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Abstract This paper considers dynamical systems under feedback with control actions limited to

switching. The authors wish to understand the closed-loop systems as approximating multi-scale prob-

lems in which the implementation of switching merely acts on a fast scale. Such hybrid dynamical

systems are extensively studied in the literature, but not much so far for feedback with partial state

observation. This becomes in particular relevant when the dynamical systems are governed by partial

differential equations. The authors introduce an augmented BV setting which permits recognition of

certain fast scale effects and give a corresponding well-posedness result for observations with such min-

imal regularity. As an application for this setting, the authors show existence of solutions for systems

of semilinear hyperbolic equations under such feedback with pointwise observations.

Key words Feedback, functions of bounded variation, hybrid dynamical systems, partial state obser-

vation, switching control.

1 Introduction

Interaction among components operating at distinct time scales is a challenging and impor-
tant area of research and — though having great practical consequences — is not yet understood
in its full complexity. One approach to such multi-scale problems is the theory of hybrid dy-
namical systems which, as far as possible, suppresses consideration of unmodeled details of the
fast scale dynamics. One important scenario in this context is a continuous time dynamical
process on our (slow) scale coupled with an observation based feedback controller acting on
a much faster time-scale which we will then be approximating as instantaneous. The effect
of control decisions on the fast scale then largely shows up as switching, selecting a discrete
mode from a finite set by appropriate switching rules: a paradigmatic example is a thermostat,
‘instantaneously’ switching a furnace ON or OFF depending on the temperature observed at a
single point. We do also allow for the possibility that a control action may take place entirely
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on the fast time scale, showing up as a jump in the state or may be a combination of these. We
do not describe these possibilities explicitly, but that description should be clear.

When the continuous dynamics are governed by ordinary differential equations and full state
information is assumed, well-posedness of such closed-loop systems has been addressed by many
authors in this area — for example, [1–6].

Note that one typically considers switching structures in which the modal transitions are
restricted to specified edges of a transition graph — see Figure 2 — so the sequencing of these
control decisions (e. g., with respect to the fast scale) remains significant, even when one may
have a cascade of several such actions which could be viewed as ‘simultaneous’ on the slow scale.
For this reason it has seemed necessary to model the time domain of the closed loop system as
an augmented version of the ‘normal time’ interval in I ⊂ R — a lexicographically ordered set

T∗ = {(t, 0) : t ∈ I} ∪ {(tk, j) : 0 ≤ j ≤ nk for k = 1, 2, · · · , K} ⊂ R × Z, (1)

with the real value t modeling the ‘normal time’ and the integer value j indexing the cascade
of discrete control actions at the same nominal time, see, e. g., [3, 5, 7–9]. A difficulty with this
for sets of functions defined on such augmented intervals is that the relevant T∗ will vary with
the function. Note that we leave specification of the set {tk} somewhat ambiguous by allowing
nk = 0 so we can always compare functions on augmented intervals T∗ and T ′

∗ (with the same
underlying normal time interval) by working with the union of these sets for each of them.

We will be considering functions of bounded variation (BV ) in a slight modification BV ∗ of
the Jordan sense, defined on such augmented domains T∗. Certainly the multi-scale perspective
we have in mind is entirely consistent with fast scale effects other than the control decisions
and we therefore accept the possibility of concomitant jumps in the state (and so possibly in
the observation) as the slow scale recognition of fast scale dynamics. This is one reason we will
wish to extend known results to such a BV context.

As an application we will here be considering switching control of a distributed parameter
system so the scenario above couples the evolution of the system, governed by a partial differ-
ential equation, with modal switching based on sensor observations: y(s) taking values in an
observation space Y as described in [10]. The provision of partial state observation becomes
necessary for such infinite dimensional hybrid systems because the assumption of full state ob-
servation is unrealistic in many cases. One wishes to characterize switching rules (5) giving
admissible switching controls with a minimum of regularity assumptions for this observations,
making up another reason for a BV context.

