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Abstract In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of

the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations

(SDIDEs) and proved the mean-square stability of SSBE method under some condition. Unfortu-

nately, the main result of stability derived by the condition is somewhat restrictive to be applied for

practical application. This paper improves the corresponding results. The authors not only prove the

mean-square stability of the numerical method but also prove the general mean-square stability of the

numerical method. Furthermore, an example is given to illustrate the theory.

Key words General mean-square stability, mean-square stability, split-step backward Euler method,

stochastic delay integro-differential equations.

1 Introduction

For the reader’s convenience, throughout this paper we make use of the similar notations as
in [1]. Let (Ω ,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e., it is increasing and right-continuous while F0 contains all P -null
sets). Let τ > 0 and C ([−τ, 0]; R) denote the family of all continuous R-valued functions on
[−τ, 0]. Moreover, | · | is the Euclidean norm in R and ||ψ|| is defined by ||ψ|| = sup

−τ≤t≤0
|ψ(t)|.

We assume that ψ(t), t ∈ [−τ, 0] is F0-measurable and right-continuous, and E||ψ||2 < ∞.
Let C b

F0
([−τ, 0]; R) be the family of all F0-measurable bounded C ([−τ, 0]; R)-valued random

variables ψ = {ψ(θ) : −τ ≤ θ ≤ 0}.
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Consider the linear stochastic delay integro-differential equations (SDIDEs) of the form
⎧
⎪⎨

⎪⎩

dx(t) =
[

Ax(t) +Bx(t− τ) + C

∫ t

t−τ

x(s)ds
]

dt+ [Dx(t) + Ex(t− τ)]dW (t), t ≥ 0,

x(t) = ψ(t), t ∈ [−τ, 0],
(1)

where the initial data x(t) = ψ(t) ∈ C ([−τ, 0]; R), A,B,C,D,E ∈ R, and τ0 = 0. W (t) is a
standard one-dimensional Brownian motion.

Under the above assumptions, Equation (1) has a unique continuous solution denoted by
x(t;ψ) on t ≥ −τ . It is also easy to see that the equation admits the trivial solution x(t; 0) = 0.
To analyze the stability of SSBE method, we need a useful lemma as follows.

Lemma 1[2] If

A+ |B| + τ |C| + 1
2
(|D| + |E|)2 < 0, (2)

then the solution of Equation (1) is mean-square stable, that is,

lim
t→∞E|x(t)|2 = 0.

Now, the split-step backward Euler (SSBE) method applied to Equation (1) produces

⎧
⎪⎨

⎪⎩

y∗n = yn +
[

Ay∗n +Byn−m + Ch

m∑

k=1

yn−k

]

h,

yn+1 = y∗n + (Dy∗n + Eyn−m)�Wn,

(3)

where h > 0 is a stepsize which satisfies τ = mh for a positive integer m, and tn = nh. yn

is an approximation to x(tn), when tn ≤ 0, we have yn = ψ(tn). Moreover, the increments
�Wn := W (tn+1) − W (tn) are independent N(0, h)-distributed Gaussian random variables.
Let T = sτ = N1h and t ∈ [−τ, T ], where N1 = sm, s is a positive integer. If 1 − hA �= 0,
we can obtain the sequences {y∗n, n ≥ 0} and {yn, n ≥ 0} via (3), when given yn = ψ(t−n) for
n ∈ {0, 1, · · · ,m}. We assume yn is Ftn -measurable at the mesh-points tn. To study the stability
of SSBE method, in this paper we always assume that 1 − hA �= 0.

Definition 1 Under condition (2), a numerical method is said to be mean-square stable
(MS-stable), if there exists a constant h0(A,B,C,D,E) > 0 such that any application of the
method to problem (1) generates numerical approximations {yn}, which satisfy lim

n→∞E|yn|2 = 0

for all h ∈ (0, h0(A,B,C,D,E)) with h = τ
m .

Definition 2 Under condition (2), a numerical method is said to be general mean-square
stable (GMS-stable), if any application of the method to problem (1) generates numerical
approximations {yn}, which satisfy lim

n→∞E|yn|2 = 0 for every stepsize h = τ
m .

