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Abstract After half a century research, the mechanical theorem proving in geometries has become

an active research topic in the automated reasoning field. This review involves three approaches on

automated generating readable machine proofs for geometry theorems which include search methods,

coordinate-free methods, and formal logic methods. Some critical issues about these approaches are

also discussed. Furthermore, the authors propose three further research directions for the readable

machine proofs for geometry theorems, including geometry inequalities, intelligent geometry softwares

and machine learning.
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1 Introduction

It has been a human dream to find a “silver bullet” or a cookbook for solving all geometry
problems. Many prominent scientists have arduously explored the dream in history. About 300
BC, Euclid, the author of the classical book Elements of Geometry, said to Ptolemy I king:
“There is no royal road to geometry”. In the middle of the 17th century, Descartes tried to
propose an unified approach for all geometry problems by introducing the coordinate system
into geometry. In the early period of the 20th century, Hilbert presented an ambitious plan of
establishing a complete formal system for each mathematic theory. He wanted to find a general
decision method for all statements in the formal system. In his classic book Foundations of
Geometry, he also outlined one of this kind of method just adaptable to a class of geometry
statements in affine geometry[1−2]. However, the incompleteness theorem published by Gödel
completely denied the feasibility of Hilbert’s plan in 1931.

In 1951, Tarski proposed a noticeable decision method for elementary geometry and elemen-
tary algebra[3]. In spite of subsequent improvements by Seidenberg and others, Tarski’s method
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remained impractical for proving non-trivial geometry theorems[4]. In 1974, Collins made an
important contribution to Tarski’s method by proposing the cylindrical algebra decomposition
algorithm (CAD)[5]. Based on the CAD, Arnon implemented a program which could prove
several difficult geometry theorems[6].

A breakthrough in the automated geometry theorem proving is made by the famous Chinese
mathematician Wu Wen-tsün in 1977[7]. Under the enlightenment of Chinese ancient idea of
mathematical mechanization, he proposed a decision method for a class of geometry statements
of equality type[8]. Later, it was clarified that the algebraic tools needed in Wu’s method can
be developed from Ritt’s work[9]. The algebraic aspect of this approach is known as the Wu-
Ritt’s characteristic set method[10]. Wu’s method can prove quite difficult geometry theorems
efficiently. The prover based on Wu’s method implemented by Chou has successfully proved
512 non-trivial geometry theorems[11−12], which made the Wu’s method wildly known in the
automated reasoning field.

The success of Wu’s method has inspired many scholars’ interests in the automated ge-
ometry theorem proving. Under the influence of Wu’s success, many decision methods have
been brought forward such as the Gröbner method (GB)[13−14], the resultant method[15−16],
the elimination method[17], the proving-by-examples method[18−19], and the parallel numerical
method[19−20].

The basic ideas of above methods are to firstly algebraize geometry statements by the
coordinate system, and then decide the truth or falsity of statements using profound algebraic
theories. Because of this, all of these methods are generally called algebraic approaches based
on coordinate. These approaches can only decide the truth or falsity of geometry statements,
but can not generate proofs which are from hypotheses to conclusion in the traditional style.
The decision process of these approaches usually involves complex computation of some “large
scale polynomials”. Sometimes, several polynomials in the decision process have up to hundreds
of items and even up to thousands of items. It is difficult for people to understand the geometric
meaning of these polynomials, and it is also tedious and formidable for people to verify whether
the computation of those large scale polynomials is correct or not.

How to generate readable machine proofs for geometry theorems automatically is a quite
challenging and interesting research topic. Since the basic idea of automated reasoning is to
replace the difficulty of quality with the complexity of quantity, some scientists think that it is
very difficult to image automatically generating readable machine proofs for geometry theorems.
In fact, early in 1958, Gelernter and his collaborators had began to research on how to generate
traditional proofs for geometry theorems by computers[21−23]. Their program proved some
simple geometry statements of middle school level. After nearly 30 years’ development, only
some very simple geometry statements had been readably proved using computer, while effective
method was still not found.

In 1993, a breakthrough in automated generating readable machine proofs for geometry
theorems is made by Chou, Gao, and Zhang[24−25]. For many famous geometry theorems, such
as Butterfly theorem, Simson’s theorem, Desargues’ theorem and Feuerbach’s theorem, the area
method proposed by them can automatically and effectively generate very short and beautiful
readable proofs[24−25].

The success of the area method had also unprecedentedly inspired research interests in the
automated generating readable machine proofs for geometry theorems which has become an
active field in the automated reasoning today. Many other methods that can generate readable
proofs for geometry theorems have made great progress. Furthermore, more and more attention
has been paid to the application value of the automated generation readable machine proofs
for geometry theorems. The intelligent geometry software that can generate readable proofs for
geometry theorems has been widely applied in the education field.
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The rest of this paper is divided into two parts. Section 2 is a review of three kinds
of approaches to automatically generating readable machine proofs for geometry theorems,
including search methods, coordinate-free methods, and formal logic methods. In Section 3, we
look forward into the future of the automated generating readable machine proofs for geometry
theorems from three possible directions including geometry inequalities, intelligent geometry
softwares, and machine learning.

