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Abstract The present study discusses the relationships between two independently developed models

of games with incomplete information, hypergames (Bennett, 1977) and Bayesian games (Harsanyi,

1967). The authors first show that any hypergame can naturally be reformulated in terms of Bayesian

games in an unified way. The transformation procedure is called Bayesian representation of hypergame.

The authors then prove that some equilibrium concepts defined for hypergames are in a sense equivalent

to those for Bayesian games. Furthermore, the authors discuss carefully based on the proposed analysis

how each model should be used according to the analyzer’s purpose.

Key words Bayesian game, Bayesian representations of hypergame, hypergame, incomplete infor-

mation.

1 Introduction

Game theory provides mathematical models of interactive decision making. A game is called
complete information if all the agents (decision makers) know all the components of the game.
Otherwise, if some or all of them lack full information about it, the game is called incomplete
information. Since people often do not have complete knowledge about games they play and
thus many realistic interactive situations accompany incompleteness of information, theoretical
frameworks that can analyze such situations have been required.

Hypergame theory deals with agents who may misperceive some components of the game1 [1].
It is the basic idea of hypergames that each agent is assumed to have her own subjective view of
it, which is formulated as a normal form game called her subjective game, and make decisions
based on it. In this way it allows agents to hold different perceptions about the game. Although
hypergames have been developed in several ways[2−5], in this paper we focus on the simplest
model of it called simple hypergames. A simple hypergame is given as the set of agents and
the collections of subjective games for each[6−7] (see Section 2.1). Henceforth we simply mean
a simple hypergame when referring to a hypergame.
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1. For the earliest attempt to incorporate misperceptions in games, see [9].
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On the other hand, Bayesian games have been proposed by Harsanyi[8], who argued that
incompleteness of information about anything are captured without loss of generality by sub-
jective probability distributions for each agent over the set of possible states (see Section 2.2
and Section 3). In his way of modeling, such possibilities are modeled as types of each agent,
and a game with incomplete information is reformulated as a game of complete information
called a Bayesian game by introducing a set of types as well as each agent’s belief about them
(in a form of probability distribution on the others’ types).

Our aim is to compare the two models. In particular, we examine how hypergames can be
differentiated from Bayesian games. Since they have been established and developed indepen-
dently, the relationship has not been investigated rigorously enough.

Let us illustrate our motivation with an example. Consider a two-agent interactive decision
of agents 1 and 2, where agent 1 believes the game they play is prisoners’ dilemma (Table 1)
while agent 2 believes chicken game (Table 2). The situation can be captured as a hypergame
by defining each agent’s subjective game as each table shows. Since they both see the same set
of agents as well as actions but suppose different utility functions, we say that they perceive
correctly agents and actions but misperceive utility functions.

Table 1 Prisoners’ dilemma

1
2

l r

t 3, 3 1, 4
b 4, 1 2, 2

Table 2 Chicken game

1
2

l r

t 3, 3 2, 4
b 4, 2 1, 1

Now, we have two key questions that motivate our study. First, is it possible to formulate
the situation as a Bayesian game as well? The answer is: The standard formulation of Bayesian
game would allow us to do so. In the example, two types are introduced for each agent:
One type associates the agent with prisoners’ dilemma, and the other with chicken game. In
Bayesian games, a type is characterized by subjective prior and utility function. In this case, for
example, agent 1’s type associated with prisoners’ dilemma has a subjective prior (probability
distribution) that assigns probability 1 to agent 2’s type associated with prisoners’ dilemma
while probability 0 to the other type. It has the same utility function as in prisoners’ dilemma.
We can define the other types in a similar way and hence construct a Bayesian game (for details,
see Example 3.2 in Section 3).

In the current study, we shall show that, in a similar way, any hypergames can naturally and
uniquely reformulate in terms of Bayesian games and propose the general procedure which we
call Bayesian representation of hypergames. In the transformation process, first each subjective
game in a hypergame is extended in a unified way, and then, based on the extended subjective
games for all the agents, a Bayesian game is constructed.

The second question is, then, can we analyze the situation with existing equilibrium concepts
for Bayesian games? Would the Bayesian game analysis lead us to any different implication from
analyzing it as a hypergame? To examine the problem, we investigate relations of equilibrium
concepts for hypergames and Bayesian games. As a result, we shall argue that two equilibrium
concepts for hypergames, hyper Nash equilibrium and best response equilibrium, lead us to the
same implications as two for Bayesian games, Bayesian Nash equilibrium and Nash equilibrium
of Bayesian games, respectively.
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After all, it seems that Bayesian games are general enough in the sense that any hypergames
can be captured in terms of Bayesian games. But our conclusion is not so simple. We also discuss
carefully based on our analyses how each model should be used according to the investigator’s
purpose.

Following the introduction, Section 2 introduces the frameworks of hypergames and Bayesian
games. Section 3 provides the procedure of Bayesian representation, the general way of trans-
formation of hypergames into Bayesian games. Then we prove our main results in Section 4
that refer to the relevance between equilibrium concepts of hypergames and Bayesian games.
In Section 5, we discuss several topics on implications of our analysis. Finally, the conclusion
is added.

2 Models of Games with Incomplete Information: Hypergames and
Bayesian Games

Here we introduce two models of games with incomplete information which we shall study
in the present paper, hypergames and Bayesian games. The frameworks as well as several
equilibrium concepts are defined.

Since the basis of the both models is normal form game, let us begin with it. A normal form
game is a formal model of interactive decision making in which each agent makes a decision
simultaneously and independently, and once and for all. It consists of three components: a
set of agents, sets of actions available to each agent, and utility functions for each agent that
associate real values (utilities) with outcomes.

Definition 2.1 (Normal form games) G = (I, A, u) is a normal form game, where
1) I is the finite set of agents.
2) A = ×i∈IAi, where Ai is the finite set of agent i’s actions2 . a ∈ A is called an outcome.
3) u = (ui)i∈I , where ui : A → � is agent i’s utility function3 .
Nash equilibrium has been the central equilibrium concept for analyses of games. The

notion is also important to understand equilibrium concepts for hypergames and Bayesian
games introduced later.

Definition 2.2 (Nash equilibrium) Let G = (I, A, u) be a normal form game. a∗ =
(a∗

i , a
∗
−i) ∈ A is a Nash equilibrium of G iff ∀i ∈ I, ∀ai ∈ Ai, ui(a∗) ≥ ui(ai, a

∗
−i). Let us denote

the set of Nash equilibria of a normal form game G by N(G).
We say that a′

i ∈ Ai is a best response of agent i to a−i ∈ A−i, some given choices of the
others, iff ui(a′

i, a−i) ≥ ui(ai, a−i) for any ai ∈ Ai, that is, a′
i maximizes i’s utility function

when the others take a−i. In a Nash equilibrium, each agent chooses a best response to the
choices of the others. Therefore, nobody has an incentive to change the action as long as the
others do not change their choices.

