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Abstract This paper considers a class of stochastic variational inequality problems. As proposed by

Jiang and Xu (2008), by using the so-called regularized gap function, the authors formulate the problems

as constrained optimization problems and then propose a sample average approximation method for

solving the problems. Under some moderate conditions, the authors investigate the limiting behavior of

the optimal values and the optimal solutions of the approximation problems. Finally, some numerical

results are reported to show efficiency of the proposed method.

Key words Convergence, gap function, sample average approximation method, stochastic variational

inequality.

1 Introduction

Equilibrium is a central concept in numerous disciplines including management science,
operations research, economics and engineering. It is known that the deterministic variational
inequality problem is one of very important methodologies for studying equilibrium problems.
There have been proposed a list of methods for solving the deterministic variational inequality
problem. For details, see the monograph[1] and the references therein, for examples, [2–4].

On the other hand, since some elements in many practical problems may involve uncertain
data, the stochastic variational inequalities have attracted much attention in the recent litera-
ture. In this paper, we consider the following stochastic variational inequality problem: Find a
vector x∗ ∈ S such that

(x − x∗)TE[F (x∗, ω)] ≥ 0, ∀x ∈ S, (1)
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where S is a closed convex subset of �n and E[ · ] denotes the expectation operator with respect
to ω ∈ Ω , here the expectation being taken as component-wise, and F : �n × Ω → �n is a
vector-valued function. This problem has been studied in [5–6]. In particular, making use of
the regularized gap function[7]

g(x) := max
y∈S

{
(x − y)TE[F (x, ω)] − α

2
‖x − y‖2

G

}
, (2)

where G is a given symmetric and positive definite square matrix and ‖z‖G :=
√

zTGz is the
G-norm of z ∈ �n. Jiang and Xu[6] reformulated (1) as the following constrained optimization
problem:

min
x∈S

g(x). (3)

It is known that any minimizer with zero optimal value of (3) is a solution of the original
problem (1), vice versa. Based on the above reformulation, some stochastic approximation
methods are studied in [6]. This paper focuses on problem (3). We will propose a sample
average approximation (SAA) method for solving (3).

The SAA method and its variants, known under various names such as “stochastic counter-
part method”, “sample-path method”, “simulated likelihood method”, have been discussed in
the stochastic programming and statistics literature[5,8−10]. In particular, Gürkan, Özge and
Robinson[5] proposed the sample path optimization (SPO) method for solving the problem and
showed that under moderate conditions, a sequence of solutions to the SPO problem converges
to its true counterpart. In fact, the SAA method is not new in the field of statistics. Shapiro[11]

first introduced this method to solve stochastic mathematical programs with equilibrium con-
straints. Later, Meng and Xu[12], and Xu and Meng[13] further investigated the SAA method
on stochastic mathematical programs with (nonsmooth) equality constraints.

The rest of the paper is organized as follows. We give some results on coercivity of the
regularized gap function in Section 2. Then, in Section 3, we investigate the limiting behavior
of the optimal values and the optimal solutions of the approximation problems generated by
SAA method.

2 Coercivity of the Function g(x)

In this section, we provide some sufficient conditions for the coercivity of the regularized
gap function g(x) on the set S. These results imply that problem (3) always has an optimal
solution for α > 0 sufficiently small.

Theorem 1 Suppose that there exists a point x0 ∈ S such that E[η(x0, ω)] > 0, where

η(x0, ω) = lim inf
x ∈ S

‖x‖ → ∞

(F (x, ω) − F (x0, ω))T(x − x0)
‖x − x0‖2

.

If α ∈ (0, 2‖G‖−1E[η(x0, ω)]), then lim
x ∈ S

‖x‖ → ∞

g(x) = +∞.