2 Research Review

2.1 Search Methods

The basic idea of search methods is to simulate human solving process of geometry problems
using artificial intelligent techniques. The synthetic approach and the analytic approach are
two kinds of traditional techniques of solving geometry problems. The synthetic approach starts
from the hypotheses of statement to deduce more conclusions step by step until the conclusion
to be proved is deduced. The analytic approach starts from the conclusion of a statement to
look for sufficient conditions step by step until one of the sufficient conditions could be derived
from the hypotheses. When proving geometry statements, we usually look for the idea of the
proof with the analytic approach, and express the proof itself in synthetic style.

Essentially, the search method is a rule-based expert system, whose basic structure is com-
posed of three parts, including a rule database, a fact database, and a reasoning engine. All
rules of inference used by the engine, which usually are axioms, theorems, lemmas, formulae,
definitions and algebraic operation rules in geometry, are stored in the rule database. All ge-
ometric facts stored in the fact database are expressed by given geometry predicates such as
equidistant, equiangular, parallel, perpendicular, and midpoint. The reasoning engine applies
rules of inference into the facts database so as to deduce more new geometric facts again and
again.

According to the direction of the deduction, there are three kinds of search method includ-
ing forward chaining method[26−27], backward chaining method[21−23,28−29], and bidirectional
chaining method[30−33]. The forward chaining method deduces from the hypotheses to the con-
clusion, the backward chaining method deduces from the conclusion to the hypotheses and the
bidirectional chaining method deduces simultaneously from the hypotheses and the conclusion
to the middle of the proof. Each kind of three search methods has different advantages and
disadvantages. The forward chaining method is always feasible, but it does not have explicit
reasoning goal. The backward chaining method has explicit reasoning goal, but it sometimes
lacks feasibility. The bidirectional chaining method is feasible and has explicit reasoning goal,
but it is difficult to implement it.

The earliest work in the geometry theorem proving based on the search method can be
traced back to Gelernter and his collaborators[21−23]. In 1958, they studied how to prove
Euclid geometry theorems with the backward chaining method. If making aimless search,
the backward chaining method would generate a huge proof tree during its searching process,
which may probably cause not to find the goal to be proved within reasonable time and limited
memory space. For this reason, they took numerical diagram as heuristic information to improve
the search efficiency of the backward chaining method[22−23]. During backward searching, the
generated sub-goals are verified numerically in the numerical diagram. Those invalid sub-goals,
which are false in the numerical diagram, are deleted. Furthermore, they also discussed simply
several important ideas in automated reasoning, such as constructing auxiliary points and using
lemmas. Gelernter’s Geometry Machine (GM) proved more than 50 geometry statements of
middle school level in IBM704 machine[22−23]. The following Example 1 is one of the most
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difficult geometry theorem which could be proved by GM, given that the auxiliary point G (the
intersection point of CE and AB) is artificially constructed in the diagram.

Example 1 If ABCD is a trapezoid, AB‖CD, E and F are midpoints of BD and AC
respectively, EF meets AD at M , then AM = DM (Figure 1).

D C

EFM

A B
G

Figure 1 One of the most difficult geometry theorem proved by GM

The work of Gelernter and his collaborators has attracted wide attention in the artificial
intelligence field[21−23]. Many scholars have made a large amount of research on the search
method and most of these works could be regarded as the extension and improvement of Gel-
ernter’s work[28−35].

In 1975, Nevins began to prove geometry theorems with the bidirectional chaining method[31].
In the reasoning process, the forward chaining method was mainly used to search new geometric
facts in the diagram and the backward chaining method is used only to prove the equilateral or
equiangular. Besides, he adopted a series of structural knowledge representation techniques to
improve the efficiency of the forward chaining method, such as canonical naming and storing
equiangular or equidistant information by equivalence class. The prover implemented by Nevins
had proved all geometry theorems in [22–23, 28] in PDP-10 computer. The running time each
of these was less than 5, except one theorem.

In 1986, Coelho and Pereira implemented a prover GEOM based on the bidirectional chain-
ing method[33]. What different from the prover implemented by Nevins is that the GEOM paid
more attention to the application of backward chaining method in the reasoning process and
only used the forward chaining method to search congruent triangles hidden in the diagram.
Same as the Nevins’ prover, the GEOM can prove some simple elementary plane geometry
theorems. Coelho and Pereira also analyzed and compared reasoning efficiency of these two
methods in detail. As they pointed out, the efficiency of search methods had something to do
with the type of the geometry theorem to be proved. Some geometry theorems were adaptable
to the backward chaining method, while others were adaptable to the forward chaining method.
The general geometry theorem prover should combine the forward chaining method with the
backward chaining method.