It is important to consider the possibility of switching rules leading to Zeno phenomena,
i. e., accumulation points of control decisions (switching times); this is one of the main technical
difficulties in obtaining global existence results. In BV ∗ one does allow infinitely many small
jumps in the state, but ‘non-Zenoness’ refers to finiteness of the set of control actions and so
means not only that there are at most finitely many slow scale switching times, but also that
there are no infinite cascades. We note, of course that there are physical systems, e. g., a buzzer,
whose hybrid idealization would involve an infinite cascade, and our present theory would not
cover these unless the time scaling separates these discrete transitions (treating the sliding mode
as chattering) or one uses some averaging (homogenization) to redefine this behavior as a single
mode.

We apply our results for the augmented BV ∗ setting to show existence of solutions for sys-
tems of semi-linear hyperbolic equations under such switching feedback control with pointwise
observations. Since our example is a first order transport system, we will also be led to the use
of BV ∗ for the spatial domain.
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Figure 1 Example of a switching structure

2 BV ∗ and Switching Rules

As anticipated in the introduction, we wish to distinguish ‘points’ in time with the same
‘normal time’, but with well-defined ordering. This distinction is to be viewed as permitting
phenomena on a finer scale (in time) to rise to our attention as necessary. We think of this as
introducing an augmented version T∗ of the normal (slow scale) control interval as in (1).

To consider BV for functions defined on an augmented time domain T∗, we introduce

Var(y, T∗) = sup
S

{∑
k

|y(sn) − y(sn−1)|
}

(2)

with the sup taken over all (finite) sequences S = (s0 ≺ s1 ≺ · · · ) in T∗. Here, ‘≺’ means the
lexicographic order in R × Z. We set

BV ∗ = BV (T∗) = {y : T∗ → R : Var(y, T∗) < ∞} (3)

with the subscript ∗ to be understood as a reminder of the augmention introduced above.
We will be addressing the Zeno phenomenon and some implications of that time-domain

modeling when the feedback uses partial state information based on sensor data y. Given
an augmented time domain T∗ ⊂ R × Z as explained above, an observation-trajectory is a
mapping y : T∗ → Y with each sensor value y(s) given by the system state at the (augmented)
time s ∈ T∗. Accordingly, we consider the set of mappings {μ : T∗ → M}, where M is the finite
set of available modes and μ(s) ∈ M for s ∈ T∗. Observe that, since the switching times are
initially unknown, this modeling implies that the time domain T∗ of the closed-loop system is
not given a-priori, but must be constructed causally during the system’s evolution. A feedback
law then assigns a set of admissible mode-trajectories to a given observation-trajectory and is,
therefore, of the form

Φ : [T∗ → Y ] → 2[T∗→M ], (4)

which we make precise by assuming that the feedback Φ is given by a set of switching rules of
the form: ⎧⎨

⎩
If one is in the mode μ at any given event time s ∈ T∗, then:

switching μ � μ′ is permitted (only) if y(s) ∈ C(μ � μ′),
staying in mode μ is permitted (only) if y(s) ∈ A(μ).

(5)

where the sets A(μ), {C(μ � μ′) : μ′ 
= μ} cover Y for each μ ∈ M . Such switching rules
encompass a very broad class of feedback laws.
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Example 1 For Y = R, M = {0, 1} and thresholds ρ1 < ρ2 in R, setting

A(0) = {y ≤ ρ2} and C(0 � 1) = {y ≥ ρ2},
A(1) = {y ≥ ρ1} and C(1 � 0) = {y ≤ ρ1}

defines the well-known (closed) non-ideal relay, the elementary hysteron of [11].
We further remark that, as in this Example, we do not require the sets A(μ) and C(μ � μ′)

to be disjoint in general and thus permit situations with, e. g., A(μ)∩C(μ � μ′)∩C(μ � μ′′) 
= ∅
where staying in mode μ, switching to mode μ′ or switching to mode μ′′ are all feasible according
to (5). Of course one cannot expect unique solutions of the closed-loop system in the case of
such switching rules and an appropriate theory must handle such non-determinism.