Proof Since x0 ∈ S, we have from the definition of g(x) that, for any x ∈ S,

g(x) ≥ (x − x0)TE[F (x, ω)] − α

2
‖x − x0‖2

G

≥ (x − x0)TE[F (x0, ω)] + (x − x0)TE[F (x, ω) − F (x0, ω)] − α

2
‖G‖ · ‖x − x0‖2

≥ ‖x − x0‖2

(
(x − x0)TE[F (x, ω) − F (x0, ω)]

‖x − x0‖2
− ‖E[F (x0, ω)]‖

‖x − x0‖ − α

2
‖G‖

)
. (4)
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By Fatou Lemma, one has that

lim inf
x ∈ S

‖x‖ → ∞

E
[
(F (x, ω) − F (x0, ω))T(x − x0)

‖x − x0‖2

]
≥ E[η(x0, ω)] > 0.

Noting that α‖G‖ < 2E[η(x0, ω)], one has that

lim inf
x ∈ S

‖x‖ → ∞

(
(x − x0)TE[F (x, ω) − F (x0, ω)]

‖x − x0‖2
− ‖E[F (x0, ω)]‖

‖x − x0‖ − α

2
‖G‖

)
≥E[η(x0, ω)] − α

2
‖G‖ >0.

It follows from (4) that lim inf
x ∈ S

‖x‖ → ∞

g(x) ≥ +∞. This completes the proof.

Definition 1 The function F is said to be uniformly monotone over S with probability 1
if there exists an integrable function C(ω) ≥ 0 such that

Pr{(x − y)T[F (x, ω) − F (y, ω)] ≥ C(ω)‖x − y‖2} = 1, ∀x, y ∈ S.

Corollary 1 Suppose that F is uniformly monotone over S with probability 1 and C(ω) is
such that E[C(ω)] > 0. Then lim

x ∈ S
‖x‖ → ∞

g(x) = +∞.

Proof Take a vector x0 from S. Then one has that

Pr{(x − x0)T[F (x, ω) − F (x0, ω)] ≥ C(ω)‖x − x0‖2} = 1,

which implies

E[η(x0, ω)] ≥ E[C(ω)] > 0.

Here η(x0, ω) is the same as in Theorem 1. The conclusion follows from Theorem 1 immediately.
The proof is completed.

Note that, if the set S is bounded, then the above results hold trivially. Therefore, the main
utility of these results is for the case that S is unbounded.

3 SAA Method and Its Convergence

In this section, we present an SAA method for solving (3) and investigate its convergence.
Let ω1, ω2, · · · , ωN be independently and identically distributed samples drawn from Ω . Then,
we obtain the following sample average approximation of (3):

min gN(x) = max
y∈S

{
(x − y)T

[
1
N

N∑
j=1

F (x, ωj)
]
− α

2
‖x − y‖2

G

}
(5)

s.t. x ∈ S.

Before implementing our analysis further, we need the following definition given by Facchinei
and Pang[1].

Definition 2 Let S be a convex subset of �n and G×�n×n a symmetric positive definitive
matrix. The projection operator ΠS,G : �n → S is called the skewed projection mapping in �n

into S if for every fixed x ∈ �n, and ΠS,G(x) is the solution of the following convex optimization
problem:
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{
miny

1
2
‖x − y‖2

G =
1
2
(y − x)TG(y − x)

s.t. y ∈ S

It follows from [7] that

g(x) = (x − H(x))Tf(x) − α

2
‖x − H(x)‖2

G,

gN (x) = (x − HN (x))TfN (x) − α

2
‖x − HN (x)‖2

G,

where
f(x) = E[F (x, ω)], fN (x) =

1
N

N∑
j=1

F (x, ωj),
and

H(x) = ProjS,G(x − α−1G−1f(x)), HN (x) = ProjS,G(x − α−1G−1fN (x)).