In 1995, Chou, Gao, and Zhang proposed a deductive database method by introducing
deductive database techniques into search methods[26−27,36]. The deductive database method
can find a fixpoint for a given geometric diagram, i.e., it can find all properties of the geo-
metric diagrams that can be deduced using a fixed set of geometric rules. They effectively
controlled the size of the facts database with the structural deductive database techniques.
Their experiments showed that the structured deductive database technique can reduce the
size of the database by one thousand times. Furthermore, they also improved the efficiency of
the forward chaining method significantly by some other techniques, such as the data searching
tactics, rules of adding auxiliary points, and full-angle reasoning rules. The prover Geometry
Expert (GEX) implemented by them had successfully proved more than 150 difficult geometry
theorems, of which including many famous geometry theorems such as Orthocenter theorem,
Simson’s theorem and Butterfly theorem[37]. It is wonderful that GEX can effectively prove
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Miquel’s five-circle theorem which is difficult for the algebraic approaches because excessively
large memory is needed to prove this theorem[27].

Example 2 (Miquel’s Five-Circle Theorem) Let P0, P1, P2, P3, P4 be five points, P0P1

meets P3P2 and P3P4 at Q1 and Q4, respectively, P1P2 meets P4P0 and P4P3 at Q0 and Q2 re-
spectively, and P2P3 meets P0P4 at Q3. Let the other intersections of consecutive circumscribed
of triangles P0P4Q4, P1P0Q0, P2P1Q1, P3P2Q2, P4P3Q3 be M0, M1, M2, M3, M4 respectively.
Show that M0, M1, M2, M3 and M4 are concyclic (Figure 2).
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Figure 2 Miquel’s five-circle theorem

The reasoning efficiency is still the key issue for search methods. A large amount of experi-
ments show that heuristic[21−23,27−32,38−41] is one of the most effective techniques for improving
the efficiency of search methods. Furthermore, eliminating redundant reasoning[27], eliminating
redundant matches[29,39], and optimizing structures of the facts database can also significantly
improve the reasoning efficiency of search methods.

One of the main reasons that search methods could not prove very difficult theorems is
that it didn’t have a construction algorithm for adding auxiliary lines or points automatically.
Wong, Reiter and Robinson analyzed logic foundations of adding auxiliary lines or points, but
none of them gave concrete implementation of adding auxiliary lines or points[42−44]. The
way of Gelernter, Gilmore, Goldstein, Ullman, Nevins, Welham and others to implement the
construction is just to connect two existing points in the diagram[21−23,28,30−31,41]. Elcock
designed a method for constructing the intersection point of two existing line segments in
the diagram[45]. Greeno found a method to construct auxiliary segments of congruent triangles
with a common edge[46]. Coelho and Pereira added auxiliary lines for applying the quadrilateral
axiom[33]. The prover GEX uses more than thirty rules of adding auxiliary points to enhance
its power[27]. Though GEX proved about forty theorems by adding auxiliary points, it still
can not find auxiliary lines or points for many non-trivial famous theorems, such as Pappus’
hexagon theorem, Simson’s theorem and Desargues’ theorem. The prover GRAM of Matsuda
and Vanlen proved 32 geometry theorems that require auxiliary lines or points[47]. Worthy of
special mention is that GRAM found 4 different auxiliary lines for Example 1 mentioned above
after running 3967 seconds[47].

It is very difficult to deduce algebraic expressions involving geometric quantities using search
methods. The essential cause is that it will lead to combinatorial explosion of search space.
Algebraic expressions involving geometric quantities can not be deduced basically using provers
based on search methods[21−23,28,30−33]. The prover GEX can only express the geometric pro-
portion with the given predicates but can not deduce a little more complex relational expressions
of line segment[27]. The prover GRAM can not deduce algebraic expressions involving geomet-
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ric quantities at all[47]. In [40], a heuristic algorithm which could deduce polynomial equality
involving geometric quantities had been brought forward. The prover based on the heuristic al-
gorithm could generate readable machine proofs for some geometry theorems whose conclusions
are geometric equalities, such as Euler’s theorem, Ptolemy’s theorem and Stewart’s theorem.
This heuristic algorithm enjoyed high efficiency, but it is incomplete and still needs to be further
improved[40].

2.2 Formal Logic Methods

One of the early applications of the automated reasoning is to prove mathematical theorems
by computer. In 1956, thirty-eight theorems in the classic book Principia Mathematica of
Whitehead and Russell were successfully proved by Logic Theory Machine of Newell and Simon.
In 1958, the prover designed by Wang Hao spent only three minutes proving all theorems of
propositional calculus in Principia Mathematica. In 1959, Gelernter’s GM proved about fifty
geometry statements of high school level. In 1965, the resolution principle proposed by Robinson
has inspired a new wave of research on automated theorem reasoning. In 1996, the famous
Robbins problem was proved by McCune using the theorem prover EQP.

Currently, automated theorem proving has been the best developed subfield of automated
reasoning. Many theorem provers based on the logic method were successful developed, such
as first-order logic theorem provers Otter, E, SPASS and Vampire, as well as higher-order logic
theorem provers Coq, Isabelle, HOL and ACL2. There are many popular deductive methods
used by theorem provers based on logic, including Hilbert-style deductive systems, natural
deduction, resolution, tableaux methods, sequence calculus, and constructive type calculus.