We call an agent’s action that constitutes some Nash equilibrium her Nash action, that is,
a∗

i ∈ Ai is called agent i’s Nash action in a normal form game G iff there exists a−i ∈ A−i such
that (a∗

i , a−i) ∈ N(G). Let us denote the set of agent i’s Nash actions in G by Ni(G).
Next, we introduce two independently established and developed models of games with

incomplete information, hypergames (in Section 2.1) and Bayesian games (in Section 2.2).

2.1 Hypergames

In hypergames, each agent is assumed to have her own subjective view of the game she faces,

2. We do not deal with mixed extensions of games.
3. We note that, in our study, we do not need to assume utility functions to be cardinal, or of von Neumann-

Morgenstern. One can suppose ordinal utility functions as the hypergame literature typically does.



HYPERGAMES AND BAYESIAN GAMES 723

which is given as a normal form game called her subjective game. A hypergame is defined as a
collection of subjective games for each agent involved in the situation.

Definition 2.3 (Hypergames) H = (I, (Gi)i∈I) is a hypergame, where I is the finite set of
agents and Gi = (Ii, Ai, ui) is a normal form game called agent i’s subjective game, where

1) Ii is the finite set of agents perceived by agent i. We assume Ii ⊆ I.
2) Ai = ×j∈IiAi

j , where Ai
j is the finite set of agent j’s actions perceived by agent i.

3) ui = (ui
j)j∈Ii , where ui

j : Ai → � is agent j’s utility function perceived by agent i.
A hypergame assumes that each agent believes that it is common knowledge among all the

agents (who she thinks participate in the game) that the game they play is her own subjective
game4 , that is, agent i believes not only that the situation is Gi but also that everyone perceives
it as well. Therefore, an agent never knows another agent’s subjective game and hence the whole
structure of the hypergame, which are described only from an analyzer’s point of view. We say
that agent i misperceives the set of agents iff Ii 	= I, some agent j’s action set iff Ai

j 	= Aj
j ,

and some agent j’s utility function iff ui
j 	= uj

j , with j 	= i. Since in a hypergame each agent
i chooses an action from Ai

i, ×i∈IA
i
i is interpreted as the set of all the realizable outcomes

from an objective viewpoint. Note that utilities of an agent may not be defined on some of its
elements.

We use two equilibrium concepts for hypergames in the subsequent analysis.
The first one is called hyper Nash equilibrium[7].
Definition 2.4 (Hyper Nash equilibrium) Let H = (I, (Gi)i∈I) be a hypergame. a∗ =

(a∗
i , a

∗
−i) ∈ ×i∈IA

i
i is a hyper Nash equilibrium of H iff ∀i ∈ I, a∗

i ∈ Ni(Gi). Let us denote the
set of hyper Nash equilibria of H by HN(H).

In a hyper Nash equilibrium, every agent chooses a Nash action. It can be interpreted as
follows: if we assume every agent adopts Nash action as the decision criteria5 , that is, always
chooses some Nash action, an outcome that obtains is necessarily a hyper Nash equilibrium (as
long as every agent has at least one Nash action). Therefore, the set of hyper Nash equilibria
provides us with all the candidates of outcomes likely to happen under the assumption. In fact,
by definition, HN(H) = ×i∈IN(Gi).

Next, the second equilibrium concept we use is best response equilibrium.
Definition 2.5 (Best response equilibrium) Let H = (I, (Gi)i∈I) be a hypergame. a∗ =

(a∗
i , a

∗
−i) ∈ ×i∈IA

i
i is a best response equilibrium of H iff ∀i ∈ I, ∀ai ∈ Ai

i, u
i
i(a

∗) ≥ ui
i(ai, a

∗
−i).

Let us denote the set of best response equilibria of H by BE(H).
A best response equilibrium is such an outcome in which each agent chooses a best response

to the choices of the others (in each subjective game). Although the definition apparently looks
like Nash equilibrium for normal form games, the implication is largely different. Best response
equilibrium does not assure that, from a particular agent’s point of view, the other’s choices are
also their best responses. Therefore, even if an agent takes a best response, she might consider
that she should change her choice as some other agent who she thinks does not take a best
response might change the choice. The notion of best response equilibrium refers to nothing
more than the fact that every agent chooses a best response6 .

We give an example of hypergames and those equilibria.

4. Something is called common knowledge if everyone knows it, everyone knows everyone knows it, everyone
knows everyone knows everyone knows it, and so on[10]. Individual belief of common knowledge is discussed in
terms of epistemic logic in [11].

5. Game theoretically, this assumption is not perfectly convincing: the precise implication of common
knowledge of the game structure and rationality is that an agent chooses a rationalizable action, a somewhat
weaker notion of Nash action[12] .

6. Best response equilibrium is mathematically equivalent to the concept of group stability based on ratio-
nality in first-level hypergames provided in [5].
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Example 2.1 Consider a two-agent hypergame of 1 and 2, namely H = (I, Gi)i∈I with
I = {1, 2}. Table 3 illustrates 1’s subjective game, G1, where A1

1 = {a, b, c, d}, A1
2 = {p, q, r}

and each entry expresses utilities for the both which reflect the utility functions perceived by
1, i.e., u1

1 and u1
2. Similarly, Table 4 represents 2’s subjective game, G2. In the hypergame,

the both agents perceive the set of agents correctly but misperceive each other’s action set and
utility function.

Since each subjective game is a normal form game, we can derive its Nash equilibrium. In
this case, N(G1) = {(a, p), (b, q)} while N(G2) = {(b, q)}. Hence, HN(H) = {(a, q), (b, q)}. On
the other hand, BE(H) = {(b, q), (c, r)}.