Now observe that the nonempty sets C(μ � μ′) in (5) imply a switching structure in the
form of an underlying modal transition graph; see Figure 1 for an illustration. Also observe
that the switching rules (5) do permit cascades, i. e., compound jumps μ � μ′

� · · · �

μ′′···′ (abbreviated as μ �� μ′′···′) occuring at the same ‘normal time’ t. Indexing so μ0 =
μ, · · · , μN = μ′′···′ (where the length of the cascade is N = #{μ, · · · , μ′′···′}) and setting
sn = (t, n) for n = 0, 1, · · · , N , this requires

y(sn) ∈ C(μn � μn+1) for 0 ≤ n < N, y(sN ) ∈ A(μN ) (6)

with the next control event, if any, being a switch to some mode μN+1 
= μN at a time t′ > t.
We will continue to use this terminology and notation even for N = 1, when this would not
represent a true cascade.

Independently of any feedback structure, we will call switching sequences μ(·) : T∗ → M
admissible, if

i) for any two consecutive (distinct) modes μ, μ′ of the sequence, the directed edge [μ → μ′]
is in the modal transition graph (feasibility),

ii) there are only finitely many switches μ � μ′ in each finite interval in ‘normal time’
(non-Zenoness).

With this in mind we consider possible paths [μ0 → μ1 → · · · → μN+1] in the transition
graph and the corresponding sets

B[μ0, μ1, · · · , μN+1] = C(μ0 � μ1) × · · · × C(μN−1 � μN ) ×A(μN ) × C(μN � μN+1).

We can then define Δ[μ0, μ1, · · · , μN+1] by

Δ[· · · ] = inf

{
N∑

n=0

|ηn+1 − ηn| : (η0, · · · , ηN+1) ∈ B[μ0, · · · , μN+1]

}
. (7)

We do impose the following assumptions on the switching rules.
Hypothesis 1 1) Each C(μ � μ′) is closed (and empty unless [μ → μ′] is an edge of the

modal transition graph).
2) For each μ ∈ M we have

(
Y \

[⋃
μ′ �=μ C(μ � μ′)

])
⊂ A(μ).

3) There exists Δ∗ > 0 such that Δ[μ0, μ1, · · · , μN+1] ≥ Δ∗ for each path.
4) For any V > 0, there exists N∗ = N∗(V ) such that Δ[μ0, μ1, · · · , μN+1] > V whenever

N > N∗.
These are, of course, purely geometric verifiable conditions on the sets A(μ) and C(μ � μ′)

which define the switching rules.
With the Hypotheses 1 at hand, we have the following Theorem.
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Theorem 1 Suppose, for some T and δ > 0, y ∈ BV ∗([T, T + δ]∗). Then, μ(·) given by
(5) is an admissible switching signal on some [T, T + δ]∗.

Proof Consider any time interval I∗ = [T, T + δ]∗ and let V = Var(y(·), I∗). The Hy-
pothesis 1.4 ensures, provided one has non-Zenoness, that the switching signal can always be
constructed causally on I∗ by (5) with no cascade longer than N∗(V ). Note that the domain I ′

∗
of μ(·) for the normal time I = [T, T + δ] is here determined by this signal, as it is constructed.
Clearly, from 3) of Hypothesis 1 and (6), the separation distance between y at the switching
event starting any cascade and at the start of the next cascade must be at least Δ∗ — i. e., if
tk and tk+1 are consecutive switching times in I, then

Var(y, [tk, tk+1]∗) ≥ Δ∗.

By subadditivity of the variation, V ≤
∑
k

Var(y, [tk, tk+1]∗) > KΔ∗, where K is the number

of such completed cascades during [T, T + δ]. Thus, we must have K ≤ V/Δ∗ and so at most
(K + 1)N∗ switchings altogether.