As early as in 1976, McCharen and Wos have done an experiment of proving theorems in
Tarski’s geometry with their prover ITP[48]. They have only proved several trivial geometry
theorems. ITP is an interactive theorem prover based on the resolution principle and the proof
generated by it is a proof of resolution-style. The proof of resolution style is machine-oriented
and has certain readability since some steps are also coincident with the traditional proof.
In 1989, Quaife continued the work of McCharen with Otter[49]. The Otter is an automated
theorem prover based on resolution and a series of tactics used by it can improve the resolution
efficiency such as Hyper-resolution, UR-resolution, paramodulation, support set and weight of
clause. In order to further improve the proving efficiency of Otter, Quaife had also adopted
the weight of clause as heuristic to reduce the search space, especially to reduce the quantity
of the useless clauses generated by the paramodulation. He set the maximum weight value
of the reserved clause as 25 and the clauses exceeding this maximum weight value would be
abandoned. The other weight heuristic tactics was just to reserve the ground clause and abandon
the clauses containing the variables. Quaife had proved 62 Tarski’s geometry theorems, most
of which could not be proved by previous provers based on resolution. One of the most difficult
Tarski’s geometry theorem which was proved by Otter is the bisecting diagonals theorem[49].
This theorem had been successfully proved after running Otter 555.59 seconds and total 23764
clauses had been generated in the proving process, but only 1615 clauses were reserved after
using the weight heuristic tactics. Furthermore, Quaife had also written a post processing
program which could convert the output of Otter into more readable proofs[49].

Example 3 (Bisecting Diagonals Theorem) The diagonals of a non-degenerate rectangle
bisect each other (Figure 3).
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Figure 3 Bisecting diagonals theorem

In 2003, Meikle and Fleuriot developed Hilbert’s geometry with the theorem prover Isabelle/
Isar[50]. Isabelle is a semi-automated theorem prover, which not only supports interactive
theorem proving but also supports semi-automated theorem proving to some extent. Isar is a
structural formal proof language, which can convert the outputs of Isabelle into readable proofs
which can be understood more easily by people. Meikle and Fleuriot have just formalized the
first three groups of axioms in the Hilbert’s axiom system and proved some direct inferences
of these axioms with Isabelle/Isar such as SAS theorem. In 2008, Scott continued the work
of Meikle and Fleuriot and further studied how to improve the proof quality generated by
Isabelle[51]. Compared with the traditional proofs given by people, the proofs generated by
Isabelle are extraordinary verbose. Even if proving those trivial geometry theorems, the proofs
generated by it would probably contain very long steps. Though tactics can shorten the length
of reasoning to some extent, it was difficult to process the non-trivial high-level proofs with
tactics. In order to eliminate a great number of trivial reasoning steps and further shorten
the proof length, Scott used some abstract geometric predicates such as collinear and planar.
He not only viewed the collinearity or coplanarity as the relationship of points but also as a
set of points. In this way, the trivial reasoning relevant to collinearity or coplanarity could be
eliminated through operations of sets, such as subset, intersection, union, set difference and set
complement. For example, the subsets of collinearity or coplanarity are still collinear or planar.

Example 4 (SAS Theorem) If AB and A′B′ are congruent, � BAC and � B′A′C′ are
congruent, and AC and A′C′ are congruent in �ABC and �A′B′C′, then �ABC is congurent
to �A′B′C′ (Figure 4).

A

C

B A'

C'

B'

Figure 4 SAS theorem

Coq is a proving assistant based on the calculus of inductive construction. Its high-level
language can be used to define axioms, parameters, types, functions, predicates and so on.
Coq is not an automated theorem prover, but it contains many tactics and various decision
processes which can be used for automated theorem proving. The tactic is a program consist
of basic logic steps needed for theorem proving. Kahn has formalized the constructive geom-
etry of Plato and Coq. Dehlinger has also formalized incidence axioms and order axioms in
Hilbert axiom system[52]. In 2004, Narboux implemented a proving tactic for geometry theo-
rem based on the area method[53]. Since Narboux’s tactic uses only two geometric invariants,
signed area and directed line segment ratio, and does not use the Pythagorean difference, it
could only prove some constructive affine geometry theorems other than those geometry theo-
rems involving metric property such as perpendicular or equiangular. For the convenience of
implementation, Narboux divided his tactic into 6 sub-tactics executing different proving tasks:
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Initialization tactic, simplification tactic, unification tactic, elimination tactic, free point elim-
ination tactic and conclusion tactic. This tactic implemented by Narboux was slower than the
prover Euclid implemented by Chou, Gao, and Zhang[25,54], but more than 20 non-trivial con-
structive affine geometry theorems could also be proved within several minutes such as Ceva’s
theorem, Menelaus’ theorem, Pascal’s theorem and Desargues’ theorem[53]. In 2007, Narboux
had integrated the dynamic geometric software GeoProof, the automated theorem prover and
the interactive proving system Coq to one software used for teaching and learning geometry
theorem[55]. Users can explore, measure and discover the hypothesis with GeoProof, verify the
facts with Gröbner method or Wu’s method and mechanically check user’s proof with Coq.

