FOR MIXED CONTROL PROBLEM 889

has a unique solution X(·) ∈ S2(Rn). Let us define xt = Xt +
∫ t

0 Csdηs. Then it’s easy to check
that x(·) ∈ S2(Rn) and it solves SDE (1). Thus, the existence of the solution is proved. Let
x1(·) and x2(·) be two solutions of SDE (1). Then we have

x1
t − x2

t =
∫ t

0

[
b(s, x1

s) − b(s, x2
s)

]
ds+

∫ t

0

[
σ(s, x1

s) − σ(s, x2
s)

]
dBs.

By the basic tools of stochastic calculus, it’s easy to get E
[
sup0≤t≤T |x1

t − x2
t |2

]
= 0. Thus, the

uniqueness is also proved.
Giving an FT -measurable random variable ζ, we consider the following BSDE:

yt = ζ +
∫ T

t

f(s, ys, zs)ds−
∫ T

t

zsdBs +
∫ T

t

Dsdηs, 0 ≤ t ≤ T, (2)

where f : [0, T ]×Ω ×R
m × R

m×d → R
m is a measurable mapping and D : [0, T ] → R

m×n is a
continuous function.

Proposition 2.2 Assume that E|ζ|2 <∞, f is uniformly Lipschitz in (y, z) and f(·, 0, 0) ∈
H2(Rm). Then BSDE (2) admits a unique solution (y(·), z(·)) ∈ S2(Rm) ×H2(Rm×d).

Proof Set At =
∫ t

0 Dsdηs and F (t, y, z) = f(t, y − At, z). Then it’s easy to check that the
following BSDE:

Yt = ζ +AT +
∫ T

t

F (s, Ys, Zs)ds−
∫ T

t

ZsdBs, 0 ≤ t ≤ T

admits a unique solution (Y (·), Z(·)) ∈ S2(Rm) × H2(Rm×d). Now, let us set yt = Yt − At

and zt = Zt. Then it follows that (y(·), z(·)) ∈ S2(Rm) ×H2(Rm×d) and it solves BSDE (2).
Let (y1(·), z1(·)) and (y2(·), z2(·)) be two solutions of BSDE (2). By Itô’s formula applied to
|y1

s − y2
s |2, t ≤ s ≤ T , combined with Gronwall’s Lemma, it’s easy to prove the uniqueness.

Now, let us formulate the stochastic optimal regular-singular control problem. The control
system evolves by the following forward-backward stochastic differential equation (FBSDE):

⎧
⎪⎪⎨

⎪⎪⎩

dxt = b(t, xt, vt)dt+ σ(t, xt, vt)dBt + Ctdηt,

dyt = −f(t, xt, yt, zt, vt)dt+ ztdBt −Dtdηt,

x0 = a, yT = ϕ(xT ),

(3)

where b : [0, T ]×R
n×U1 → R

n, σ : [0, T ]×R
n×U1 → R

n×d, f : [0, T ]×R
n×R

m×R
m×d×U1 →

R
m, ϕ : R

n → R
m, C : [0, T ] → R

n×n and D : [0, T ] → R
m×n are continuous functions. The

pair (v(·), η(·)) ∈ U is called an admissible regular-singular control. The problem is to minimize
the following cost functional over U :

J(v(·), η(·)) = E

[
g(xT ) + h(y0) +

∫ T

0

l(t, xt, yt, vt)dt+
∫ T

0

Gt · dηt

]
, (4)

where g : R
n → R, h : R

m → R, l : [0, T ] × R
n × R

m × R
m×d × U1 → R, and G : [0, T ] → R

n

are continuous functions.
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Let us assume
(H1) b, σ, f , and ϕ are bounded by c(1 + |x| + |y| + |z| + |v|). They are continuously

differentiable in (x, y, z), and the partial derivatives are continuous and uniformly bounded.
(H2) g, h, and l are continuously differentiable in (x, y), with derivatives bounded by c(1 +

|x| + |y| + |v|). Moreover, l has linear growth in (x, y, z, v).
By Propositions 2.1 and 2.2, FBSDE (3) admits a unique solution (x(·), y(·), z(·)) ∈ S2(Rn)×

S2(Rm) ×H2(Rm×d), and the functional J is well defined.
In this stochastic regular-singular control problem, the control system is a forward-backward

system, the regular control appears in the diffusion coefficient and the set of regular controls is
not necessarily convex. As mentioned before, this problem is difficult to solve with the classical
method of spike variation. We will consider it with the relaxed control method.