Furthermore, we make the following assumptions throughout this section:
A1) The set S is nonempty and compact.
A2) The function F (x, ω) is continuous with respect to x for every ω ∈ Ω .
A3) There exists an integrable function φ(ω) such that

sup
x∈S

‖F (x, ω)‖ ≤ φ(ω), a.e. ω ∈ Ω ,

where notation “a.e.” denotes almost everywhere.
From [9], we obtain the following result.
Lemma 1 Assume that A1)–A3) hold. Then the following results hold:
1) f(x) is finite and continuous on S;
2) {fN(x)} uniformly converges to f(x) with probability 1 on S, that is,

lim
N→∞

max
x∈S

‖fN(x) − f(x)‖ = 0.

The following theorem provides the uniform convergence of the objective functions of the
approximation problems (3).

Theorem 2 Assume that A1)–A3) hold. Then {gN(x)} uniformly converge to the function
g(x) with probability 1 on S.

Proof By the definitions of g(x) and gN(x), one has

|g(x) − gN(x)| ≤
∣∣∣(x − H(x))Tf(x) − (x − HN(x))TfN (x)

∣∣∣
+

∣∣∣α
2
‖x − HN (x)‖2

G − α

2
‖x − H(x)‖2

G

∣∣∣
= |(x − H(x))T(fN (x) − f(x)) − (HN (x) − H(x))TfN(x)|

+
α

2

∣∣∣‖x − HN (x)‖2
G − ‖x − H(x)‖2

G

∣∣∣
≤ ‖x − H(x)‖ · ‖fN (x) − f(x)‖ + ‖HN(x) − H(x)‖ · ‖fN(x)‖

+
α

2

∣∣∣‖x − HN (x)‖2
G − ‖x − H(x)‖2

G

∣∣∣.
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Therefore, one has

sup
x∈S

|g(x) − gN (x)|
≤ sup

x∈S
‖x − H(x)‖ · sup

x∈S
‖fN(x) − f(x)‖ + sup

x∈S
‖HN (x) − H(x)‖ · sup

x∈S
‖fN(x)‖

+
α

2
sup
x∈S

∣∣∣∣‖x − HN (x)‖2
G − ‖x − H(x)‖2

G

∣∣∣∣. (6)

Since g(x) ≥ 0, one has

α

2
‖x − H(x)‖2

G ≤ (x − H(x))Tf(x) ≤ 1√
λmin

‖x − H(x)‖G · ‖f(x)‖,

where λmin denotes the smallest eigenvalue of G. One furtherly has

‖x − H(x)‖ ≤ 1√
λmin

‖x − H(x)‖G ≤ 2
α
√

λmin

‖f(x)‖.

Since S is nonempty and compact, there exists a positive scalar M such that

sup
x∈S

‖f(x)‖ < M and sup
x∈S

‖fN(x)‖ < M

hold with probability 1. Moreover, it is not difficult to show that

sup
x∈S

‖x − H(x)‖ <
2

α
√

λmin

M and sup
x∈S

‖x − HN (x)‖ <
2

α
√

λmin

M

hold with probability 1. In addition, by the nonexpansive property of projection operator, one
has

‖HN (x) − H(x)‖ = ‖ProjS,G(x − α−1G−1fN(x)) − ProjS,G(x − α−1G−1f(x))‖G

≤ ‖α−1G−1fN (x) − α−1G−1f(x)‖G

≤ α−1‖G−1‖ · ‖fN(x) − f(x)‖,
with probability 1. On the other hand, one has

sup
x∈S

∣∣∣∣‖x − HN (x)‖2
G − ‖x − H(x)‖2

G

∣∣∣∣

= sup
x∈S

∣∣∣∣(x − H(x))TG(HN (x) − H(x)) + (x − HN (x))TG(HN (x) − H(x))
∣∣∣∣

≤
(

sup
x∈S

‖x − H(x)‖ + sup
x∈S

‖x − HN (x)‖
)
· ‖G‖ · sup

x∈S
‖HN(x) − H(x)‖

≤ α−1

(
sup
x∈S

‖x − H(x)‖ + sup
x∈S

‖x − HN (x)‖
)
· ‖G‖ · ‖G−1‖ · sup

x∈S
‖fN(x) − f(x)‖.