The greatest disadvantage of formal logic methods is their low reasoning efficiency. Though
the general theorem provers, such as Otter, Isabelle and Coq, have been able to prove some
relatively simple geometry theorems in high-speed computer, they do not have the capability
of proving any class of difficult geometry theorems. The essential cause for low efficiency of
formal logic methods is the combination explosion of its search space. The use of heuristic is one
effective technique to improve the reasoning efficiency of formal logic methods. For example,
the proof search can be guided to advance towards the correct direction with the geometric
diagrams as the semantic model. The search space is reduced through deleting those sub-
goals which are checked false in the geometric diagram [23,33,43]. In [56], the possible lemmas
were proposed through the geometric diagrams to plan the proof. How to realize the semantic
resolution and support set tactics with the geometric diagrams is discussed in the paper so as
to further enhance the proving efficiency of general theorem provers based on the resolution
principle. Furthermore, the formal logic methods and other high-efficient proving methods can
be combined into a more effective hybrid deduction method. The classical first-order logic
method and the algebraic methods can be combined to develop a hybrid deduction system,
which can generate the easily understood readable proofs of different levels[57−58].

The readability of proofs produced by formal logic methods is still needed for further im-
proving. Usually, those proofs generated with formal logic methods contain a great number of
redundant reasoning steps, which makes them appear extraordinary verbose and be not good
for understanding and reading. The elimination of the redundant reasoning steps can further
enhance the readability of the proof. The symmetry and transitivity of geometric predicates is
the main reason for generating redundant reasoning[21,27,31,38,51]. The equivalence class reason-
ing can significantly eliminate the redundant reasoning steps generated by geometric equivalent
predicates such as equiangular, equidistant, congruent and similar[38]. The redundant reason-
ing steps generated by the geometric predicates such as collinear and planar, are eliminated
through operations among sets[51]. The redundant reasoning steps was eliminated with the
deductive database technique[27]. It can effectively eliminate redundant reasoning generated by
those symmetry geometric predicates through introducing an order relation between geometric
objects (points, line segments, straight lines, angles, triangles, etc) to unify the geometric pred-
icate information of various equivalent forms into one standard format[21,31,49,56]. Furthermore,
those traditional geometric proving techniques, such as proving by contradiction, the identity
method and the analogy method, can be used to further improve readability of formal logic
methods. For example, the analogy reasoning is used to generate more easily understood read-
able machine proofs for geometry theorems[56,59]. Lemmas can be introduced through checking
analogy between compositions of the proof to further make the proof shorter and more readable.

2.3 Coordinate-Free Methods

Coordinate-free methods do not use low-level coordinates but use high-level geometric in-
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variants to translate geometry statements into algebraic forms. Roughly speaking, this kind of
method is adaptable to the constructive geometry statements of equality type. The so-called
constructive geometry statement refers to the geometry statement that the hypotheses can
be described by a sequence of geometry construction steps and the conclusion can be repre-
sented with the rational equality of high-level geometric invariants. According to the difference
of high-level geometric invariants being used, coordinate-free methods can be developed into
various proving methods of different styles, such as the area method[25,54,60−62], the full-angle
method[36,61] and the complex number method[61] applying to Euclid plane geometry, the vol-
ume method[61] applying to Euclid solid geometry, the vector method[61] applying to Euclidean
geometry and the argument method[61] applying to non-Euclidean geometry.

The area method is an age-old solving approach for geometric problems. The famous
Pythagorean theorem in plane geometry was proved with the area method at the earliest. Usu-
ally, the area method is only viewed as a special technique of solving geometric problems; how-
ever, Zhang had gradually recognized the universality of the area method in the long-term teach-
ing practice and developed it into a systematic method to solve geometric problems[54,61−65]. In
1992, cooperating with Chou and Gao, Zhang further improved the area method and developed
it into a mechanical algorithm which could be well run in computer[25,54,60−61].

The area method uses three geometric invariants, including the signed area, the directed
line segment ratio and the Pythagorean difference. Since the main geometric invariant is the
signed area, this method is known as the area method. The area method is complete for con-
structive geometry statements. If the constructive geometry statement to be proved is true, it
can be certainly proved with the area method. If the geometry statement can not be proved
with the area method, this statement must be false. The proof generated automatically by the
area method is usually short and elegant, its readability can be comparable with the traditional
proofs and its efficiency is also almost the same with those powerful algebraic methods based
on coordinate, such as the Wu’s method and the GB method[60]. Furthermore, the area method
can be used to search multiple proofs and the shortest proof[66]. The geometry theorem prover
Euclid which was implemented based on the area method by Chou, Gao, and Zhang had suc-
cessfully proved more than four hundred non-trivial geometry theorems[60], of which including
many famous geometry theorems, such as Butterfly theorem, Pappus’ theorem, Simson’s the-
orem, Desargues’ theorem, Pascal’s theorem and Feuerbach’s theorem. This work made the
readable machine proofs in geometry which didn’t have any progress for several tens of years
achieve an important breakthrough[25,54,60].

Example 5 (Pappus’ Hexagon Theorem) If A, B and C are three points on one line, X ,
Y and Z are three points on another line, and AY meets XB at P , AZ meets XC at Q, BZ
meets Y C at R, then P , Q and R are collinear (Figure 5).