Definition 2.3 A relaxed control (qt)t is a P(U1)-valued, (Ft)-progressively measurable
process such that χ(0,t] · qt is Ft-measurable for any t.

For more details on relaxed controls, one can refer to [17], [21], and [22]. We denote by R1

the set of relaxed controls and by R .= R1 ×U2 the set of admissible relaxed-singular controls.
Now, let us turn to the study of the stochastic optimal relaxed-singular control problem

which corresponds to the regular-singular optimal control problem. The control system is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxt =
∫

U1

b(t, xt, a)qt(da)dt+
∫

U1

σ(t, xt, a)qt(da)dBt + Ctdηt,

dyt = −
∫

U1

f(t, xt, yt, zt, a)qt(da)dt+ ztdBt −Dtdηt,

x0 = a, yT = ϕ(xT ),

(5)

and the expected cost to be minimized over the class R is defined by

J (q(·), η(·)) = E

[
g(xT ) + h(y0) +

∫ T

0

∫

U1

l(t, xt, yt, a)qt(da)dt+
∫ T

0

Gt · dηt

]
. (6)

Let us impose the following condition:
(H3)

E

∫ T

0

[∫

U1

|a|qt(da)
]2

dt <∞, ∀q ∈ R1.

Now, let us show that FBSDE (5) admits a unique solution and J is well defined on R. In
fact, for ψ = b, σ, f, l, set

ψ(t, x, y, z, q) =
∫

U1

ψ(t, x, y, z, a)q(da), (t, x, y, z, q) ∈ [0, T ]× R
n × R

m × R
m×d × P(U1).

Then FBSDE (5) can be rewritten as
⎧
⎪⎪⎨

⎪⎪⎩

dxt = b(t, xt, qt)dt+ b(t, xt, qt)dBt + Ctdηt,

dyt = −f(t, xt, yt, zt, qt)dt+ ztdBt −Dtdηt,

x0 = a, yT = ϕ(xT ),
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and the cost functional becomes

J (q(·), η(·)) = E

[
g(xT ) + h(y0) +

∫ T

0

l(t, xt, yt, qt)dt+
∫ T

0

Gt · dηt

]
.

From the assumptions (H1) and (H3) it follows that b, σ, f are Lipschitz in (x, y, z) and satisfy

E

∫ T

0

[|b(t, 0, qt)|2 + |σ(t, 0, qt)|2 + |f(t, 0, 0, 0, qt)|2
]
dt <∞.

Consequently, FBSDE (5) admits a unique solution (x(·), y(·), z(·)) ∈ S2(Rn) × S2(Rm) ×
H2(Rm×d) and J is well defined on R.

Remark 2.4 The relaxed control finds its interest in two essential points. The first is
that an optimal relaxed control exists under general conditions on the coefficients, while the
existence of regular controls is difficult to insure. See, e.g., [17] and [22]. The second is that the
relaxed-singular control problem is a generalization of the regular-singular control problem. In
fact, if we take qt(da) = δvt(da), where δv is a Dirac measure concentrated at a single point v,
then for ψ = b, σ, f, l, we have

∫

U1

ψ(t, x, y, z, a)δvt(da) = ψ(t, x, y, z, vt).

Thus, FBSDE (3) and the functional J(v(·), η(·)) are special cases of (5) and J (q(·), η(·))
respectively.

3 Necessary and Sufficient Conditions for the Stochastic Optimal

Relaxed-Singular Control Problem

3.1 Maximum Principle for the Stochastic Optimal Relaxed-Singular Control
Problem

Since R is convex, the convex perturbation method is used to derive the maximum prin-
ciple. Let (μ(·), ξ(·)) ∈ R be an optimal relaxed-singular control and (x̂(·), ŷ(·), ẑ(·)) be the
corresponding solution of FBSDE (5). A perturbed control can be defined by

(
μθ

t , ξ
θ
t

)
= (μt + θ(qt − μt), ξt + θ(ηt − ξt)) , ∀θ ∈ [0, 1], (q(·), η(·)) ∈ R.

Let us denote by
(
xθ(·), yθ(·), zθ(·)) the solution of FBSDE (5) associated with

(
μθ(·), ξθ(·)).