Table 3 1’s subjective game, G1

1
2

p q r

a 3, 3 0, 0 0, 0
b 0, 0 2, 2 0, 0
c 0, 0 0, 0 1, −1
d 1, 1 0, 0 0, 0

Table 4 2’s subjective game, G2

1
2

p q r s

a 3, 3 0, 0 −5, 0 0, 5
b 0, 0 2, 2 0, 0 1, 0
c 5, 0 0, 0 −1, 1 0, 0

2.2 Bayesian Games

Bayesian games are defined as follows.
Definition 2.6 (Bayesian games) Gb = (I, A, T, p, u) is a Bayesian game, where
1) I is the finite set of agents.
2) A = ×i∈IAi, where Ai is the finite set of agent i’s actions.
3) T = ×i∈ITi, where Ti is the finite set of agent i’s types.
4) p = (pi)i∈I , where pi is agent i’s subjective prior, which is a joint probability distribution

on T−i for each ti ∈ Ti.
5) u = (ui)i∈I , where ui : A × T → � is agent i’s utility function.
A type of an agent is characterized by subjective prior and utility function. A subjective

prior describes the type’s perception about the game: Each type is assumed to have a probability
distribution on the types of the other agents. Unlike normal form games, an agent’s utility is
determined not only by actions but also by types of the agents.

Note that a Bayesian game itself is a game with complete information in the sense that,
although one might not know exactly the actual type of another agent, the type set of the
agent as well as each type’s subjective prior is now common knowledge: everyone knows all the
components of the (Bayesian) game. Thus, we can analyze Bayesian games with the notion of
Bayesian Nash equilibrium, a natural generalization of Nash equilibrium.

To define it, we need to introduce “action plans” for each type of each agent called strategies.
A strategy of agent i, si, is a mapping from her types to her actions, namely, si : Ti → Ai. Let
us denote the set of agent i’s strategies by Si and let S = ×i∈ISi. We may write s−i(t−i) as
meaning (sj(tj))j∈I\{i} with sj ∈ Sj and tj ∈ Tj . Then Bayesian Nash equilibrium is defined
as follows.

Definition 2.7 (Bayesian Nash equilibrium) Let Gb = (I, A, T, p, u) be a Bayesian game.
s∗ = (s∗i , s

∗
−i) ∈ S is a Bayesian Nash equilibrium of Gb iff ∀i ∈ I, ∀ti ∈ Ti, ∀si ∈ Si,
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∑

t−i∈T−i

ui((s∗i (ti), s
∗
−i(t−i)), (ti, t−i))pi(t−i|ti) ≥ ∑

t−i∈T−i

ui((si(ti), s∗−i(t−i)), (ti, t−i))pi(t−i|ti).
Let us denote the set of Bayesian Nash equilibria of a Bayesian game Gb by BN(Gb).

In a Bayesian Nash equilibrium, each type of each agent maximizes its expected utility given
her belief, i.e., subjective prior.

For a Bayesian game, we can consider a joint probability distribution po on the type set
T , which describes probabilities for which a particular combination of types for each agent is
chosen actually. We call it the objective prior of the Bayesian game. In particular, we say
subjective priors are consistent in a Bayesian game iff each agent’s subjective prior is given as
the conditional probability distributions computed from the objective prior by Bayes formula7 .

We can also formulate Bayesian games by using objective priors instead of subjective priors
as Gb = (I, A, T, po, u), and define Nash equilibrium of it as follows:

Definition 2.8 (Nash equilibrium of Bayesian games) Let Gb = (I, A, T, po, u) be a
Bayesian game (with objective prior). s∗ = (s∗i , s

∗
−i) ∈ S is a Nash equilibrium of Gb iff

∀i ∈ I, ∀si ∈ Si,
∑

t∈T

ui((s∗i (ti), s
∗
−i(t−i)), t)po(t) ≥

∑

t∈T

ui((si(ti), s∗−i(t−i)), t)po(t).

Let us denote the set of Nash equilibria of Gb by N(Gb).
In a Nash equilibrium of a Bayesian game, each type of each agent maximizes its expected

utility given an objective prior. In any Bayesian games with consistent priors, the set of Bayesian
Nash equilibria coincides with that of Nash equilibria[8].

We refer to the both formulation, one with subjective priors and the other with objective
priors, as Bayesian games and write them as Gb unless it may cause any confusion (when we
write BN(Gb) and N(Gb), we suppose (pi)i∈I and po, respectively). Furthermore, we may say
that po is the objective prior of Gb = (I, A, T, p, u). Since most literature assumes consistency of
priors, the distinction between the two ways of formulating Bayesian games as well as between
the two equilibrium concepts do not matter in practice8 . On the other hand, we deal with
Bayesian games without consistency in our study.

3 Bayesian Representation of Hypergames

In this section, we propose a general way to transform hypergames into Bayesian games
that we call Bayesian representation of hypergames. We also give an example in the end.

Harsanyi claims that any kinds of uncertainties about a game as well as perceptual differences
among agents can be modeled in a unified way[8], which goes on as follows9 :

1) (Agents) Whether an agent is participating in the game can be converted into what the
agent’s action set is, by allowing her only one action, “non-participation” (NP), when she is
supposed to be out of the game.

2) (Actions) Whether a particular action is feasible for an agent can in turn be converted into
what the agent’s utility function is, by saying that she will get some very low utility whenever
she takes the action that is supposed to be infeasible.

3) (Utility functions) This way, any uncertainty or perceptual differences about agents as
well as actions can be reduced to those about utility functions, if any. Then by regarding each

7. That is, (pi)i∈I is consistent iff there exists a probability distribution po on T such that ∀i ∈ I,∀t ∈
T, pi(t−i|ti) = po(t)/

∑

t−i∈T−i

po(ti, t−i).

8. Consistency of priors still remains controversial[13−14] , though we do not go into the details of the topic.
9. See also [15].
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possible utility function of each agent as a type of the agent, the game can be modeled as a
Bayesian game.

Let us call the above argument Harsanyi’s claim. When we apply it to situations represented
as hypergames, it is interpreted as follows. For example, suppose first that agent i thinks that
another agent j does not participate in the game, though j actually is in the game. Then the
claim argues that i’s exclusion of j is game-theoretically equivalent to saying that i includes
j in the set of the agents and allow j to use only one action, “non-participation”. This way
allows every agent to see the common set of agents, which coincides with the set of all the
agents actually involved in the hypergame10 .

Next, suppose agent i thinks that another agent j’s particular action, aj , is not feasible
for j, while it is actually included in j’s action set. Then Harsanyi’s claim argues that this is
equivalent to saying that i considers that aj is surely in j’s action but gives j very low utility
whenever j uses it. Consequently every agent sees in turn the same action set of a particular
agent, which is the union of the agent’s action set originally conceived by each agent. As a
result, perceptual differences in agents as well as actions are resolved, and those only in utility
functions remain in our hand.

Generally, according to Harsanyi’s claim, in any hypergames, each subjective game can be
“extended” as the following.