The following theorem is the main result of Tan and Wang[1].
Theorem 1 Under condition (2), the SSBE method applied to Equation (1) is MS-stable.
Unfortunately, the above result is somewhat restrictive to be applied for practical applica-

tion, which is not enough to reflect the stable features. In the next section we state and prove
our theorem which improves Theorem 1.

2 Stability of SSBE Method

In this section, the MS-stability and GMS-stability of SSBE method are testified.
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For simplicity, we set

μ = B2D2 + 2|BC|D2τ − 2ABDE + (|CD|τ −A|E|)2,
nu = 2|B|D2 + 2|C|D2τ − 2A|DE| +B2 + 2|BC|τ − 2AE2

+2BDE + 2|CDE|τ + C2τ2 −A2,

and
� = ν2 − 4μ(2A+ 2|B| + 2|C|τ + (|D| + |E|)2).

Theorem 2 Assume that condition (2) holds. Then

i) if μ = 0 and ν ≤ 0; or μ > 0 and −ν+
√

�
2μ ≥ 1; or μ < 0 and � < 0, then the SSBE

method is GMS-stable;
ii) if μ = 0 and ν > 0, and h0(A,B,C,D,E) = − 2A+2|B|+2|C|τ+(|D|+|E|)2

ν , then the SSBE
method is MS-stable;

iii) if μ > 0 and −ν+
√

�
2μ < 1; or μ < 0, � ≥ 0, and ν > 0, and h0(A,B,C,D,E) = −ν+

√
�

2μ ,
then the SSBE method is MS-stable;

iv) if μ < 0,� ≥ 0, ν ≤ 0, and h0(A,B,C,D,E) = −ν−
√

�
2μ , then the SSBE method is

MS-stable.
Proof Note 1 − hA �= 0 and (2) implies A < 0. Then we can see from (3) that

y∗n =
1

1 −Ah

(

yn +Bhyn−m + Ch2
m∑

k=1

yn−k

)

(4)

and

yn+1 =
1 +D�Wn

1 −Ah

(

yn +Bhyn−m + Ch2
m∑

k=1

yn−k

)

+ E�Wnyn−m. (5)

Squaring both sides of the above equality, then simplifying and rearranging the equality ob-
tained, we have

y2
n+1 =

1 +D2(�Wn)2

(1 −Ah)2

(

y2
n +B2h2y2

n−m + C2h4

( m∑

k=1

yn−k

)2

+ 2Bhynyn−m

+2Ch2yn

m∑

k=1

yn−k + 2BCh3yn−m

m∑

k=1

yn−k

)

+
2D�Wn

(1 −Ah)2

(

y2
n +B2h2y2

n−m + C2h4

( m∑

k=1

yn−k

)2

+ 2Bhynyn−m

+2Ch2yn

m∑

k=1

yn−k + 2BCh3yn−m

m∑

k=1

yn−k

)

+
2E�Wn

1 −Ah

(

ynyn−m +Bhy2
n−m + Ch2yn−m

m∑

k=1

yn−k

)

+
2DE(�Wn)2

1 −Ah

(

ynyn−m + Ch2yn−m

m∑

k=1

yn−k

)

+
2DE(�Wn)2

1 −Ah
(Bhy2

n−m) + E2(�Wn)2y2
n−m.
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It follows from 2βγxy ≤ |βγ|(x2+y2), where β, γ ∈ R,
∑m

k=1 yn−k ≤ m max
1≤k≤m

yn−k andmh = τ,

we get

y2
n+1 ≤ 1 +D2(�Wn)2

(1 −Ah)2

(

y2
n +B2h2y2

n−m + C2h2τ2 max
1≤k≤m

y2
n−k + |B|h(y2

n + y2
n−m)

+|C|τh
(

y2
n + max

1≤k≤m
y2

n−k

)

+ |BC|τh2

(

y2
n−m + max

1≤k≤m
y2

n−k

))

+
2D�Wn

(1 −Ah)2

(

y2
n +B2h2y2

n−m + C2h4

( m∑

k=1

yn−k

)2

+ 2Bhynyn−m

+2Ch2yn

m∑

k=1

yn−k + 2BCh3yn−m

m∑

k=1

yn−k

)

+
2E�Wn

1 −Ah

(

ynyn−m +Bhy2
n−m + Ch2yn−m

m∑

k=1

yn−k

)

+
(�Wn)2

1 −Ah

(

|DE|(y2
n + y2

n−m

)
+ |DEC|τh

(
y2

n−m + max
1≤k≤m

y2
n−k

))

+
2DE(�Wn)2

1 −Ah

(
Bhy2

n−m

)
+ E2(�Wn)2y2

n−m.