Lemma 3.1 Assume (H1) and (H3). Then we have

lim
θ→0

[
sup

0≤t≤T
E|xθ

t − x̂t|2
]

= 0, (7)

lim
θ→0

[
sup

0≤t≤T
E|yθ

t − ŷt|2
]

= 0, (8)

lim
θ→0

E

∫ T

0

|zθ
t − ẑt|2dt = 0. (9)
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Proof From Section 2, we know that both
(
xθ(·), yθ(·), zθ(·)) and (x̂(·), ŷ(·), ẑ(·)) belong to

S2(Rn) × S2(Rm) ×H2(Rm×d). By (H1) and (H3), it’s easy to deduce that

E|xθ
t |2 ≤ c(1 + θ2)

[
1 + E

∫ t

0

|xθ
s|2ds

]
≤ 2c+ 2cE

∫ t

0

|xθ
s|2ds,

where c > 0 is independent of θ. Thus, by Gronwall’s Lemma,

sup
θ

sup
0≤t≤T

E|xθ
t |2 ≤ c. (10)

Now, squaring both sides of

yθ
t +

∫ T

t

zθ
sdBs = ϕ

(
xθ

T

)
+

∫ T

t

∫

U1

f
(
s, xθ

s, y
θ
s , z

θ
s , a

)
μθ

s(da)ds+
∫ T

t

Dsdξ
θ
s ,

and then using (H1) and (10) we derive

E|yθ
t |2 + E

∫ T

t

|zθ
s |2ds ≤ c(1 + θ2)

[

1 + E

∫ T

t

|yθ
s |2ds+ (T − t)E

∫ T

t

|zθ
s |2ds

]

≤ 2c

[

1 + E

∫ T

t

|yθ
s |2ds+ (T − t)E

∫ T

t

|zθ
s |2ds

]

,

where c > 0 is independent of θ and t. By choosing δ = 1
4c , we have

E|yθ
t |2 +

1
2

E

∫ T

t

|zθ
s |2ds ≤ 2c+ 2cE

∫ T

t

|yθ
s |2ds, T − δ ≤ t ≤ T.

Then Gronwall’s Lemma yields

sup
T−δ≤t≤T

E|yθ
t |2 + E

∫ T

T−δ

|zθ
t |2dt ≤ c.

With the same procedure, we obtain

sup
T−2δ≤t≤T−δ

E|yθ
t |2 + E

∫ T−δ

T−2δ

|zθ
t |2dt ≤ c.

After a finite number of iterations, it follows

sup
θ

sup
0≤t≤T

E|yθ
t |2 + sup

θ
E

∫ T

0

|zθ
t |2dt ≤ c. (11)
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By the definition of μθ, we get

xθ
t − x̂t =

∫ t

0

∫

U1

[
b(s, xθ

s, a) − b(s, x̂s, a)
]
μs(da)ds

+
∫ t

0

∫

U1

[
σ(s, xθ

s, a) − σ(s, x̂s, a)
]
μs(da)dBs

+ θ

∫ t

0

∫

U1

b(s, xθ
s, a)qs(da)ds− θ

∫ t

0

∫

U1

b(s, xθ
s, a)μs(da)ds

+ θ

∫ t

0

∫

U1

σ(s, xθ
s , a)qs(da)dBs − θ

∫ t

0

∫

U1

σ(s, xθ
s , a)μs(da)dBs

+ θ

∫ t

0

Csdηs − θ

∫ t

0

Csdξs.

By standard arguments, using (H1), (H3), and (10), we deduce

E|xθ
t − x̂t|2 ≤ cθ2 + c(1 + θ2)E

∫ t

0

|xθ
s − x̂s|2ds ≤ cθ2 + 2cE

∫ t

0

|xθ
s − x̂s|2ds.

From Gronwall’s Lemma, it follows that sup0≤t≤T E|xθ
t − x̂t|2 ≤ cθ2. Then the result (7) follows

immediately.
From the definition of μθ, it follows

(yθ
t − ŷt) +

∫ T

t

(zθ
s − ẑs)dBs

=
[
ϕ(xθ

T ) − ϕ(x̂T )
]
+ θ

∫ T

t

Dsd(ηs − ξs)

+ θ

∫ T

t

∫

U1

f
(
s, xθ

s, y
θ
s , z

θ
s , a

)
qs(da)ds− θ

∫ T

t

∫

U1

f(s, xθ
s, y

θ
s , z

θ
s , a)μs(da)ds

+
∫ T

t

∫

U1

[
f(s, xθ

s, y
θ
s , z

θ
s , a) − f(s, x̂s, y

θ
s , z

θ
s , a)

]
μs(da)ds

+
∫ T

t

∫

U1

[
f(s, x̂s, y

θ
s , z

θ
s , a) − f(s, x̂s, ŷs, z

θ
s , a)