Definition 3.1 (Extended subjective games) Let H = (I, (Gi)i∈I) be a hypergame. For
any i ∈ I, a normal form game G

i
= (I

i
, A

i
, ui) is called agent i’s extended subjective game

(induced from H) iff it satisfies all of the following conditions:
1) I

i
= I.

2) A
i
= ×j∈IA

i

j , where ∀j ∈ I, A
i

j =
⋃

k∈I

Ak
j if j ∈ Ik for any k ∈ I, A

i

j =
⋃

k∈I

Ak
j ∪ {NP}

otherwise.
3) ui = (ui

j)j∈I , where ui
j : A

i → �. For any j ∈ I and a = (aj , a−j) ∈ A
i
, ui

j(a) is defined
as follows11 , where c is a real constant bigger than −∞:

(i) if Ii = I,

ui
j(a) =

⎧
⎪⎨

⎪⎩

ui
j(a), if a ∈ Ai,

−∞, if aj /∈ Ai
j ,

c, otherwise,

(ii) if Ii 	= I,

ui
j(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ui
j((al)l∈Ii), if j ∈ Ii ∧ ak = NP for any k ∈ I \ Ii ∧ (al)l∈Ii ∈ Ai,

−∞, if (j ∈ Ii ∧ ak = NP for any k ∈ I \ Ii ∧ aj /∈ Ai
j)

∨(j /∈ Ii ∧ aj 	= NP ),
c, otherwise,

Then the hypergame H = (I, (G
i
)i∈I) is called the extended hypergame (induced from H)

when for any i ∈ I, G
i

is agent i’s extended subjective game induced from H . Conversely, we
may say that H is the original hypergame of H and Gi is the original subjective game of G

i
.

10. One might think this way results in the set of agents becoming tremendously enormous because it
requires one to include anyone. As is typical in the literature of Bayesian games, we ignore any agent who is
regarded as a participant of the game by nobody and actually not in the game. Note also that we have assumed
that the agent set in an agent’s subjective game never includes anybody who is actually not involved in the
game (Definition 2.3).

11. Recall Ii ⊆ I.
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Although the definition may look complicated, the underlying idea is simple: We just follow
Harsanyi’s claim. In an agent’s extended subjective game, the agent set includes all the agents
actually involved in the situation. Then the action set for a particular agent is given as the union
of the agent’s action set in each agent’s original subjective game (and NP (non-participation)
if at least one agent thinks the agent is out of the game).

Utility functions are determined based on the next three principles. First, any outcomes
modeled in the original subjective game assign the same utilities to each agent in its extension
as well. Second, when someone takes an action that is not modeled in the original subjective
game, the agent always gets extremely low utility, −∞. Third, in such cases, the other agents
are supposed to get some utility c.

Since the extension is unique up to c ∈ �, we say G
i

is the extended subjective game of
agent i. Let us denote I

i
and A

i
by I and A, respectively, because they are identical for all

i ∈ I. Recall that Harsanyi’s claim argues any perceptual differences about agents and actions
can be resolved.

Henceforth, we assume that, for any i, j ∈ I and a ∈ Ai, ui
j(a) > −∞, that is, in an original

subjective game, utility one can obtain is always bigger than −∞. Then the next lemma assures
that Nash equilibria in each (original) subjective game are “preserved” in its extension, and
vice versa.

Lemma 3.1 (Nash equilibria of extended subjective games) Let H = (I, (Gi)i∈I) be a
hypergame and G

i
= (I, A, ui) be the extended subjective game of i ∈ I. Then we have, for any

i ∈ I,

N(G
i
) =

{
N(Gi), if Ii = I,

{a ∈ A|(aj)j∈Ii ∈ N(Gi) ∧ ∀k ∈ I \ Ii, ak = NP}, otherwise.

Proof (i: case of Ii = I) (proof of N(G
i
) ⊇ N(Gi)) Suppose a∗ = (a∗

j )j∈Ii ∈ N(Gi), which

means, ∀j ∈ Ii, ∀aj ∈ Ai
j , u

i
j(a

∗) ≥ ui
j(aj , a

∗
−j). In G

i
, I = Ii and Aj ⊇ Ai

j for any j ∈ I.
Then, for any j ∈ I, (a) ∀aj ∈ Aj ∩ Ai

j , u
i
j(a

∗)(= ui
j(a

∗)) ≥ ui
j(aj , a

∗
−j)(= ui

j(aj , a
∗
−j)) and (b)

∀aj ∈ Aj \ Ai
j , u

i
j(a

∗)(= ui
j(a

∗)) ≥ ui
j(aj , a

∗
−j)(= −∞) hold. Both (a) and (b) hold for any

j ∈ I ⇔ ∀j ∈ I, ∀aj ∈ Aj , u
i
j(a

∗) ≥ ui
j(aj , a

∗
−j). This is equivalent to a∗ ∈ N(G

i
).

(proof of N(G
i
) ⊆ N(Gi)) Next, suppose a∗ = (a∗

j )j∈I ∈ N(G
i
), which means, ∀j ∈ I, ∀aj ∈

Aj , u
i
j(a

∗) ≥ ui
j(aj , a

∗
−j). Now, suppose ∃j ∈ I, a∗

j /∈ Ai
j . Then ui

j(a
∗) = −∞, therefore,

∃aj ∈ Aj , u
i
j(aj , a

∗
−j)(≥ c) > ui

j(a∗). Thus, ∀j ∈ I, a∗
j ∈ Ai

j . Then ∀j ∈ Ii, ∀aj ∈ Ai
j , u

i
j(a

∗)(=
ui

j(a
∗)) ≥ ui

j(aj , a
∗
−j)(= ui

j(aj , a
∗
−j)). This is equivalent to a∗ ∈ N(Gi).

Hence, we have N(G
i
) = N(Gi).

(ii : case of Ii 	= I) (proof of N(G
i
) ⊇ {a ∈ A|(aj)j∈Ii ∈ N(Gi) ∧ ∀k ∈ I \ Ii, ak =

NP}) Suppose a∗ = (a∗
j )j∈I ∈ {a ∈ A|(al)l∈Ii ∈ N(Gi) ∧ ∀k ∈ I \ Ii, ak = NP}. In G

i
,

I ⊃ Ii and Aj ⊇ Ai
j for any j ∈ I ∩ Ii. Then (a) ∀j ∈ I ∩ Ii, ∀aj ∈ Aj ∩ Ai

j , u
i
j(a∗)(=

ui
j((a

∗
l )l∈Ii)) ≥ ui

j(aj , a
∗
−j)(= ui

j(aj , (a∗
l )l∈Ii\{j})) because (a∗

l )l∈Ii ∈ N(Gi), (b) ∀j ∈ I ∩
Ii, ∀aj ∈ Aj \ Ai

j , u
i
j(a∗)(= ui

j((a
∗
l )l∈Ii)) ≥ ui

j(aj , a
∗
−j)(= −∞), and (c) ∀j ∈ I \ Ii, ∀aj ∈

Aj , u
i
j(a

∗)(= c) > ui
j(aj , a

∗
−j)(= −∞), where c ∈ �. All of (a), (b) and (c) hold for any j ∈ I

⇔ ∀j ∈ I, ∀aj ∈ Aj , u
i
j(a∗) ≥ ui

j(aj , a
∗
−j) ⇔ a∗ ∈ N(G

i
).