3 Semilinear Hyperbolic Systems in BV ∗

As an example for a BV ∗ setting, we consider semilinear transport/reaction problems and,
as in [12] will be interested in feedback-control of the kind described by switching rules of the
form (5). We wish to extend the results of [12] in two ways: first to be able to handle matrix
problems (in particular, systems of equations that can be regarded as the linearization of the
shallow-water equations, the Euler-equations for gas-flow in pipes, equations of traffic flow,
multi-commodity flow, etc.) and, second, to the BV setting (which paves the way to a potential
treatment of the fully nonlinear problems).

We, therefore, consider a ν-component family (parameterized by μ) of reaction/transport
systems

ut = Aμux + fμ(u), 0 < x < 1, t >
¯
t (8)

with sufficiently regular Aμ = Aμ(t, x) and fμ(u) = fμ(t, x, u); we assume the input data
provided at the ends x = 0, 1 as appropriate will be suitable, e. g., in BV ∗; we also assume the
initial data ū provided at

¯
t will be suitable.

Further, we consider partial state observation, determined by point observations on some
finite set (x1, x2, · · · , xN ) of sensor locations, chosen in the interior of [0, 1], so

y(t) = Pu(t, ·) = [u(t, x1), · · · , u(t, xN )] ∈ R
n with n = Nν. (9)

Note that this assumes we observe each component at each observation point, but that is not
necessary. We could also have included observation of the input data if desired, but that, too,
is not required. Note, finally, that we are assuming, without further mention, that 0 < x1 <
· · · < xN < 1.

The combined evolution of (5) and (8) for given initial data (μ̄, ū) at t = 0 will then be
given by a sequence

(μ̄, 0, ū) → (μ1, δ1, u1) → (μ2, δ2, μ2) → · · · (10)

with each uk solving (8) with μ = μk,
¯
t = δk, and ūk+1 = uk(δk+1). Note that the evolving state

is given by uk on the time interval [δk, δk+1] so there is no evolution on intervals of length 0,
when δk+1 = δk as part of a cascade; we then have uk+1(δk+1) = uk(δk). To have δk+1 > δk we
must have y(t) ∈ A(μk) on the time interval (δk, δk+1) while at the event times we must have
y(δk) ∈ C(μk−1 � μk) for each k = 1, 2, · · · .
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As already in [12], we wish to consider data for which the appropriate treatment of s ∈ [0, 1]
allows us to distinguish ‘points’ with the same nominal position (changing in time), but with
well-defined ordering. This distinction is now to be viewed as permitting phenomena on a finer
spatial scale: compare (1) in Section 1. We think of this also as introducing an augmented
version [0, 1]∗ of the ‘normal interval’ [0, 1] by taking

[0, 1]∗ ⊂ R × Z (11)

much as for temporal intervals. We will use the same notation and definition (2) as for aug-
mented temporal intervals, noting that the nature of one-dimensional transport systems is that
the treatments of time and space should correspond through the characteristics.

We will impose the following assumptions, holding for each μ.
Hypotheses 2 1) The matrix functions Aμ depend smoothly on (t, x) and each Aμ(t, x)

has distinct non-zero eigenvalues: λμ
k = λμ

k (t, x) 
= 0.
2) The reaction term fμ is bounded (|fμ| ≤ β) and is uniformly Lipschitzian in u (with a

Lipschitz-constant L).
These are not minimal hypotheses: for example, the bound on |fμ| is deducible from the

Lipschitz condition and a bound for initial data.
Assuming that 1) of Hypotheses 2 holds, we can set

Dμ = Dμ(t, x) = diag{λμ
k} = PμAμ(Pμ)−1, û = Pμu

and
f̂μ(t, x, û) = f̂μ(û) = Pμfμ((Pμ)−1û) + DμPμ

x (Pμ)−1û (12)

to get a system
ût + Dμûx = f̂μ(û). (13)