]
μs(da)ds

+
∫ T

t

∫

U1

[
f(s, x̂s, ŷs, z

θ
s , a) − f(s, x̂s, ŷs, ẑs, a)

]
μs(da)ds. (12)

By squaring both sides of (12), using (H1) and (H3), we obtain that there exists c > 0 which
is independent of θ such that

E|yθ
t − ŷt|2 + E

∫ T

t

|zθ
s − ẑs|2ds ≤ cE

∫ T

t

|yθ
s − ŷs|2ds+ c(T − t)E

∫ T

t

|zθ
s − ẑs|2ds+ αθ,

where αθ is given by

αθ = cE|xθ
T − x̂T |2 + cE

∫ T

0

|xθ
t − x̂t|2dt+ cθ2.
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It follows from (7) that lim
θ→0

αθ = 0. Finally, applying the iteration procedure, we obtain the

results (8) and (9).
Let x1(·) be the solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
t =

∫

U1

bx(t, x̂t, a)μt(da) · x1
tdt+

∫

U1

σx(t, x̂t, a)μt(da)x1
t · dBt

+
[∫

U1

b(t, x̂t, a)qt(da) −
∫

U1

b(t, x̂t, a)μt(da)
]
dt

+
[∫

U1

σ(t, x̂t, a)qt(da) −
∫

U1

σ(t, x̂t, a)μt(da)
]
dBt + Ctd(ηt − ξt),

x1
0 = 0,

(13)

and (y1(·), z1(·)) be the solution of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dy1
t =

[∫

U1

f(t, x̂t, ŷt, ẑt, a)qt(da) −
∫

U1

f(t, x̂t, ŷt, ẑt, a)μt(da)
]
dt

+
∫

U1

[
fx(t, x̂t, ŷt, ẑt, a) · x1

t + fy(t, x̂t, ŷt, ẑt, a) · y1
t

+fz(t, x̂t, ŷt, ẑt, a) · z1
t

]
μt(da)dt− z1

t dBt +Dtd(ηt − ξt),

y1
T = ϕx(x̂T )x1

T .

(14)

Set
Xθ

t = θ−1(xθ
t − x̂t) − x1

t , Y θ
t = θ−1(yθ

t − ŷt) − y1
t , Zθ

t = θ−1(zθ
t − ẑt) − z1

t .

Lemma 3.2 Under (H1)–(H3), we have

lim
θ→0

[
sup

0≤t≤T
E|Xθ

t |2
]

= 0, lim
θ→0

[
sup

0≤t≤T
E|Y θ

t |2
]

= 0, lim
θ→0

E

∫ T

0

|Zθ
t |2dt = 0.

Proof It’s easy to check that Xθ
t , Y θ

t , and Zθ
t do not depend on the singular part. Hence,

the result follows immediately from Lemma 9 in [17].
From the optimality of (μ(·), ξ(·)), we derive the following variational inequality.

Lemma 3.3 Let (μ(·), ξ(·)) be an optimal control of the stochastic relaxed-singular control
problem and (x̂(·), ŷ(·), ẑ(·)) be the corresponding trajectory. Then ∀(q(·), η(·)) ∈ R,

0 ≤E
[
gx(x̂T ) · x1

T

]
+ E

[
hy(ŷ0) · y1

0

]
+ E

∫ T

0

Gt · d(ηt − ξt)

+ E

∫ T

0

[∫

U1

l(t, x̂t, ŷt, a)qt(da) −
∫

U1

l(t, x̂t, ŷt, a)μt(da)
]
dt

+ E

∫ T

0

[∫

U1

lx(t, x̂t, ŷt, a)μt(da) · x1
t +

∫

U1

ly(t, x̂t, ŷt, a)μt(da) · y1
t

]
dt.



MAXIMUM PRINCIPLE FOR MIXED CONTROL PROBLEM 895

Proof Since θ−1
[J (μθ(·), ξθ(·)) − J (μ(·), ξ(·))] ≥ 0, from simple calculation, it follows

0 ≤E

[
x1

T ·
∫ 1

0

gx(x̂T + λθ(Xθ
T + x1

T ))dλ
]

+ E

[
y1
0 ·

∫ 1

0

hy(ŷ0 + λθ(Y θ
0 + y1

0))dλ
]

+ E

∫ T

0

[∫

U1

l(t, x̂t, ŷt, a)qt(da) −
∫

U1

l(t, x̂t, ŷt, a)μt(da)
]
dt+ ρθ

t

+ θ−1
E

∫ T

0

∫

U1

[
l(t, xθ

t , y
θ
t , a) − l(t, x̂t, ŷt, a)