A B C

X
Y

Z

P
Q

R

Figure 5 Pappus’ hexagon theorem

Not all proofs generated by the area method are short and elegant. Especially, the area
method doesn’t work well for those geometry theorems only involving traditional angle essen-
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tially, such as the Miquel’s five-circle theorem and the Miquel’s theorem[60,67]. One of the most
essential factors is that the traditional angle is a concept involving ordering relation in geom-
etry. To overcome this shortcoming of the area method, Chou, Gao, and Zhang proposed a
method based on full-angle and extended the idea of eliminating variables or points to the idea
of eliminating lines[60,67−69]. The concept of full-angle was explicitly used by Wu to express the
predicate of angle congruence as an algebraic equation[8]. The prover based on the full-angle
method can produce short and elegant proofs for more than one hundred geometry theorems[67].
Furthermore, the proofs produced with full-angles were more like traditional proofs. The full-
angle method is not complete for constructive geometry theorems, but it could be developed as
a complete method by being integrated into the area method. So the full-angle method could
be taken as a complement to the area method[67].

Since the signed area is equivalent to the outer product of vectors, Pythagorean difference
is equivalent to the inner product of vectors and the length of the directed line segment is
equivalent to the modulus of vectors, it is natural to think that taking the vector as the ge-
ometric invariants can also be developed to a new eliminating-point method. In 1993, Chou,
Gao, and Zhang proposed a proving method based on the vector[60,70]. The advantage of the
vector method is that it could be easily generalized to high dimensional geometry, while its
disadvantage is that the readability of proofs is poorer than that of the area method. The
prover based on the vector method has readably proved more than 410 non-trivial geometry
theorems[70].

The plane vector can be represented by complex number, so the vector method could be
translated into the complex number method through a little modification[60]. Since the com-
plex number can carry out operations such as plus, minus, multiplication and division, which
makes the complex number method have more flexibility than the vector method and the area
method. For some special geometry theorems, the proofs given by the complex number method
are shorter than those given by the vector method and the area method. For example, if Mor-
ley’s trisector theorem is proved by the area method[60], its result would be very bad. The
area method could produce a proof after running 1086.8 seconds and there were up to 3125
polynomials in the proof! If this theorem is proved by the complex number method, a short
and elegant readable proof would be produced.

Example 6 (Morley’s Trisector Theorem) In �ABC, let P , Q and R be three points
of intersection of the adjacent angle trisector. Prove that �PQR is an equilateral triangle
(Figure 6).

A B

C

R

P

Q

Figure 6 Morley’s trisector theorem

In 1995, Chou, Gao, and Zhang had further developed the area method to solid geometry.
They proposed a coordinate-free method based on volume with which many solid geometry
theorems could be proved readably[71]. Besides using those geometric invariants of the area
method, this method also uses signed volume as geometric invariants. More than 80 solid
geometry theorems have been proved with this method, of which including many non-trivial
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solid geometry theorems, such as the centroid theorem, Ceva’s theorem, Menelaus’ theorem,
Desargues’ theorem, and Monge’s theorem.

In 1997, Yang, Gao, Chou, and Zhang had further generalized the area method to non-
Euclidean geometry and proposed a coordinate-free method based on argument[72]. The argu-
ment method mainly uses two geometric invariants: one is the argument(roughly speaking, it
is sine value of the area) and the other is cosine value of the distance. The argument method is
complete and effective for constructive non-Euclidean geometry statements. The prover based
on the argument method generated readable proofs for more than 90 non-Euclidean geom-
etry theorems. Worthy of special mention is that they have discovered several tens of new
non-Euclidean geometry theorems with this method automatically.

Almost above coordinate-free methods deal with geometry theorems using some geomet-
ric quantities. However, the mass point method proposed by Zou and Zhang directly deals
with geometric points rather than geometric quantities[69]. The mass point method is also a
coordinate-free and diagram-independent method. It could be implemented as provers capable
of proving many difficult geometry theorems, including Pappus’ Theorem, Pascal’s Theorem,
Feuerbach’s Theorem and even Morley’s Trisector Theorem. The proofs generated by the mass
point method are indeed human readable and easily understood by a mathematician, and more-
over, each expression in a proof has clear and intuitive geometrical meaning, although some of
them may involve seemingly huge expressions. Since it is feasible to apply arithmetic operations
directly to geometric points, the algorithms and implementations for the mass point method
are much easier and more concise than that of the area method.

The coordinate-free methods can also be further generalized to more general geometric al-
gebras, such as bracket algebra and Clifford algebra[73]. A method based on bracket algebra for
proving projective geometry theorems was given in [74–75], with which many difficult geome-
try theorems in projective geometry have been proved. Though proofs generated with bracket
algebra are also very short, its readability reduces compared with the area method. Some re-
searchers proposed a method based on Clifford algebra to generate readable proofs for geometry
theorems[76−78]. It can not only prove extremely difficult theorems but also solve famous open
problems with Clifford algebra. For example, one open problem put forward by Erdös has been
more successfully solved by the Clifford algebra method[79]. Neither the Miquel’s five-circle
theorem nor the Miquel theorem in the plane geometry can be proved with those powerful al-
gebraic method based on coordinate, but both theorems can be proved by the Clifford algebra
method with very short and very beautiful readable proofs. Furthermore, the Clifford algebra
method can not only prove theorems in Euclidean geometry[58,80−81], but also theorems in other
geometries, such as projective geometry[74], affine geometry[82], and differential geometry[83−84].
Some geometry theorems relevant to conic curves have also been readably proved by the Clifford
algebra method[81].