In order to use the method of characteristics we let

t �→ σ(t) = σk(t; t∗, x∗)

satisfy the ordinary differential equation

σ̇ = −λμ
k (t, σ), σ(t∗) = x∗, (14)

so (13) becomes a coupled system of ODEs for the components ωk of û

d

dt
ωk(t, σk(t)) = f̂μ

k (t, σk(t), ω1, · · · , ωK) (15)

with the components f̂μ
k of (12). Observe, from (15), that singularities of each ωk can propagate

only along the characteristics σk.
In the following we will drop the ̂ and simply assume Aμ was given as diagonal in (8) so

we actually start with (13), but note both the regularity required to include Pμ
x in f̂μ and the

necessity of re-interpreting the results if we had really needed to make the change of variables.
For our present purposes in this section we assume the families of characteristics σk(·) are

already given for each mode μ and will then actually start with the integral equation form of
(15) — see (17) below — with only minimal concern for the regularity needed to derive this
from previous forms. Our only significant assumptions here are following.

Hypotheses 3 1) For each k and for each t > t0 we have σk(τ) = σk(τ ; t, x) defined and
monotone in τ for t∗ ≤ τ ≤ t with σk(t; t, x) = x. We assume each σk is either increasing
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Figure 2 Typical set of characteristics σk(t)

(corresponding to λk > 0 in the setting of a smooth matrix problem, as earlier) or decreasing
(corresponding to λk < 0). Here p∗ = (t∗, x∗) denotes the ‘starting point’: σk(·), going backward
in τ from p = (t, x), always hits either the initial time (t∗ = t0 with x∗ = σk(t∗) in [0, 1]) or the
appropriate input boundary (t0 ≤ t∗ ≤ t with x∗ = σk(t∗) = 0 or 1, depending on whether σk

is increasing or decreasing). See Figure 2 for an illustration.
2) For x′ ≺ x in [0, 1] we have

σk(τ ; t, x′) ≺ σk(τ ; t, x) for each τ ≤ t (16)

provided t∗, t
′
∗ ≤ τ ; similarly, when the characteristic hits the relevant input boundary, we

require t′∗ ≺ t∗ for increasing σk and t∗ ≺ t′∗ for decreasing σk.
Note that we do not insist that σk(τ ; t, x) should depend continuously on (t, x) and if

x, x′ correspond to the same position (so, in our regular notation we have x′ = x, say with
x′ ≺ x), then we need not assume that σk(τ ; t, x′) = σk(τ ; t, x) although we do assume (16). In
particular, if switching might occur during a time interval under consideration, we assume one
can ‘restart’ each characteristic across the switching time.

At this point we are ready for our main concern of this paper: to prove the following
existence result.

Theorem 2 Under the Hypotheses 1, 2, and 3 the transport/reaction problem (8) with
feedback (5) has solutions.

Proof As usual, one works with (15) as a system of integral equations:

ωk(t, s) = ωk(p∗) +
∫ t

t∗
fμ

k (t, σk(τ ; t, x), ω(τ, σk(τ ; t, x))) dτ (17)

for k = 1, 2, · · · , ν — coupled through the evaluation of fμ
k at u = [ω1, ω2, · · · ] in the integral.

We will henceforth take (17) as defining our notion of a ‘solution’ of what we continue to write
in the form (15) or (13) and so as defining our notion of solutions of (8).

Our strategy is to construct μ(·) and ω = [ω1, ω2, · · · ] on short time intervals [T, T + δ],
proceeding recursively. The key to this is the observation that, for the problem (8), one can
choose δ > 0 such that the observation y(·) on any [T, T + δ]∗ can depend on switching prior
to T . Our main concerns, then, will be to show, firstly that the constructed state evolution is
such that y(·) ∈ BV ∗[T, T + δ] and, second, that this ensures that any μ(·) consistent with (5)
will be in BV ∗[T, T + δ].