]
μt(da)dt+ E

∫ T

0

Gt · d(ηt − ξt), (15)

where ρθ
t is given by

ρθ
t =E

[
Xθ

T ·
∫ 1

0

gx(x̂T + λθ(Xθ
T + x1

T ))dλ
]

+ E

[
Y θ

0 ·
∫ 1

0

hy(ŷ0 + λθ(Y θ
0 + y1

0))dλ
]

+ E

∫ T

0

∫

U1

[
l(t, xθ

t , y
θ
t , a) − l(t, x̂t, ŷt, a)

]
(qt(da) − μt(da))dt.

Set Λθ
t (a) =

(
t, x̂t + λ(xθ

t − x̂t), ŷt + λ(yθ
t − ŷt), a

)
. Then we have

E

∫ T

0

∫

U1

[
l(t, xθ

t , y
θ
t , a) − l(t, x̂t, ŷt, a)

]
(qt(da) − μt(da))dt

=E

∫ T

0

∫ 1

0

∫

U1

[
lx(Λθ

t (a)) · (xθ
t − x̂t) + ly(Λθ

t (a)) · (yθ
t − ŷt)

]
(qt(da) − μt(da))dλdt.

Hence, by Lemmas 3.1 and 3.2, we can use Hölder’s inequality to get ρθ
t → 0 as θ → 0. We also

have

θ−1
E

∫ T

0

∫

U1

[
l(t, xθ

t , y
θ
t , a) − l(t, x̂t, ŷt, a)

]
μt(da)dt

=E

∫ T

0

∫ 1

0

∫

U1

[
lx(Λθ

t (a)) · (Xθ
t + x1

t ) + ly(Λθ
t (a)) · (Y θ

t + x1
t )

]
μt(da)dλdt.

Then the proof can be concluded from Lemmas 3.1, 3.2, and the dominated convergence theorem
by letting θ go to 0 in (15).

Let us define H : [0, T ]× R
n × R

m × R
m×d × P(U1) × R

m × R
n × R

n×d → R by

H(t, x, y, z, q, k, p, P ) =p ·
∫

U1

b(t, x, a)qt(da) + P ·
∫

U1

σ(t, x, a)qt(da)

+ k ·
∫

U1

f(t, x, y, z, a)qt(da) +
∫

U1

l(t, x, y, a)qt(da).

We denote by (xq,η(·), yq,η(·), zq,η(·)) the trajectory corresponding to (q(·), η(·)) ∈ R. Let us
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introduce the following FBSDE (called adjoint equation):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dkμ,ξ
t = Hy

(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
dt

+Hz

(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
dBt,

dpμ,ξ
t = −Hx

(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
dt+ Pμ,ξ

t dBt,

kμ,ξ
0 = hy

(
yμ,ξ
0

)
, pμ,ξ

T = gx

(
xμ,ξ

T

)
+ ϕx

(
xμ,ξ

T

)
kμ,ξ

T .

(16)

It’s easy to check that the adjoint equation admits a unique solution
(
kμ,ξ(·), pμ,ξ(·), Pμ,ξ(·)).

Now, we are ready to establish the maximum principle for the stochastic relaxed-singular
control problem.

Theorem 3.4 Let (μ(·), ξ(·)) be an optimal control of the relaxed-singular optimal control
problem,

(
xμ,ξ(·), yμ,ξ(·), zμ,ξ(·)) be the corresponding trajectory and

(
kμ,ξ(·), pμ,ξ(·), Pμ,ξ(·)) be

the solution of (16) associated with (μ(·), ξ(·)). Then for any (q(·), η(·)) ∈ R, we have

E

∫ T

0

[
H(

t, xμ,ξ
t , yμ,ξ

t , zμ,ξ
t , qt, k

μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)

−H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)]
dt ≥ 0, (17)

E

∫ T

0

(
CT

t p
μ,ξ
t +DT

t k
μ,ξ
t +Gt

) · d(ηt − ξt) ≥ 0. (18)

Proof Applying Itô’s formula to pμ,ξ
t · x1

t + kμ,ξ
t · y1

t , combining with Lemma 3.3, we get

E

∫ T

0

[
H(

t, xμ,ξ
t , yμ,ξ

t , zμ,ξ
t , qt, k

μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

) −H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)]
dt

+ E

∫ T

0

(
CT

t p
μ,ξ
t +DT

t k
μ,ξ
t +Gt

) · d(ηt − ξt) ≥ 0.