These existing coordinate-free methods can also be further improved. On one hand, these
methods could be expanded by introducing more geometric invariants or more geometry dia-
gram constructions; on the other hand, the idea of eliminating point could be developed to ideas
of eliminating other geometric objects, such as eliminating line, eliminating circle, eliminating
plane or eliminating solid, in this way might the readability of proofs be further improved.
Furthermore, coordinate-free methods could only prove the constructive geometry theorems of
equality type, while could not prove the constructive geometric inequalities. In our opinion, it
would be a research direction with hope of gaining new breakthrough to discuss coordinate-free
methods being able to prove geometric inequalities. Finally, it would probably be a very chal-
lenging task to combine coordinate-free methods, search methods and pure algebraic methods
organically so as to design a higher effective and stronger method that could produce readable
machine proofs for geometry theorems, but every step towards this direction would be very
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valuable.

3 Further Research Directions

3.1 Geometric Inequalities

The mechanical proving geometric inequalities has been regarded as one of the most diffi-
cult problems in the automated reasoning field. Though geometric inequalities could be proved
with the quantifier elimination method of Tarski theoretically[3], there are not any non-trivial
geometric inequality being proved by it in computers at all since its complexity is too high.
The efficiency of the quantifier elimination method had been improved a little by Seidenberg,
Collins, Arnon and Dolzmannin later[4−6,85]. Especially, the cylindrical algebra decomposi-
tion algorithm (CAD) proposed by G. Collins had been able to prove some simple geometric
inequalities[5]. Wu and Wang had studied how to prove geometric inequalities with the char-
acteristic set method (CS)[86−88]. Though the CS method is not common as the CAD, the CS
method has higher efficiency than CAD for some types of inequality. The dimension-decreasing
algorithm (DDA) proposed by Yang can effectively prove many classes of non-trivial geometric
inequalities[89−91]. The prover BOTTEMA implemented by Yang took more than two sec-
onds to verify more than one hundred basic inequalities in the Bottema’s book [92] in Pentium
IV/2200 computer, of which including some classical geometric inequalities, such as Euler’s
inequality, Finsler-Hadwiger’s inequality and Gerretseen’s inequality[89−91]. This work of Yang
had made a significant progress for mechanical proving geometric inequalities. Recently, Yang
and his collaborators have proposed a successive difference substitution method(SDS) which
could decide nonnegativity of polynomials with nonnegative real variables[93−96]. SDS uses
nothing but linear transformation to split variables into smaller positive quantities so that de-
grees and numbers of variables of resulting polynomials in the whole computation process could
never increase, which is the reason why SDS could solve a great many of difficult problems with
large polynomials. Yang and his collaborators plan to prove more difficult geometric inequalities
using their SDS.

The quantifier elimination method of Tarski[3], the CAD method of Collins[5,85], the CS
method of Wu[86−87], the DDA method and the SDS method of Yang[89−96] are algebraic de-
cision method for geometric inequalities, which firstly transform geometric inequalities into
equivalent algebraic forms and then decide whether they are true or false. For human, such
decision process does not have any readability at all. The readable proofs for triangular in-
equalities are generated by the cell-decomposition algorithm based on geometric invariants[97].
This kind of readable machine proofs generated by the method still have great difference with
traditional proofs. Furthermore, how to readably prove some simple triangular inequalities is
preliminarily discussed in [98]. Up to now, the success of readable machine proving for geometric
inequalities has not been reported.

The automated generation of readable proofs for geometric inequality is still a great chal-
lenge today. In our opinion, it is a very hopeful research direction to expand search methods,
coordinate-free methods and formal logic methods to prove geometric inequalities automatically.

3.2 Intelligent Geometry Softwares

The readable theorem proving in geometries has high application value on education. It can
be used to develop intelligent geometry softwares[99−100] which is a kind of dynamic geometric
softwares with function of automated reasoning. The intelligent geometry softwares not only
have powerful dynamic drawing function but also can prove the geometry theorems readably.
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In recent years, the research on this kind of softwares has become a focus. Some intelligent ge-
ometry softwares are developed successively by some countries in the world, such as Geometry
Expert (China)[37,101−103], MMP/Geometer (China)[104], Super Sketchpad (China)[105], Ge-
ometry Turtor (USA)[29], Advanced Geometry Turtor (USA)[47], HOARDATINF (France)[56],
Geometry Explorer(UK)[106] and WinGCLC (Serbia)[107].