Thus, we begin by considering (17) on a time interval [T, T + δ] for which we assume the
switching signal μ(·) has been given (so this is really [T, T + δ]∗) and we also have given the
initial and input data. It is then standard to see that the right hand side of (17) defines a
contraction mapping on the space L∞([T, T + δ]; L1([0, 1]; Rν)) (with a suitable, exponentially
weighted, norm), so a solution exists there. What is missing in that for our present purposes is
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a priori estimate for Var(u(t, ·); [0, 1]∗). As in (2), we let

S = [0 = x0 ≺ x1 ≺ · · · ≺ xN = 1]

and, temporarily fixing k, consider (17) for each x = xn with corresponding characteristics
σk(τ ; t, xn). For exposition, we will assume for this k that the characteristic curves σk are
right-moving with increasing t so the input boundary is at x∗ = 0. In this case we note that if
x′ ≺ x′′ with x′

∗ = x′′
∗ = 0, then t′∗ � t′′∗ . Without loss of generality, we take the ‘initial’ time as

T . We assume that δ = t − T is small enough that σ(·; t, 1) hits the initial time so t∗ = T for
that characteristic. Again without loss of generality, we may assume that xn̄ ∈ S is such that
σ(T ; t, xn̄) = 0 (i. e., σ(t; T, 0) = xn̄) so tn∗ = T for n ≥ n̄ and xn∗ = 0 for n ≤ n̄. Then

ωk(t, xn) − ωk(t, xn−1)

= ωk(pn∗) − ωk(p(n−1)∗) +
∫ t(n−1)∗

tn∗
fμ

k (τ, σk(τ ; t, xn), u(τ, σk(τ ; t, xn))) dτ

+
∫ t

t(n−1)∗

[
fμ

k (τ, σk(τ ; t, xn), u(τ, σk(τ ; t, xn)))

− fμ
k (τ, σk(τ ; t, xn−1), u(τ, σk(τ ; t, xn−1)))

]
dτ

Using the bounds on fμ assumed in 2) of Hypotheses 2, we take absolute values and sum
over n to get

N∑
n=1

|ωk(t, xn) − ωk(t, xn−1)|

≤
n̄∑

n=1

|ωk(tn∗, 0) − ωk(t(n−1)∗, 0)| +
N∑

n=n̄+1

|ωk(T, xn∗) − ωk(T, x(n−1)∗)|

+
n̄∑

n=1

β[t(n−1)∗ − tn∗] + L

∫ t

T

N∑
n=1

|u(τ, σk(τ ; t, xn)) − u(τ, σk(τ ; t, xn−1))| dτ

≤Var(ωk(·, 0); [T, t]∗) + Var(ωk(T, ·); [0, 1]∗)

+ β(t − T ) + L

∫ t

T

Var(u(τ, ·); [0, 1]∗) dτ

noting that Sτ = (σ(τ ; t, xn̄), · · · , σ(τ ; t, xN )) and ST = (0 = xn̄∗, · · · , xN∗) each partition (part
of) [0, 1]∗ and that (tn̄∗, · · · , t0∗) partitions [T, t]∗; taking the supremum over S gives

Var(ωk(t, ·); [0, 1]∗)

≤ Var(ωk(·, 0); [T, t]∗) + Var(ωk(T, ·); [0, 1]∗)

+ β(t − T ) + L

∫ t

T

Var(u(τ, ·); [0, 1]∗) dτ. (18)

Essentially, the same estimate holds for each k, noting only that the input data would either
be at x = 0 for increasing σk or at x = 1 for decreasing σk′ . We may then sum over k to
get a similar integral estimate for Var(u(t, ·); [0, 1]∗) and then apply the Gronwall inequality to
bound Var(u(T + δ, ·); [0, 1]∗) directly in terms of the variations for initial data and input data.