We can conclude (17) and (18) by choosing η(·) = ξ(·) and q(·) = μ(·), respectively.
For simplicity, let us set Mt = CT

t p
μ,ξ
t + DT

t k
μ,ξ
t + Gt, Mt = (M1

t ,M
2
t , · · · ,Mn

t )T. Then
similar to Theorem 4.2 in [18] we can get

Theorem 3.5 Assume the conditions in Theorem 3.4 still hold. Then for any q ∈ P(U1),

H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , q, kμ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)

≥ H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
, a.e. a.s., (19)

P

{
n∑

i=1

χ[Mi
t≥0]dξ

i
t = 0

}

= 1, (20)

P
{∀t ∈ [0, T ], ∀i;M i

t ≥ 0
}

= 1. (21)

3.2 Sufficient Optimality Conditions for the Stochastic Relaxed-Singular Control
Problem

Let us still denote by (xq,η(·), yq,η(·), zq,η(·)) the trajectory associated with (q(·), η(·)) ∈ R.
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Theorem 3.6 Assume that g, h, and H(t, ·, ·, ·, q, k, p, P ) are convex, and moreover, yq,η
T

takes the following particular form: yq,η
T = Rxq,η

T +ζ, where R ∈ R
m×n and ζ ∈ L2(Ω ,FT ,P; Rm).

Then (μ(·), ξ(·)) ∈ R is an optimal relaxed-singular control if it satisfies (19), (20), and (21).

Proof Let us denote Ĵ = J (q(·), η(·)) − J (μ(·), ξ(·)) for (q(·), η(·)) ∈ R. Then from the
convexity of g and h, it follows

Ĵ ≥E
[
gx

(
xμ,ξ

T

) · (xq,η
T − xμ,ξ

T

)]
+ E

[
hy

(
yμ,ξ
0

) · (yq,η
0 − yμ,ξ

0

)]
+ E

∫ T

0

Gt · d(ηt − ξt)

+ E

∫ T

0

[∫

U1

l
(
t, xq,η

t , yq,η
t , a

)
qt(da) −

∫

U1

l
(
t, xμ,ξ

t , yμ,ξ
t , a

)
μt(da)

]
dt.

Let us set H
q,η(t) = H(

t, xq,η
t , yq,η

t , zq,η
t , qt, k

μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
. Then by Itô’s formula applied to

pμ,ξ
t · (xq,η

t − xμ,ξ
t

)
+ ku,ξ

t · (yq,η
t − yμ,ξ

t

)
, we get

Ĵ ≥ E

[ ∫ T

0

Mt · d(ηt − ξt) +
∫ T

0

Θt dt

]
,

where

Θt = H
q,η(t) −H

μ,ξ(t) − H
μ,ξ
x (t) · (xq,η

t − xμ,ξ
t

)− H
μ,ξ
y (t) · (yq,η

t − yμ,ξ
t

)−H
μ,ξ
z (t) · (zq,η

t − zμ,ξ
t

)
.

From (20) and (21), it’s easy to get

E

∫ T

0

Mt · d(ηt − ξt) ≥ 0.

By the minimum condition (19) and Lemma 2.3 (iii) of Chapter 3 in [23], we have 0 ∈ ∂qH
μ,ξ(t).

Then by Lemma 2.4 of Chapter 3 in [23], we can further conclude that

(
H

μ,ξ
x (t),Hμ,ξ

y (t),Hμ,ξ
z (t), 0

) ∈ ∂x,y,z,qH
μ,ξ(t).

Consequently, by the assumption that H is convex in (x, y, z) and is linear in q we can conclude
from Lemma 2.3 (v) of Chapter 3 in [23] that Θt ≥ 0. Hence, it follows that Ĵ ≥ 0 and thus
the proof is complete.

4 Necessary and Sufficient Conditions for the Stochastic Regular-

Singular Control Problem

In this section, we aim to derive the necessary and sufficient conditions for the stochas-
tic regular-singular control problem from the corresponding results for the stochastic relaxed-
singular control problem obtained in Section 3.

Let us define δ(U1) × U2 =
{
(q(·), η(·)) ∈ R : q(·) = δv(·), v(·) ∈ U1

} ⊂ R, and denote by
δ(U1) × U2 the action set of all relaxed-singular controls in δ(U1) × U2.