(proof of N(G
i
) ⊆ {a ∈ A|(aj)j∈Ii ∈ N(Gi)∧∀k ∈ I\Ii, ak = NP}) Suppose a∗ = (a∗

j )j∈I ∈
N(G

i
), which means, ∀j ∈ I, ∀aj ∈ Aj , u

i
j(a

∗) ≥ ui
j(aj , a

∗
−j). Now, suppose ∃k ∈ I \ Ii, a∗

k 	=
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NP . Then ui
k(a∗) = −∞, which is smaller than ui

k(NP, a∗
−k)(= c). Thus, ∀k ∈ I \Ii, a∗

k = NP .
Next, suppose ∃j ∈ I ∩ Ii, a∗

j /∈ Ai
j . Then ui

j(a∗) = −∞, therefore, ∃aj ∈ Aj , u
i
j(aj , a

∗
−j)(≥

c) ≥ ui
j(a

∗). Thus, ∀j ∈ I ∩ Ii, a∗
j ∈ Ai

j . Then ∀j ∈ Ii, ∀aj ∈ Ai
j , u

i
j((a

∗
k)k∈Ii)(= ui

j(a
∗)) ≥

ui
j(aj , (a∗

l )l∈Ii\{j})(= ui
j(aj , a

∗
−j)). This is equivalent to (a∗

k)k∈Ii ∈ N(Gi). Consequently,
a∗ ∈ {a ∈ A|(al)l∈Ii ∈ N(Gi) ∧ ∀k ∈ I \ Ii, ak = NP}.

Hence, we have N(G
i
) = {a ∈ A|(al)l∈Ii ∈ N(Gi) ∧ ∀k ∈ I \ Ii, ak = NP}.

By (i) and (ii), the lemma holds.
The lemma says, when the agent set in an agent’s original subjective game includes all the

agents involved, the set of Nash equilibria in it coincides with that in its extension. Otherwise
an outcome is a Nash equilibrium in an agent’s extended subjective game if and only if the
choices of those agents included in the agent set in her original subjective game constitute a
Nash equilibrium of it and the others all choose NP.

Then an extended hypergame can be transformed into a Bayesian game by regarding each
possible view as a type. We call the transformed game, or the reformulation process itself, the
Bayesian representation of the hypergame.

Definition 3.2 (Bayesian representation of hypergames) Let H = (I, (Gi)i∈I) be a hy-
pergame and G

i
= (I, A, ui) be the extended subjective game of i ∈ I. A Bayesian game

Gb(H) = (Ib, A, T, p, u) is called the Bayesian representation of H iff each elements of Gb(H)
satisfies the following conditions:

1) Ib = I , where Ib is the agent set in Gb(H).
2) A = A.
3) T = ×i∈IbTi. For all i, j ∈ Ib, Ti = {tji |j ∈ Ib}. tji ∈ Ti is a type of agent i whose view is

associated with G
j
.

4) p = (pi)i∈Ib , where pi(·|ti) is agent i’s subjective prior, which is a joint probability
distribution on T−i for each ti ∈ Ti such that for any j ∈ Ib, pi(t−i|tji ) = 1 if t−i = (tjk)k∈Ib\{i},
pi(t−i|tji ) = 0 otherwise.

5) u = (ui)i∈Ib , where ui : A × T → � such that for any a ∈ A, tji ∈ Ti and t−i ∈ T−i,
ui(a, (tji , t−i)) = uj

i (a).
Recall that, in Bayesian games, a type is characterized by both subjective prior and utility

function. Intuitively, we define tji ∈ Ti as agent i’s type who believes it is common knowledge
that the game they play is agent j’s extended subjective game, G

j
. Hence tji assigns probability

1 to a combination of types of the others each of which also perceives G
j

while assigning
probability 0 to any other combinations, and has the same utility function as in G

j
, i.e. uj

i .
The subjective priors reflect the basic assumption of hypergames that every agent believes each
own subjective game is common knowledge.

Since the agent set in a hypegame is always identical with that in its Bayesian representation,
that is, I in a hypergame H is same as Ib in its Bayesian representation Gb(H), henceforth we
use the same symbol I to denote the agent set in the Bayesian representation as well and write
Gb(H) = (I, A, T, p, u).

Bayesian games can be formulated with objective priors instead of subjective priors. Since, in
the original hypergame, agent i considers the game is G

i
, we particularly say tii is agent i’s actual

type for any i ∈ I. Based on the idea, we define objective priors of Bayesian representations of
hypergames as follows.

Definition 3.3 (Objective priors) Let Gb(H) = (I, A, T, p, u) be the Bayesian representa-
tion of a hypergame H . Then po is called the objective prior of Gb(H) iff for any t = (ti, t−i) ∈ T ,
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po(t) =

{
1, if ∀i ∈ I, ti = tii,

0, otherwise.

An objective prior reflects each agent’s actual view in the original hypergame. It assigns proba-
bility 1 to a combination of types each of which is the actual type of each agent, while probability
0 to any other combinations. We may also write the Bayesian representation of a hypergame
H as Gb(H) = (I, A, T, po, u). It is easy to see that Bayesian representations of any simple
hypergames do not allow the agents to have consistent subjective priors.

We illustrate two examples of Bayesian representations of hypergames.
Example 3.1 Reconsider the two-agent hypergame of Example 2.1. According to Defini-

tion 3.1, each agent’s subjective game in the hypergame is extended as shown in Tables 5 and
6, respectively. Let G

1
and G

2
denote the extended subjective games for each and H be the

extended simple hypergame. They now have the common action sets. With respect to utility
values, for example, in G

1
, since agent 2’s action s is not modeled in its original, G1, whenever

2 takes it, 2 gets utility −∞ while 1 gets utility c. It is easy to see that Lemma 3.1 holds, that
is, each extended subjective game has the same set of Nash equilibria as its original.