It is important to realize here that the input data will include the effects of switching
during the interval [T, t] along with any exogamous input. Using the estimate recursively for
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T = 0, δ, · · · , mδ, · · · , we have a bound on Var(u(t, ·); [0, 1]∗) (0 ≤ t ≤ T ) in terms of T , of
bounds on the variations of the initial data and of the exogamous inputs (over [0, T ]), and a
bound on the number of switches during [0, T ].

This proves that the solution we initially obtained in L1 by a contraction mapping argument
is, indeed, in BV ∗ with an estimable bound on the spatial variation Var(u(t, ·); [0, 1]∗) at
fixed times. Essentially, the same argument can be used to bound the temporal variation
Var(u(·, s̄); [T, T + δ]∗) at a fixed location x̄, although this is treated somewhat differently when
x̄ is a sensor location, assumed internal to (0, 1), or is an output boundary.

We next consider intervals I(τ) ⊂ (0, 1) for τ ∈ [T, t] such that for each k and each x ∈
I(τ) one has σk(τ ′; τ, x) ∈ I(τ ′) for each τ ′ ∈ [T, τ ]. What we have in mind is I(τ) =
[σ−(τ ; t, x−), σ+(τ ; t, x+)] where I(t) = [x−, x+] ⊂ (0, 1) and where σ±(·) are the most rapidly
increasing and most rapidly decreasing families of characteristic curves. We are here assuming
that t − T is small enough that this gives I(T ) ⊂ (0, 1).

Let vk(τ) = Var(ωk(τ, ·); I(τ)∗) and v̄(τ) = Var(u(τ, ·); I(τ)∗). Much as in the derivation
above of (18) — only simpler because all of the relevant characteristics remain in {(τ, s) : s ∈
I(τ), T ≤ τ ≤ t} without hitting input boundaries — we now track back a partition of I(τ)
along σk(·) for some k and use (17) to obtain

vk(τ) ≤ vk(T ) + β(τ − T ) + L

∫ τ

T

v̄(τ ′) dτ ′. (19)

Summing over k and then using the Gronwall inequality, we obtain a bound on v̄(τ) =
Var(u(τ, ·); I(τ)) on [T, t] in terms of v̄(T ).

For a sensor location x̄ ∈ (0, 1), we now assume t − T is small enough that we can take
x̄ ∈ I(t) above with I(T ) ⊂ (0, 1). To estimate the sensor variation Var(u(·, x̄) : [T, t]∗), we
next take

S = [T = τ0 ≺ τ1 ≺ · · · ≺ τN = t].

Much as earlier, we use (17) to obtain

ωk(t, τn) − ωk(t, τn−1) = ωk(T, xn∗) − ωk(T, x(n−1)∗)

+
∫ τn

τn−1

fμ
k (τ, σk(τ ; τn, x̄), u(τ ′, σk(τ ; τn, x̄))) dτ

+
∫ τn−1

T

[
fμ

k (τ ′, σk(τ ; τn, x̄), u(τ, σk(τ ; τn, x̄)))

− fμ
k (τ ′, σk(τ ; τn−1, x̄), u(τ, σk(τ ; τn−1, x̄)))

]
dτ.

Then, taking absolute values and summing over n, we get

N∑
n=1

|ωk(t, τn) − ωk(t, τn−1)|

≤
N∑

n=1

|ωk(T, xn∗) − ωk(T, x(n−1)∗)| + β(t − T )

+ L

∫ t

T

N∑
n=1

|u(τ, σk(τ ; τn, x̄)) − u(τ ′, σk(τ ; τn−1, x̄))| dτ.

Noting that [xn∗ = σk(T ; τn, x̄)] and [σk(τ ′; τn, x̄)] are, in reversed order, partitions of (parts
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of) [I(T )]∗ and [I(τ ′)]∗, this gives

Var(ωk(·, x̄), [T, t]∗) ≤ vk(T ) + β(t − T ) + L

∫ t

T

v̄(τ) dτ (20)

with the observation that (19) already bounds the right hand side here in terms of v̄(T ). We
can always choose δ > 0 so that δ < x1/λμ

k for each positive λμ
k and δ < xN/ − λμ

k for each
negative λμ

k so input up to time T cannot reach any sensor point xn along any characteristic by
T + δ and so cannot affect the observation y(·) on [T, T + δ]∗. We can then apply Theorem 1
on each subinterval of length δ to complete the proof.