The following result can be easily obtained by Remark 2.4.
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Lemma 4.1 Under (H1)–(H3), we have

min
(v(·),η(·))∈U

J(v(·), η(·)) = min
(q(·),η(·))∈δ(U1)×U2

J (q(·), η(·)).

Thus, (u(·), ξ(·)) minimizes J over U if and only if (δu(·), ξ(·)) minimizes J over δ(U1) × U2.

We need the following result, which is called chattering lemma. It can also be seen in [17]
and [21].

Lemma 4.2 Let q(·) be a predictable process with values in P(U1). Then there exists a
sequence of predictable processes (un(·)) ⊂ U1 such that the sequence of measures dtδun

t
(da)

converges weakly to dtqt(da), P-a.s.

In what follows, we need an additional assumption:
(H4) The set U1 is compact. The functions b, σ, f, l are bounded.
By Lemma 4.2, it’s easy to get the following result, which connects the stochastic regular-

singular control problem with the stochastic relaxed-singular control problem. The proof of
this lemma is very similar to that of Lemma 15 in [17], so we omit it.

Lemma 4.3 There exists a sequence un(·) ⊂ U1 such that (xn,η(·), yn,η(·), zn,η(·)) con-
verges to (xq,η(·), yq,η(·), zq,η(·)) in S2(Rn)×S2(Rm)×H2(Rm×d) and J(un(·), η(·)) converges
to J (q(·), η(·)), where (xn,η(·), yn,η(·), zn,η(·)) is the trajectory corresponding to (un(·), η(·)).

The following lemma will play a key role in deriving the maximum principle in this section.

Lemma 4.4 The regular-singular control (u(·), ξ(·)) minimizes J over U if and only if
the relaxed-singular control (δu(·), ξ(·)) minimizes J over R.

Proof Let us set μ(·) = δu(·). Then it’s easy to check that J(u(·), ξ(·)) = J (μ(·), ξ(·)).
Firstly, we assume that (u(·), ξ(·)) minimizes J over U . For any (q(·), η(·)) ∈ R, by Lemma 4.3
there exists a sequence of processes (un(·)) ⊂ U1 such that J(un(·), η(·)) → J (q(·), η(·)) as n→
∞. Since J(u(·), ξ(·)) ≤ J(un(·), η(·)) for any n, by letting n go to infinity we get J(u(·), ξ(·)) ≤
J (q(·), η(·)), ∀(q(·), η(·)) ∈ R. So J (μ(·), ξ(·)) ≤ J (q(·), η(·)), ∀(q(·), η(·)) ∈ R, from which
we conclude that (μ(·), ξ(·)) minimizes J over R. Secondly, let us assume that (μ(·), ξ(·))
minimizes J over R. Then for any (v(·), η(·)) ∈ U , we have J (μ(·), ξ(·)) ≤ J (δv(·), η(·)) =
J(v(·), η(·)), ∀(v(·), η(·)) ∈ U . So we can obtain J(u(·), ξ(·)) ≤ J(v(·), η(·)), ∀(v(·), η(·)) ∈ U ,
from which it follows that (u(·), ξ(·)) minimizes J over U .

Now, let us define H : [0, T ]× R
n × R

m × R
m×d × U1 × R

m × R
n × R

n×d → R by

H(t, x, y, z, v, k, p, P ) = p · b(t, x, v) + P · σ(t, x, v) + k · f(t, x, y, z, v) + l(t, x, y, v).

Let (u(·), ξ(·)) ∈ U be an optimal control of the regular-singular optimal control problem
and

(
xu,ξ(·), yu,ξ(·), zu,ξ(·)) be the corresponding trajectory. Then it’s easy to check that the
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following adjoint equation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dku,ξ
t = Hy

(
t, xu,ξ

t , yu,ξ
t , zu,ξ

t , ut, k
u,ξ
t , pu,ξ

t , Pu,ξ
t

)
dt

+Hz

(
t, xu,ξ

t , yu,ξ
t , zu,ξ

t , ut, k
u,ξ
t , pu,ξ

t , Pu,ξ
t

)
dBt,

dpu,ξ
t = −Hx

(
t, xu,ξ

t , yu,ξ
t , zu,ξ

t , ut, k
u,ξ
t , pu,ξ

t , Pu,ξ
t

)
dt+ Pu,ξ

t dBt,

ku,ξ
0 = hy

(
yu,ξ
0

)
, pu,ξ

T = gx

(
xu,ξ

T

)
+ ϕx

(
xu,ξ

T

)
ku,ξ

T

(22)

admits a unique solution (ku,ξ(·), pu,ξ(·), Pu,ξ(·)). We are ready to state the maximum principle
for the optimal regular-singular control problem. Let us denote Nt = CT

t p
u,ξ
t + DT

t k
u,ξ
t + Gt

and Nt = (N1
t , N

2
t , · · · , Nn

t )T.