Table 5 1’s extended subjective game, G
1

1
2

p q r s

a 3, 3 0, 0 0, 0 c, −∞
b 0, 0 2, 2 0, 0 c, −∞
c 0, 0 0, 0 1, −1 c, −∞
d 1, 1 0, 0 0, 0 c, −∞

Table 6 2’s extended subjective game, G
2

1
2

p q r s

a 3, 3 0, 0 −5, 0 0, 5
b 0, 0 2, 2 0, 0 1, 0
c 5, 0 0, 0 −1, 1 0, 0
d −∞, c −∞, c −∞, c −∞, c

Then its Bayesian representation Gb(H) = (I, A, T, p, u) is formulated as follows:
1) I = {1, 2}.
2) A = A1 × A2, where A1 = {a, b, c, d} and A2 = {p, q, r, s}.
3) T = T1 × T2, where T1 = {t11, t21} and T2 = {t12, t22}.
4) p = (p1, p2), where for any i, j ∈ I, pi(t−i|tji ) = 1 if t−i = (tj−i), pi(t−i|tji ) = 0 otherwise.
5) u = (u1, u2), where for each i ∈ I, ui : A × T → � such that for any a ∈ A, tji ∈ Ti and

t−i ∈ T−i, ui(a, (tji , t−i)) = uj
i (a).

We interpret each type tji (with i, j ∈ {1, 2}) as a type of agent i who believes G
j

is common
knowledge. Therefore, for example, t11 assigns probability 1 to t12 while probability 0 to t22, and
has the same utility function as u1

1. In this case, the actual types of each agent are t11 and t22.
Thus the objective prior po is defined as, for any t = (t1, t2) ∈ T ,

po(t) =

{
1, if t1 = t11 and t2 = t22,

0, otherwise.

Example 3.2 As with typical Bayesian games, a Bayesian representation can be illustrated
as a game tree. Reconsider the example used in Section 1, namely, a two-agent hypergame of
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agents 1 and 2 in which 1’s subjective game is prisoners’ dilemma (Table 1) while that of 2 is
chicken game (Table 2). Since they both perceive correctly the set of agents as well as actions
for each agent, the extended hypergame induced it is same as the original.

The Bayesian representation of the hypergame can be described as Figure 1. Nature moves
first and determines types of the agents. For example, 21 means that agent 1’s type is t21, that
is, agent 1 whose view is associated with chicken game, while that of agent 2 is t12, that is, agent
2 whose view is associated with prisoners’ dilemma. The objective prior describes probabilities
of nature’s move. In this case, it assigns probability 1 to 12 while probability 0 to any other
combinations of types.

Figure 1 The Bayesian representation

Following the nature’s move, each agent knows her own type but does not know the oppo-
nent’s type. The fact is expressed with the information sets described in the game tree: ω11

and ω12 are agent 1’s information sets while ω21 and ω22 are for agent 2. For example, if agent
1’s type is t11, 1 faces the information set ω11 which contains two decision nodes. This means,
as usual, that there agent 1 cannot tell at which node out of the two 1 actually is. But 1 has a
belief about it which is represented by the subjective prior. In this case, t11 assigns probability
1 to agent 2’s type being t12, while probability 0 to t22. Likewise, in any other information set,
the agent who faces it has a belief about the opponent’s type. Finally, utilities for each agent
are determined by actions and types of the agents: The upper value is for agent 1 and the lower
is for agent 2.

4 Comparisons of Equilibrium Concepts and Results

Next we investigate relationship between hypergames and those Bayesian representations,
particularly by examining relations of their equilibria concepts. We shall show that hyper Nash
equilibrium and Bayesian Nash equilibrium are highly related with each another in Section 4.1,
and so are best response equilibrium and Nash equilibrium of Bayesian games in Section 4.2.
The implications of those results will be discussed in the next section.

4.1 Hyper Nash Equilibria and Bayesian Nash Equilibria

Our first result describes a deep relation between hyper Nash equilibrium and Bayesian Nash
equilibrium. Recall that by introducing strategies that are functions which associate types of
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each agent with her actions, i.e. si : Ti → Ai for each i ∈ I, we can conduct equilibrium analysis
of Bayesian games.

Proposition 4.1 (Equilibria of hypergames and their Bayesian representations (with sub-
jective priors)) Let H = (I, (Gi)i∈I) be a hypergame and Gb(H) = (I, A, T, p, u) be its Bayesian
representation. Then a∗ = (a∗

i , a
∗
−i) ∈ HN(H) iff there exists s∗ = (s∗i , s

∗
−i) ∈ BN(Gb(H))

such that ∀i ∈ I, s∗i (t
i
i) = a∗

i .
Proof Suppose (s∗i , s

∗
−i) ∈ BN(Gb(H)). This means, ∀i ∈ I, ∀ti ∈ Ti, ∀si ∈ Si,

∑

t−i∈T−i

ui((s∗i

(ti), s∗−i(t−i)), (ti, t−i))pi(t−i|ti) ≥ ∑

t−i∈T−i

ui((si(ti), s∗−i(t−i)), (ti, t−i))pi(t−i|ti). In Gb(H),

this is equivalent to the fact, ∀i, j ∈ I, ∀si ∈ Si,

ui((s∗i (t
j
i ), (s

∗
k(tjk))k∈I\{i}), (t

j
i , (t

j
k)k∈I\{i})) ≥ ui((si(t

j
i ), (s

∗
k(tjk))k∈I\{i}), (t

j
i , (t

j
k)k∈I\{i})).

Let G
i

= (I, A, ui) be the extended subjective game for each i ∈ I. Then the above
statement is equivalent to, ∀i, j ∈ I, ∀si ∈ Si,

uj
i (s

∗
i (t

j
i ), (s

∗
k(tjk))k∈I\{i}) ≥ uj

i ((si(t
j
i ), (s

∗
k(tjk))k∈I\{i})),

which is equivalent to, ∀j ∈ I, (s∗i (t
j
i ))i∈I ∈ N(G

j
).

Hence, ∀i ∈ I, a∗
i ∈ Ni(G

i
) iff there exists s∗ = (s∗i , s

∗
−i) ∈ BN(Gb(H)) such that ∀i ∈

I, s∗i (t
i
i) = a∗

i . Since Ni(G
i
) = Ni(Gi) for any i ∈ I (due to Lemma 3.1), ∀i ∈ I, a∗

i ∈ Ni(G
i
) ⇔

∀i ∈ I, a∗
i = Ni(Gi), which is equivalent to, (a∗

i )i∈I ∈ HN(H).
Proposition 4.1 refers to a relation between hyper Nash equilibrium and Bayesian Nash

equilibrium. Precisely, it claims that if an outcome is a hyper Nash equilibrium in a hypergame,
then its Bayesian representation has some Bayesian Nash equilibrium in which the actual type
of each agent chooses the same action as in the hyper Nash equilibrium, and conversely, if
a Bayesian representation of a hypergame has a Bayesian Nash equilibrium, then the actions
chosen by the actual type of each agent in it must be a hyper Nash equilibrium in the original
hypergame.