From Lemma 1, {fN(x)} uniformly converges to f(x) with probability 1 on S. Then, for any
ε > 0, there exists some positive scalar N0 such that, when N > N0,

sup
x∈S

‖fN (x) − f(x)‖ ≤ ε

α−1M
(

2√
λmin

+ ‖G−1‖ + 2√
λmin

‖G‖ · ‖G−1‖)



1148 MINGZHENG WANG, et al.

with probability 1. Thus, by (6), one has

sup
x∈S

|g(x) − gN(x)| < α−1M

(
2√
λmin

+ ‖G−1‖ +
2√
λmin

‖G‖ · ‖G−1‖
)
· sup

x∈S
‖fN(x) − f(x)‖ ≤ ε.

This indicates that {gN(x)} uniformly converges to g(x) with probability 1 on S.
Definition 3[14] Assume that every function of the sequence {fn}∞n=1 is lower semicontinu-

ous and the function f is lower semicontinuous. We say that {fn} epi-converges to f if for any
x,

i) for every sequence {xn} converging to x, there holds lim inf
n→∞ fn(xn) ≥ f(x);

ii) there exists a sequence {xn} converging to x such that lim sup
n→∞

fn(xn) ≤ f(x).

The following theorem shows the epi-convergence of {gN}.
Theorem 3 Assume that A1)–A3) hold. Then {gN} epi-converges to g.
Proof By A2), both fN(x) and f(x) are continuous. From law of large number, one has

lim
N→∞

fN(x) = f(x)

with probability 1. Let the sequence {xN} ⊂ S converge to x ∈ S. We first show that

lim
N→∞

fN (xN ) = f(x)

with probability 1. In fact, for any ε > 0, one has from Lemma 1 that there exist δ > 0 and
N > 0 such that when N > N and ‖xN − x‖ ≤ δ,

‖fN(xN ) − f(xN )‖ < ε, ‖f(xN) − f(x)‖ < ε.

It follows that

‖fN (xN ) − f(x)‖ ≤ ‖[fN(xN ) − f(xN )]‖ + ‖[f(xN ) − f(x)]‖ ≤ 2ε.

This means that the sequence {fN} epi-converges to f with probability 1. Furthermore, since
both H(·) and HN (·) are continuous, one has

‖HN(xN ) − H(x)‖ = ‖ProjS,G(xN − α−1G−1fN (xN )) − ProjS,G(x − α−1G−1f(x))‖G

≤ ‖(xN − x) − α−1G−1(fN (xN )) − f(x))‖G

≤ ‖(xN − x)‖ + α−1‖G−1‖ · ‖(fN(xN )) − f(x))‖,

and hence lim
N→∞

HN (xN ) = H(x) with probability 1. Recall that

g(x) = (x − H(x))Tf(x) − α

2
‖x − H(x)‖2

G,

gN (x) = (x − HN (x))TfN (x) − α

2
‖x − HN (x)‖2

G.

We then obtain

lim
N→∞

gN (xN ) = g(x)

with probability 1, that is, the sequence {gN} almost surely epi-converges to g.
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The following theorem shows the convergence of optimal values of the approximation prob-
lem (3).

Theorem 4 If A1)–A3) hold, then we have lim
N→∞

min
x∈S

gN(x) = min
x∈S

g(x) with probability 1.

Proof Note that, by A1) and A2), for every N , both min
x∈S

gN(x) and min
x∈S

g(x) are finite. Let ε

be an arbitrary positive number. Then there exists a vector xε ∈ S such that g(xε) ≤ min
x∈S

g(x)+

ε. By Theorem 3, the sequence {gN} epi-converges to g with probability 1, which means that
there almost surely exists a sequence {xN} converging to xε such that lim sup

N→∞
gN (xN ) ≤ g(xε).