However, so far as we know, none of these geometry theorem provers is sustainable, which
means that users can not add new knowledge to the provers and can not modify the added
knowledge in provers when using these provers. What is more, users can not further develop
the provers so as to realize integrating use of of different reasoning methods. So, when the
geometry theorem provers developed by others are unable to meet one’s requirement, he has
to develop a new prover according to his own idea, which demands a great deal of repeated
programming work. Recently, Zheng and Zhang proposed and realized a sustainable geometry
automated reasoning platform[108−109]. The platform consists of six parts, including knowledge
base, knowledge editor, information base, reasoning engine, information query and dynamic
geometry drawing system. On the platform, the users can add geometry objets, predicates and
rules, and integrated use of different methods.

The intelligent geometry softwares can help students learning geometry proofs better. It is
not an easy thing for students to prove geometry statements. Students can interact friendly
with computers to explore the ideas of proof using the intelligent geometry softwares. They can
observe, guess and discover those geometric properties hidden in geometric diagrams, which
enables the students not only to understand the geometry statements more visually and more
deeply but also to improve their interests in learning geometry. Furthermore, the students can
also explore ideas of proof step by step with intelligent geometry softwares. This revolution of
learning geometry would certainly improve the learning efficiency of students significantly.

The educational application has posed higher requirements for the geometry theorem provers.
Not only are the provers required to generate readable proofs but also are the generated proofs
required to enable the students to read, understand and grasp. It had better be able to generate
readable proofs of traditional styles[37,47], namely, the proofs is the same as those in the usual
geometric textbooks of middle school. Provers are not only required to be able to generate the
geometry proofs automatically but also help the students to analyze and check whether the
proofs given by them are correct or complete[55−56]. The prover of the intelligent geometry
softwares had better be interactive. In this way, students can prove the extremely difficult
geometry statements through the mutual cooperation with the computer when using the inter-
active geometry theorem provers. Students can design and plan the main steps of proofs and
the computer can complete the trifling reasoning of each step automatically. Therefore, there
are broad application prospects to develop interactive readable prover for geometry theorems.
If an intelligent geometry software could be enabled to support the traditional geometric prob-
lem solving methods such as adding auxiliary line, proving by contradiction, identity method,
analogy method and induction method, it would satisfy the requirements for the educational
application better. It is believed that the research on this aspect would achieve breakthrough
in the near future.

3.3 Machine Learning

None of the existing geometry theorem provers has any self-learning capability today. The
prover’s power of solving problems can not be enhanced through a large amount of training.
Whether the geometry theorem prover with self-learning capability could be designed remains
an important subject well worth of research.

In fact, the prover stores geometry theorems proved by itself into its database for future
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use, which could be understood as a kind of relatively rough rote learning. If the prover could
be enabled to select the theorems needed to be permanently stored according to some standard
itself and refuse these theorems that would probably be useless in future, the style of this rote
learning could apparently be further improved . There are two difficulties for implementing this
kind of rote learning: one is how to determine the theorems needed to be permanently stored
and the other is how to decide whether the theorem to be proved has been in the theorem
base or not. If the prover acquires this rote learning capability, its problem-solving capability
would become stronger and stronger with more and more geometry theorems being stored. An
intelligent geometry theorems database would be probably developed if research keeps going on
from this direction.

Developing the prover’s analogy learning capability is a relatively high level learning style.
The analogy is a traditional problem-solving technique. When solving a geometric problem,
people often recall the similar problems that they have solved before. If the geometric problem
to be proved is similar to some geometric problem proved by someone before, he/she would try to
solve the present geometric problem according to former successful problem-solving experiences.
If the geometric problem has not ever been solved in the past, one would try to solve this new
problem with more general problem-solving method. If the problem is successfully solved, the
problem and its solutions could be remembered for solving other similar problems. The core
problem of analogy learning is how to define the similarity of problems and how to apply the
problem-solving methods of some problems to similar problems. The provers with analogy
learning capability could effectively prove geometry theorems by the analogy method. How
to implement the geometry theorem prover with analogy reasoning function is preliminarily
discussed in [56].

It is another challenge to enable geometry theorems provers to have induction learning
capability. The induction is one of the most important learning capability for human to acquire
new knowledge and new techniques. People often summarize tactics or problem-solving patterns
which are commonly effective against some kinds of problems by a large amount of problem-
solving practice. For example, those geometry statements whose conclusion only involving
segment proportion are often successfully proved using those theorems of similar triangles.
Though some tactics probably are not completely effective, they can help people find problem-
solving ideas quickly. We had better also let geometry theorem prover induce and analyze some
high-level heuristic problem-solving tactics or problem-solving pattern as the geometry experts
of human automatically so that it can select the suitable problem-solving tactics according to
the characteristics of the problem to be solved.

The existing provers can effectively prove many difficult geometry theorems and even can
effectively generate very short and beautiful readable proofs, but they can not improve their own
problem-solving capability through a large of practices since they do not have any self-learning
capability. No matter how powerful its functions are, the geometry theorem prover short of self-
learning capability can not be regarded as intelligent or compared with human geometricians.
Can we design a geometry theorem prover with sufficiently powerful self-learning capability to
enable it reach or exceed the human geometricians? Just as the checker program of A. Samuel,
it defeated Samuel himself after three years and has been able to defeat a state champion of
USA after another three years[110−111].
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