Theorem 4.5 Let (u(·), ξ(·)) ∈ U be an optimal control of the regular-singular optimal
control problem and

(
xu,ξ(·), yu,ξ(·), zu,ξ(·)) be the corresponding trajectory. Then for all v ∈ U1,

H
(
t, xu,ξ

t , yu,ξ
t , zu,ξ

t , v, ku,ξ
t , pu,ξ

t , Pu,ξ
t

)

≥ H
(
t, xu,ξ

t , yu,ξ
t , zu,ξ

t , ut, k
u,ξ
t , pu,ξ

t , Pu,ξ
t

)
, a.e. a.s., (23)

P

{
n∑

i=1

χ[Ni
t≥0]dξ

i
t = 0

}

= 1, (24)

P
{∀t ∈ [0, T ], ∀i;N i

t ≥ 0
}

= 1. (25)

Proof Let us set μ(·) = δu(·). Since (u(·), ξ(·)) ∈ U , we have (μ(·), ξ(·)) ∈ δ(U1) × U2. If
(u(·), ξ(·)) minimizes J over U , then by Lemma 4.4, (μ(·), ξ(·)) minimizes J over R. Hence, by
Theorem 3.5, the adjoint equation (16) admits a unique solution (kμ,ξ(·), pμ,ξ(·), Pμ,ξ(·)) such
that (19), (20), and (21) hold. Since δ(U1) ⊂ R1, by (19) we conclude that for any ρ ∈ δ(U1),

H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , ρ, kμ,ξ
t , pμ,ξ

t , Pμ,ξ
t

) ≥ H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
, a.e. a.s. (26)

On the other hand, for any ρ ∈ δ(U1), there exists v ∈ U1 such that ρ = δv. Then, by the fact
that μ(·) = δu(·) and ρ = δv, it’s easy to get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xμ,ξ

t , yμ,ξ
t , zμ,ξ

t

)
=

(
xu,ξ

t , yu,ξ
t , zu,ξ

t

)
,

(
kμ,ξ

t , pμ,ξ
t , Pμ,ξ

t

)
=

(
ku,ξ

t , pu,ξ
t , Pu,ξ

t

)
,

H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
= H

(
t, xu,ξ

t , yu,ξ
t , zu,ξ

t , ut, k
u,ξ
t , pu,ξ

t , Pu,ξ
t

)
,

H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , ρ, kμ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
= H

(
t, xu,ξ

t , yu,ξ
t , zu,ξ

t , v, ku,ξ
t , pu,ξ

t , Pu,ξ
t

)
.

(27)

Hence, the result (23) follows from (26) and (27). The results (24) and (25) are immediate
consequences of (20) and (21).

Finally, we establish the sufficient optimality conditions for the optimal regular-singular
control problem.
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Theorem 4.6 Assume that g, h, and H(t, ·, ·, ·, v, k, p, P ) are convex, and moreover, yv,η
T

takes the following particular form: yv,η
T = Rxv,η

T +ζ, where R ∈ R
m×n and ζ ∈ L2(Ω ,FT ,P; Rm).

Then (u(·), ξ(·)) is an optimal control of the regular-singular optimal control problem if it sat-
isfies (23), (24), and (25).

Proof For (u(·), ξ(·)), (v(·), η(·)) ∈ U , there exist μ(·), ρ(·) ∈ δ(U1) such that μ(·) = δu(·),
ρ(·) = δv(·). This implies that (27) holds. Then it follows from (23), (24), and (25) that

H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , ρt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)

≥ H(
t, xμ,ξ

t , yμ,ξ
t , zμ,ξ

t , μt, k
μ,ξ
t , pμ,ξ

t , Pμ,ξ
t

)
, a.e. a.s.,

P

{
n∑

i=1

χ[Mi
t≥0]dξ

i
t = 0

}

= 1,

P
{∀t ∈ [0, T ], ∀i;M i

t ≥ 0
}

= 1.

Then similar to the proof of Theorem 3.6, it’s easy to deduce that (μ(·), ξ(·)) minimizes J over
δ(U1) × U2. Finally, by Lemma 4.1, we conclude that (u(·), ξ(·)) minimizes J over U .
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