Note that E(�Wn) = 0, E[(�Wn)2] = h and yn, yn−k are all Ftn -measurable, where k =
1, 2, · · · ,m. Hence,

E(�Wnysyj) = E(ysyjE(�Wn|Ftn)) = 0, s, j ∈ {n, n− k} (k = 1, 2, · · · ,m)

and

E((�Wn)2y2
s) = E(y2

sE((�Wn)2|Ftn)) = hE(ys)2, s ∈ {n, n− k} (k = 1, 2, · · · ,m).

Let Yn = E|yn|2 and taking expectations on both sides of the above inequality. Then we have

Yn+1 ≤ P (A, · · ·)Yn +Q(A, · · ·)Yn−m +R(A, · · ·) max
1≤k≤m

Yn−k

≤ (P (A, · · ·) +Q(A, · · ·) +R(A, · · ·)) max
1≤k≤m

{Yn, Yn−k},

where P (A, · · ·), Q(A, · · ·), R(A, · · ·) are dependent on A,B,C,D,E, h and

P (A, · · ·) =
1 +D2h

(1 − hA)2
(1 + |B|h+ |C|τh) +

|DE|h
1 −Ah

,

Q(A, · · ·) =
1 +D2h

(1 − hA)2
(|B|2h2 + |B|h+ |BC|τh2) + E2h+

|DE|h
1 −Ah

+
|CDE|τh2

1 −Ah
+

2BDEh2

1 −Ah
,

and

R(A, · · ·) =
1 +D2h

(1 − hA)2
(C2τ2h2 + |C|τh+ |BC|τh2) +

|CDE|τh2

1 −Ah
.

It is clear that P (A, · · ·) +Q(A, · · ·) +R(A, · · ·) ≥ 0. By recursive calculation we conclude that
Yn → 0(n→ ∞) if

P (A, · · ·) +Q(A, · · ·) +R(A, · · ·) < 1, (6)
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which is equivalent to

(B2D2 + 2|BC|D2τ − 2ABDE + (|CD|τ −A|E|)2)h2

+(2|B|D2 + 2|C|D2τ − 2A|DE| +B2 + 2|BC|τ − 2AE2 + 2BDE
+2|CDE|τ + C2τ2 −A2)h

+2A+ 2|B| + 2|C|τ + (|D| + |E|)2 < 0.

Let
f(h) = μh2 + νh+ 2A+ 2|B| + 2|C|τ + (|D| + |E|)2,

where
μ := B2D2 + 2|BC|D2τ − 2ABDE + (|CD|τ −A|E|)2

and

ν := 2|B|D2 + 2|C|D2τ − 2A|DE| + B2 + 2|BC|τ − 2AE2

+2BDE + 2|CDE|τ + C2τ2 −A2.

Case 1 If μ = 0, the function f(h) reduces to f(h) = νh+2A+2|B|+2|C|τ+(|D|+ |E|)2.
i) When ν ≤ 0, consider (2), we can obtain f(h) < 0 for any h > 0. Thus, (6) holds for any

h > 0 with h = τ/m, that is, the SSBE method is GMS-stable.
ii) When ν > 0, noting that (2), we can see that if h < − 2A+2|B|+2|C|τ+(|D|+|E|)2

ν , f(h) < 0
holds. Therefore, (6) holds for h ∈ (0, h1(A,B,C,D,E)), that is, the SSBE method is MS-
stable, where h1(A,B,C,D,E) = − 2A+2|B|+2|C|τ+(|D|+|E|)2

ν .
Case 2 If μ > 0, in view of (2), then

� := ν2 − 4μ(2A+ 2|B| + 2|C|τ + (|D| + |E|)2) > 0

always holds.

i) When −ν+
√

�
2μ ≥ 1. We can easily obtain that f(h) < 0 holds for any 0 < h < 1. Then

the SSBE method is GMS-stable.
ii) When −ν+

√
�

2μ < 1.We can easily obtain that f(h) < 0 holds for h ∈ (0, h2(A,B,C,D,E))

where h2(A,B,C,D,E) = −ν+
√

�
2μ . Then the SSBE method is MS-stable in this case.