4.2 Best Response Equilibria and Nash Equilibria of Bayesian Games

Next, let us consider Bayesian representations with objective priors (instead of subjective
priors). Then we have the next proposition.

Proposition 4.2 (Equilibria of extended hypergames and Bayesian representations (with
objective priors)) 1) Let H = (I, (Gi)i∈I) be a hypergame, H be the extended hypergame induced
from it, and Gb(H) = (I, A, T, po, u) be its Bayesian representation. Then a∗ = (a∗

i , a
∗
−i) ∈

BE(H) iff there exists s∗ = (s∗i , s
∗
−i) ∈ N(Gb(H)) such that ∀i ∈ I, s∗i (t

i
i) = a∗

i .
Proof Suppose (s∗i , s

∗
−i) ∈ N(Gb(H)). This means, ∀i ∈ I, ∀si ∈ Si,

∑

t∈T

ui((s∗i (ti), s
∗
−i(t−i)), t)po(t) ≥

∑

t∈T

ui((si(ti), s∗−i(t−i)), t)po(t).

In Gb(H), this is equivalent to the fact that ∀i ∈ I, ∀si ∈ Si,

ui((s∗i (t
i
i), (s

∗
j (t

j
j))j∈I\{i}), (tii, (t

j
j)j∈I\{i})) ≥ ui((si(tii), (s

∗
j (t

j
j))j∈I\{i}), (tii, (t

j
j)j∈I\{i})).

Let G
i

= (I, A, ui) be the extended subjective game of each i ∈ I induced from H .
Then the statement above is equivalent to, ∀i ∈ I, ∀si ∈ Si, u

i
i(s

∗
i (t

i
i), (s

∗
j (t

j
j))j∈I\{i}) ≥
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ui
i(si(tii), (s

∗
j (t

j
j))j∈I\{i}). Thus, ∀i ∈ I, ∀ai ∈ Ai, u

i
i(a∗

i , a
∗
−i) ≥ ui

i(ai, a
∗
−i) iff there exists

s∗ = (s∗i , s
∗
−i) ∈ N(Gb(H)) such that ∀i ∈ I, s∗i (t

i
i) = a∗

i . The former of the statement is
equivalent to, (a∗

i , a
∗
−i) ∈ BE(H). Hence, we have the proposition.

The proposition in turn refers to the relation between best response equilibrium of extended
hypergames and Nash equilibrium of Bayesian games. Precisely, it says that an outcome is a
best response equilibrium in an extended hypergame if and only if the Bayesian representation
(with objective prior) has some Nash equilibrium in which the actual type of each agent chooses
the same action as in the outcome.

Since Proposition 4.2 refers only to extended hypergames, we then try to specify how original
hypergames and those Bayesian representations relate to each other. The following lemma would
be useful for that purpose.

Lemma 4.3 (Best response equilibria of extended hypergames) Let H = (I, (Gi)i∈I) with
Gi = (Ii, Ai, ui) for each i ∈ I be a hypergame and H be the extended hypergame induced from
it. Then we have BE(H) ⊆ BE(H). Particularly, the equality holds if (i) ∀i ∈ I, Ii = I, and
(ii) ∀i, j ∈ I, Aj

j ⊆ Ai
j .

Proof Let G
i

= (I, A, ui) be the extended subjective game of i ∈ I induced from H .
Suppose (a∗

i , a
∗
−i) ∈ BE(H), which means, ∀i ∈ I, ∀ai ∈ Ai

i, u
i
i(a

∗) ≥ ui
i(ai, a

∗
−i). Then ∀i ∈

I, ∀ai ∈ Ai, u
i
i(a

∗) ≥ ui
i(ai, a

∗
−i) because ui

i(a
∗) = ui

i(a
∗), and ui

i(ai, a
∗
−i) = ui

i(ai, a
∗
−i) if ai ∈ Ai

i,
ui

i(ai, a
∗
−i) = −∞ otherwise. This is equivalent to a∗ ∈ BE(H). Hence, we have BE(H) ⊆

BE(H).
Next, let us assume H satisfies (i) ∀i ∈ I, Ii = I, and (ii) ∀i, j ∈ I, Aj

j ⊆ Ai
j . Suppose

a∗ = (a∗
i , a

∗
−i) ∈ BE(H), which means, ∀i ∈ I, ∀ai ∈ Ai, u

i
i(a

∗) ≥ ui
i(ai, a

∗
−i). Since ∀i ∈

I, ∀ai ∈ A
i

i \ Ai
i, ∀a−i ∈ A−i, u

i
i(ai, a−i) = −∞, ∀i ∈ I, a∗

i ∈ Ai
i. By (ii), then ∀i, j ∈ I, a∗

j ∈ Ai
j .

Thus,
∀i ∈ I, ∀ai ∈ Ai

i, u
i
i(a

∗)(= ui
i(a

∗)) ≥ ui
i(ai, a

∗
−i)(= ui

i(ai, a
∗
−i)).

This is equivalent to a∗ ∈ BE(H). Under the conditions (i) and (ii), we have both BE(H) ⊆
BE(H) and BE(H) ⊆ BE(H), hence BE(H) = BE(H).

Lemma 4.3 claims that if an outcome is the best response equilibrium in a hypergame, then
it is so in its extension as well. Moreover it refers to a sufficient condition under which the
converse is also true.

Consequently, we have the next proposition.
Proposition 4.4 (Equilibria of hypergames and Bayesian representations (with objective

priors)) Let H be a hypergame and Gb(H) = (I, A, T, po, u) be its Bayesian representation. If
a∗ = (a∗

i , a
∗
−i) ∈ BE(H), then there exists s∗ = (s∗i , s

∗
−i) ∈ N(Gb(H)) such that ∀i ∈ I, s∗i (t

i
i) =

a∗
i . Particularly, if H satisfies the sufficient condition of Lemma 4.3, the converse also holds.