Therefore, we have

lim sup
N→∞

min
x∈S

gN (x) ≤ lim sup
N→∞

gN(xN ) ≤ g(xε) ≤ min
x∈S

g(x) + ε

with probability 1. By the arbitrariness of ε, we have that, with probability 1, there holds

lim sup
N→∞

min
x∈S

gN(x) ≤ min
x∈S

g(x). (7)

On the other hand, for any ε > 0, there exists a sequence {xN} ⊂ S such that

0 ≤ gN (xN ) ≤ min
x∈S

gN(x) + ε.

Then there exists a subsequence {xNk
} converging to some vector xε ∈ S and satisfying

lim
k→∞

gNk
(xNk

) = lim inf
N→∞

gN (xN ).

Since, by Theorem 3, {gN} epi-converges to g with probability 1, one has that

lim inf
N→∞

min
x∈S

gN (x) ≥ lim inf
k→∞

gNk
(xNk

) − ε ≥ g(xε) − ε ≥ inf
x∈S

g(x) − ε

with probability 1. It follows from the arbitrariness of ε that

lim inf
N→∞

min
x∈S

gN (x) ≥ min
x∈S

g(x) (8)

with probability 1.
The conclusion follows from (7) with (8) immediately.
Definition 4[14] Let {Cn} be a sequence of closed sets in �n. The outer limit of {Cn} are

defined as follows:

ls Cn =
{
x
∣∣∣ ∃{xnk

} s.t. xnk
∈ Cnk

, x = lim
k→∞

xnk

}
.

Denote by arg inf g and arg inf gN the optimal solution sets of problems (3) and (5), respec-
tively.

Theorem 5 Suppose that A1)–A3) hold. Then we almost surely have ls{arg inf gN} ⊆
arg inf g.

Proof Let xN k
∈ arg inf gN k

and lim
k→∞

xN k
= x ∈ S. It is sufficient to prove x ∈ arg inf g

almost surely.
By Theorem 3, the sequence {gN} epi-converges to g with probability 1. As a result, we

have

lim inf
k→∞

gNk
(xNk

) ≥ g(x).
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In a similar way as in the last theorem, we can show

lim sup
N→∞

inf
u∈S

{gN(u)} ≤ inf
u∈S

g(x)

with probability 1. It follows from the above two inequalities that

g(x) ≤ inf
u∈S

g(u)

with probability 1. Since x ∈ S, we have x ∈ arg inf g almost surely.
Theorem 6 Let A1)–A3) hold and F (x, ω) be uniformly monotone with respect to x for

almost every ω ∈ Ω, that is, there exists a nonnegative integrable function C(ω) such that

(x − y)T(F (x, ω) − F (y, ω)) ≥ C(ω)‖x − y‖2, ∀x, y ∈ �n.

Suppose that E[C(ω)] > 0. Let xN be an optimal solution of problem (5) for each N . Then, the
sequence {xN} converges to the unique solution of the original problem (1) with probability 1.

Proof First of all, it is easy to see from the assumptions that E[F (·, ω)] is strongly monotone
with modulus E[C(ω)] > 0. This indicates that the original problem (1) has a unique solution[1].
We denote by x∗ the solution. It is obvious that x∗ is also a unique solution of problem (3), that
is, arg inf g = {x∗}. From Theorem 5, the bounded sequence {xN} has a unique accumulation
point x∗ and so the conclusion is valid.

4 Sample Average Approximation Scheme

In this section, we detail a sample average approximation method scheme for solving stochas-
tic variational inequality.

In the SAA scheme, a random sample ω1, ω2, · · · , ωN of N realization (scenarios) of the
random vector ω is generated, and the expectation E[F (x, ω)] is approximated by the sample
average function N−1

∑N
n=1 F (x, ωn). Consequently, the original problem is approximated by

the problem

min
x∈S

gN (x), (9)

where

gN (x) = max
y∈S

{
(x − y)T

[
1
N

N∑
n=1

F (x, ωn)
]
− α

2
‖x − y‖2

G

}
. (10)

In (10), we know that gN(x) is the maximum value of the optimization problem, and can be
solved or approximated by deterministic optimization method.