Case 3 If μ < 0, from (2) we have
i) When � < 0, we can easily see that f(h) < 0 always holds for any h > 0 with h = τ/m.

Consequently, the SSBE method is MS-stable in this case.
ii) When � ≥ 0 and ν ≤ 0,we can easily see that f(h) < 0 holds for h ∈ (0, h3(A,B,C,D,E)),

where h3(A,B,C,D,E) = −ν−
√

�
2μ . Then the SSBE method is MS-stable in this case.

iii) When � ≥ 0 and ν > 0, we can easily obtain that f(h) < 0 holds for h ∈ (0, h3(A,B,C,

D,E)), where h3(A,B,C,D,E) = −ν+
√

�
2μ . Consequently, the SSBE method is MS-stable in

this case. The proof is completed.

3 Numerical Experiments

In this section, we give an example to illustrate our theory. Our objective is to illustrate
intuitively the stability obtained in the previous section. Furthermore, we compare the restric-
tions on stepsize of the stable SSBE method with that of the Euler method and Milstein method
(see [1, 3–4]).
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Let W (t) be a scalar Brownian motion. Consider a one-dimensional linear stochastic delay
integro-differential equations

dx(t) =
[

Ax(t) +Bx(t− 1) + C

∫ t

t−1

x(s)ds
]

dt+ [Dx(t) + Ex(t− 1)]dW (t) (7)

on t ≥ 0 with initial data ψ(t) = t+ 1 for t ∈ [−1, 0].
In the following tests, we show the influence of stepsize h on mean-square stability of the

SSBE method and compare our results with that obtained in [1, 3–4]. The data used in all
figures are obtained by the mean square of data by 100 trajectories, that is, Ω : 1 ≤ i ≤
100, Yn = 1

100

∑100
i=1 |Yn(Ω)|2.

Case 1 Let A = −9, B = 4, C = 3, D = 0, E = 0.8.
This test equation has been investigated in [3]. It is easily verified that conditions (2) is

satisfied. By Theorem 2 we know that the SSBE method is MS-stable for h ∈ (0, 0.5219). The
result in [1] narrows down the range to h ∈ (0, 0.4757), then it is restrictive to be applied for
practical application. Thus, we improve the stable result of [1]. Figure 1 illustrates the MS-
stability of numerical solution obtained by the SSBE method when h = 0.5. However, applied
to the same test equation, the Milstein method is unstable when the stepsize h = 0.5[3] and is
MS-stable when the stepsize 0 < h < 1/9. This shows that in this sense the SSBE method is
superior to the Milstein method.

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

3

Figure 1 Numerical simulation of Case 1 with h = 1/2

Case 2 We choose the coefficients of Equation (7) A = −4, B = 0, C = 1, D = 0, E = 2.
By Theorem2 the SSBE method is MS-stable when the stepsize h ∈ (0, 0.0883). Figure 2 shows
that the SSBE method is MS-stable when h = 1/100 and the SSBE method is stable when
h = 1/3. From [4] we can see the θ-Euler method is MS-stable when h = 1/100 and h = 1/3.
This implies that the stability bound obtained by Theorem 2 may not be optimal. The stability
of the SSBE method may be uncertain for h > 0.0883 in this case.
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Figure 2 Numerical simulation of Case 2 with upper: left h = 1/100 and right h = 1/3

Case 3 Let A = −0.4, B = 0.2, C = 0.6, D = 0.1, E = 4. The condition (2) is not satisfied.
To carry out the numerical simulation we choose the step size h = 1/128. The computer
simulation result is shown in Figure 3. Clearly, the SSBE method reveals the unstable property
of the solution.

0 5 10 15 20 25 30
−4

−2

0

2
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8
x 10 8

Figure 3 Numerical simulation of Case 3 with h = 1/128
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