Proof The proposition is straightforward from Proposition 4.2 and Lemma 4.3.
Proposition 4.4 says that if an outcome is a best response equilibrium in a hypergame,

then the Bayesian representation (with objective prior) has some Nash equilibrium in which
the actual type of each agent chooses the same action as in the best response equilibrium.
Particularly, if the hypergame satisfies the sufficient condition of Lemma 4.3, the converse is
also true.

By using Examples 2.1 and 3.1, let us illustrate the theoretical results presented above.
First, consider Proposition 4.1 that refers to the relation between hyper Nash equilibrium

and Bayesian Nash equilibrium. Recall, in our example, HN(H) = {(a, q), (b, q)}. On the
other hand, Gb(H) has two Bayesian Nash equilibria, i.e., ((s1(t11), s1(t21)), (s2(t12), s2(t22)) =
((a, b), (p, q)) and ((b, b), (q, q)). Since the actual types are t11 and t22, we can see the proposition
certainly holds.
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Next, Proposition 4.2 describes the relation between best response equilibrium and Nash
equilibrium of Bayesian games. With the objective prior above, Gb(H) has 48 Nash equilib-
ria, i.e., ((s1(t11), s1(t21)), (s2(t12), s2(t22)) = ((b, x1), (x2, q)), ((c, x1), (x2, r)) and ((d, x1), (x2, s)),
where xi can be any of agent i’s action. Since BE(H) = {(b, q), (c, r), (d, s)}, the proposition
holds here. Furthermore, given that BE(H) = {(b, q), (c, r)}, Proposition 4.4 also holds. In
this case, H does not satisfy the sufficient condition of Lemma 4.3, and BE(H) is a proper
subset of BE(H).

5 Discussions

5.1 Implications of the Results

Our interpretations of the results presented in the previous section go as follows. If we are
interested in hyper Nash equilibrium of hypergames, we would say that investigating Bayesian
Nash equilibrium of those Bayesian representations leads to same implications. It is because,
as Proposition 4.1 claims, an action profile that constitutes a hyper Nash equilibrium is always
that taken by the actual types of each agent in some Bayesian Nash equilibrium, and vice versa.
Likewise, if one wants to know best response equilibrium in a hypergame, Nash equilibrium of
its Bayesian representation leads to the same implication as suggested by Proposition 4.4.

Eventually, we conclude that any hypergames can be analyzed in terms of Bayesian games
with those existing equilibria as long as our interest is in the two equilibrium concepts for
hypergames12 .

5.2 Epistemic Foundations of the Models

Following Harsanyi’s claim, Bayesian games allow agents to see the common set of all the
possibilities about the game structure, namely, types. But when we consider real interactive
situations, the assumption often seems to be hard to accept, and in fact it still remains such
controversial issues epistemic game theory focuses on13 . And more importantly to us, it appears
incompatible with the idea of hypergames. How does it affect our analyses?

Our answer to the question is that we can ignore the problem as long as we analyze the two
equilibrium concepts for hypergames. That is, even when it is not natural to accept Harsanyi’s
claim, once we conduct the procedure of Bayesian representation as if we accept it, the analysis
of the transformed game leads us to the same insight as discussed in Section 5.1.

We however emphasize that the problem might become critical in some cases. For example,
suppose that, in a hypergame, a particular action available to agent i, ai, is not included in
i’s action set in another agent j’s subjective game, that is, ai ∈ Ai

i but ai /∈ Aj
i . Harsanyi’s

claim argues that j’s exclusion of ai is equivalent to j’s thought that i will never use the action
because it always gives i a very low utility. Here j is aware of the fact that ai is feasible to
i but consciously ignore it from the action set. But in real situations, people often may be
unaware of something14 . Agent j may be purely unaware of the existence of such an action
in the first place. If so, once agent i uses ai, agent j acquires completely new knowledge (“I

12. The converse obviously does not hold true: There are Bayesian games that cannot be transformed
into and analyzed in terms of hypergames. Furthermore, even for a Bayesian game that is transformed from
a hypergame, there might exist other hypergames that lead to the same Bayesian game as a result of those
Bayesian representations. That is, although the transformation from a hypergame to a Bayesian game is unique,
the converse may not.

13. See, e.g., [17–18]
14. Unawareness has recently been studied by several authors in terms of formal decision theory. For

example, see [19–21].
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didn’t think of that!”) and might change the subjective game15 . The updated subjective view
might be different with the extended subjective game under Harsanyi’s claim, for j might now
consider ai can lead i to a relatively high utility. Hence, if such a dynamic situation is of
interest, one cannot ignore the problem whether an agent is truly aware of something, that is,
whether Harsanyi’s claim is surely reasonable.

Note that hypergame framework itself tells us nothing about an agent’s awareness: When
ai /∈ Aj

i in a hypergame, we cannot know whether agent j consciously exclude ai or is purely
unaware of it. Although hypergames are said to be models of misperceptions, misperceptions
with which they deal might include unawareness, or not.

5.3 Uniqueness of Hypergame Analysis

One might think Bayesian games are general enough, and thus we do not need any other
models like hypergames for games with incomplete information. But we here would like to
emphasize two points about uniqueness of hypergame analyses.

First, since hypergames are much simpler than Bayesian games, it would be a good choice
to use the former in order to analyze such a situation that can be captured in terms of it. In
such cases, the results in Section 4 assure that we can use equilibrium concepts for hypergames
when our interest is in equilibrium analysis of Bayesian games. Furthermore, recall that when
we calculate equilibria for Bayesian games, we need to specify actions for all the types of each
agent. On the other hand, study on equilibria in hypergames requires us less tasks.

Second, as discussed in Section 5.1, we can use Bayesian games and those existing equilibrium
concepts as long as we focus on hyper Nash equilibrium or best response equilibrium, but this
may not be the case when we want to analyze some other equilibrium concept. For example,
stable hyper Nash equilibrium[16], defined as an outcome that is a Nash equilibrium in every
agent’s subjective game16, cannot be captured by existing concepts of Bayesian games. Hence,
if we are interested in its implications, hypergames can provide us with unique insights.

6 Conclusions

We have compared the two theoretical frameworks of games with incomplete information.
Our contributions are mainly two-fold. First, we presented a general way of transforming
hypergames into Bayesian games, called Bayesian representation. Second, we showed that
hyper Nash equilibria and best response equilibria of hypergames lead us to same implications
of Bayesian Nash equilibria and Nash equilibria those Bayesian representations, respectively.
Based on the analyses, we also discussed how each model should be used according to the
analyzer’s purpose.

Although we have analyzed only simple hypergames, we consider the results would be applied
to other hypergame models as well. We hope that, with those analyses as theoretical bases,
researches of games with incomplete information would make further progress.
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