Let vN and x̂ be the optimal value and an optimal solution vector, respectively, of the
SAA problems (9). Note that vN and x̂ are random in the sense that they are functions of
the corresponding random sample. However, for a particular realization ω1, ω2, · · · , ωN of the
random sample, the problem (9) is deterministic and can be solved by appropriate optimization
techniques. It is possible to show that under mild regularity conditions, as the sample size N
increases, vN and x̂ converge with probability on their true value counterparts.

In the following, we present a sample average approximation scheme for solving the stochas-
tic variational inequality problem
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Step 1 Generate M independent samples each of size N , i.e., (ω1, ω2, · · · , ωN ) for j =
1, 2, · · · , M . For each sample solve the corresponding SAA problem

min
x∈S

gj
N (x),

where gj
N(x) = max

y∈S
{(x − y)T[ 1

T

∑N
n=1 F (x, ωn

j )] − α
2 ‖x − y‖2

G}.
Step 2 Compute vN,M := 1

M

∑M
j=1 vj

N and σ2
vN,M

= 1
(M−1)M

∑M
j=1(v

j
N − vN,M)2.

Step 3 Choose a feasible solution x̃ of the true problem. Estimate the true objective
function value g(x̃) as

g̃N ′(x̃) = max
y∈S

{
(x − y)T

[
1

N ′

N ′∑
n=1

F (x, ωn)
]
− α

2
‖x − y‖2

G

}
,

where {ω1, ω2, · · · , ωN ′} is a sample of size N ′ generated independently of the sample used
to obtain x̃, and N ′ is taken much bigger than the sample size N used in solving the SAA
problems.

Step 4 Compute gN ′(x̃) and σ2
N ′(x̃) := 1

(N ′−1)N ′
∑N ′

n=1(h(x̃, ωn)−g̃N ′(x̃)), where h(x̃, ωn) =
max
y∈S

{(x − y)TF (x, ωn) − α
2 ‖x − y‖2

G}.

5 Numerical Results

In this section, we describe numerical experiments using SAA method.
In our experiments, we assume that the matrix G is the identity matrix and α = 1. All tests

are implemented in the same PC with system memory 2.0G and CPU 2.0G. In each experiment,
we implement the test 20 or 50 times independently, respectively. The sample size N is taken
as 100 and 400, respectively.

The numerical results shown in Tables 1–4 reveal that our proposed method was able to
successfully solve the problems considered.

Example 1 Consider the stochastic variational inequality problem (1) in which ω is
uniformly distributed on Ω = [0, 1], S = �+ ×�+ ×�+ and F : �3 × Ω → �3 is given by

F (x, ω) =

⎛
⎝

x1 − ωx2 + 3 − 2ω
−ωx1 + 2x2 + ωx3 − 2 − ω

ωx2 + 3x3 − 3 − ω

⎞
⎠ .

This problem has a unique solution x∗ = (0, 1, 1)T for each ω ∈ Ω . Numerical results are shown
in Table 1.

Table 1 The computational results for Example 1

N M N ′ zN,M x̃ gN′(x̃) σ2
zN,M

100 20 600 0.005 (0.00159289, 1.02312, 0.985538) 3.60934e-003 1.1491e-005
400 20 600 0.0045 (0.000732467, 1.03854, 0.959161) 2.16543e-003 8.8789e-006
100 50 600 0.0035 (0.00140442, 0.994995, 1.00216) 2.35591e-003 9.8808e-006
400 50 600 0.004 (3.05325e-005, 1.00145, 0.999906) 6.38546e-005 1.0720e-005

Example 2 Consider the stochastic variational inequality problem (1), in which ω is
uniformly distributed on Ω = [0, 1], S = �+ ×�+ ×�+ and F : �3 × Ω → �3 is given by

F (x, ω) =

⎛
⎝

x2
1 − ωx2 + 3 − 2ω

−ωx1 + 2x2
2 + ωx3 − 2 − ω

ωx2 + 3x2
3 − 3 − ω

⎞
⎠ .
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It is easy to prove that the function E[F (x, ω)] is strongly monotone. So this stochastic vari-
ational inequality problem has a unique solution x∗ = (0, 1, 1)T. The numerical results are
shown in Table 2.