While we worked with the transport equation only on a single simple segment, we note that
the treatment here extends with only minor changes to the case of transport on a graph, as
would be the setting for a gas pipeline network or a highway traffic system — the only essential
element of that which we have not considered here is a good treatment of the nodal conditions
governing the distribution of material flowing through nodes of that graph.

4 Convergence in BV ∗

Let us review briefly the formulation of BV ∗. We consider, first, the switching signal μ(·).
This has a well-defined sequential order with transitions μk � μk+1 and is associated with the
passage of (normal) time so each such modal transition occurs at a specified switching time tk.
For admissilbility of such a switching signal we require

1) order is preserved: k ≥ k′ implies tk ≥ tk+1 (note that we do not require that the {tk}
be distinct on our slow scale);

2) there are only finitely many such transitions within any finite interval.
The interpretation here is that a set of switching actions taking place “at the same time”

really are occurring in sequence on the fast scale, which is left largely unmodeled, so we may
have tk = tk+1 but still tk ≺ tk+1. As noted, one notational device for recognizing this is the
use of the augmented time interval T∗ ⊂ R × Z as in (1). The variation Var(μ(·); I) is here
defined as the number of modal transitions within I.

For eventual purposes of considering both ‘well-posedness’ and optimal switching, we wish
a topology for these sequences and, in the presence of a bound as in 2) above on the number
of switchings, take μν → μ̄(·) to mean that, for each k, one has both tνk → t̄k and μν

k = μ̄k

for large ν. Note that the number of distinct (normal time) switching times cannot increase in
the limit. Bounding the number of switchings and the (normal time) length of the interval will
ensure compactness for this topology.

Next, consider the construction of such a switching signal dynamically by feedback. We
are here assuming that at each moment t (of the effective time — which is also being created
dynamically) we have a sensor output value y(t) ∈ Y, obtained by (partial) observation of the
state and perhaps of some external inputs and that (5) uses this to construct μ(t).

What is needed for an effective theory is that our definition of the appropriate space BV ∗
should have the properties:

(a) If we have y(·) ∈ BV ∗, then any resulting switching signal μ(·) produced through the
rules (5) should be admissible as above — this is Theorem 1.

(b) If μ(·) is admissible on [0, T ], then the sensor output y(·) produced by the dynamics
and observation P being considered will be in BV ∗([0, T ]∗) — this the principal point of the
argument for Theorem 2.

It is significantly more difficult to give a good general description of the corresponding
BV ∗ for Y-valued functions. For our application it turned out to be entirely satisfactory to
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define this, both in time and in space, essentially as above for μ(·), but we note some potential
difficulties when we would wish to consider limits and the desirable property:

(c) Each of the reciprocal maps y(·) �→ μ(·) and μ(·) �→ y(·) of (a), (b) will be continuous,
using our topology for BV ∗.

Note that we have not considered this last property in any detail here, but the essential
point is that our treatment of the fast dynamics should be rate-independent when normal time
interswitching subintervals [a, b]ν collapse in the limit (aν , bν → ā) — the interesting situation
is the possibility that this may happen with Var(yν , [a, b]ν) 
→ 0 so some slow scale evolution is
becoming nontrivial fast scale behavior: we may think of the ‘value’ y(ā) as some actual fast
scale function but, since we leave this unmodeled, we may think of it as an equivalence class of
these modulo fast scale order-preserving reparameterizations. What is then needed is inclusion
in the collapsed form of just enough information that the output of the map should depend
only on this. One might consider for this the more detailed description in [12] for the context
of piecewise continuous functions with similar augmentation of the intervals.
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