Table 2 The computational results for Example 2

N M N ′ zN,M x̃ gN′(x̃) σ2
zN,M

100 20 600 304523e-004 (3.82171e-005, 0.997423, 1.00112) 5.1842e-005 3.9642e-008
400 20 600 3.1984e-004 (1.67235e-006, 1.00221, 0.996471) 3.4463e-005 4.4121e-008
100 50 600 2092122e-004 (1.91344e-005, 1.00023, 1.00057) 3.7229e-005 3.9723e-008
400 50 600 2.0089e-004 (1.7312e-006, 1.00134, 0.994871) 1.4245e-005 2.8649e-008

Example 3 Consider the stochastic variational inequality problem (1), in which ω is
uniformly distributed on Ω = [0, 1], S = [0, 4] × [0, 4]× [0, 4] and F : �3 × Ω → �3 is given by

F (x, ω) =

⎛
⎝

x1 − ωx2 + 3 − 2ω
−ωx1 + 2x2 + ωx3 − 2 − ω

ωx2 + 3x3 − 3 − ω

⎞
⎠ .

This problem has a solution x∗ = (0, 1, 1)T for each ω ∈ Ω . The numerical results are shown in
Table 3.

Table 3 The computational results for Example 3

N M N ′ zN,M x̃ gN′(x̃) σ2
zN,M

100 20 600 0.0046 (0.0015765, 1.02134, 0.99256) 3.70121e-003 1.1592e-005
400 20 600 0.0031 (0.00085621, 1.02978, 0.97387) 2.53124e-003 8.2567e-006
100 50 600 0.0036 (0.0020789, 0.993575, 1.00145) 2.37812e-003 9.7834e-006
400 50 600 0.003011 (3.1624e-005, 1.00267, 0.998991) 6.45671e-005 1.0023e-005

Example 4 Consider the stochastic variational inequality problem (1), in which ω is
uniformly distributed on Ω = [0, 1], S = [0, 4] × [0, 4]× [0, 4] and F : �3 × Ω → �3 is given by

F (x, ω) =

⎛
⎝

x2
1 − ωx2 + 3 − 2ω

−ωx1 + 2x2 + ωx3 − 2 − ω
ωx2 + 3x2

3 − 3 − ω

⎞
⎠ .

It is easy to prove that the function E[F (x, ω)] is strongly monotone. So this stochastic vari-
ational inequality problem has a unique solution x∗ = (0, 1, 1)T. The numerical results are
shown in Table 4.

Table 4 The computational results for Example 4

N M N ′ zN,M x̃ gN′(x̃) σ2
zN,M

100 20 600 3.0841e-004 (3.80427e-005, 0.999781, 1.0003) 6.07436e-005 3.9706e-008
400 20 600 2.4201e-004 (1.56462e-006, 1.00123, 0.998771) 3.475e-005 4.3964e-008
100 50 600 2.9498e-004 (1.80155e-005, 1.00052, 1.00057) 3.7444e-005 3.9326e-008
400 50 600 2.0797e-004 (0.00000, 1.00111, 1.0004) 1.50538e-005 2.8568e-008

From the above analysis for Examples 1–4, our preliminary numerical results for these
examples indicate that the proposed SAA method yield a reasonable and better solution of the
stochastic variational inequality problem (1).
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6 Conclusions

We studied the stochastic variational inequality problem (1). By using the regularized gap
function, we formulated the problem as the constrained optimization problem (3). Then, we
proposed an SAA method for solving (3). We also investigated the limiting behavior of the
optimal values and the optimal solutions of the approximation problems. On the other hand,
one may use the so-called D-gap function[1] to replace the regularized gap function to get some
unconstrained optimization problems as approximations of (1).
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