
Jrl Syst Sci & Complexity (2008) 21: 651–664

INVERSE CENTER LOCATION PROBLEM ON A
TREE∗

Xiaoguang YANG · Jianzhong ZHANG

Received: 25 March 2008 / Revised: 29 August 2008
c©2008 Springer Science + Business Media, LLC

Abstract This paper discusses the inverse center location problem restricted on a tree with different

costs and bound constraints. The authors first show that the problem can be formulated as a series of

combinatorial linear programs, then an O(|V |2 log |V |) time algorithm to solve the problem is presented.

For the equal cost case, the authors further give an O(|V |) time algorithm.

Key words Center location, combinatorial linear program, tree, two-terminal series parallel graphs.

1 Introduction

The center location problem, which is to find the “best” position for a facility in a network
to minimize the distance from the facility to the farthest communities of the network, is a very
practical operations research (OR) problem which has attracted much attention. The criterion
of optimization exhibits equity of some facilities, such as police station, fire station, hospital,
etc, which provide “emergency” service to all communities. The problem is called a minimax
location problem and is well-solved, see, for example, [1–2].

But in an established network, the location of a facility has already been fixed. The changing
environment might make the existing facility deviate from the center place of the network. For
example, the travelling times on some links have changed due to the changes of the traffic
flows. To restore the equity of the facility, we may need to modify the weights of edges in the
network to “re-locate” the facility to the center of the network under the new weight function.
For instance, we may alter the travelling time by controlling the traffic passing through an
edge. This arises what we call the inverse center location problem. It is to modify the weights
(lengths or travelling times) of a network as less possible as to make a given vertex become a
center under the new weights. Heuburger[3] gave a comprehensive survey on the development
of inverse combinatorial optimization problems.

We describe the inverse center location problem formally as follows.
Let G = (V, E, w) be a connected graph, where V is a vertex set, E is an edge set, and

w : E → R+ is a weight function. Let s be a specific vertex in V . The inverse center location
problem is to change w > 0 to w∗ > 0 such that

a) s becomes a center of G under w∗;

Xiaoguang YANG
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
Email: xgyang@iss.ac.cn.
Jianzhong ZHANG
United International College, Hong Kong Baptist University, Zhuhai 519085, China.
∗The research is supported by the National Natural Science Foundation of China under Grant Nos. 70425004,
70221001, and the National Key Research and Development Program of China under Grant No. 2002CB312004.

652 XIAOGUANG YANG · JIANZHONG ZHANG

b) −b−(e) ≤ w∗(e)− w(e) ≤ b+(e) for e ∈ E; and
c) the total cost incurred by the adjustment,

C(w∗) :=
∑

e∈E

[c+(e)max{w∗(e)− w(e), 0}+ c−(e)max{w(e)− w∗(e), 0}],

is minimum.
In the above description, b+ > 0 and b− > 0 are bound constraints on the modification, and

c+ > 0 and c− > 0 are corresponding unit modification costs, respectively. To ensure w∗ > 0,
we may assume that b−(e) < w(e).

In [4], the general inverse center location problem is shown to be strongly NP-hard even if
there is no bound constraints and all unit modification costs c+(e) and c−(e) are equal. It is
interesting to consider special cases which can be solved in polynomial times. In this paper,
we find such a special case and show that the inverse center location problem on a tree is
polynomially solvable, and provide a combinatorial strong polynomial algorithm to solve it.

The paper is organized as follows. In Section 2, we investigate the characteristic structure
of the optimal solution for the inverse problem, and formulate the inverse problem by a series
of combinatorial linear programs. A combinatorial algorithm running in O(|V |2 log(|V |)) time
is presented in Section 3. In Section 4, we show that the inverse problem can be solved in linear
time if the unit modification costs c(e) are identical. Some concluding remarks are given in
Section 5.

2 Combinatorial Linear Program Formulation

Let L(T) be the set of leaves of T , i.e., the vertices of degree 1. For each v ∈ V , let Rw(v)
denote the radius of v with respect to weight w, i.e., Rw(v) = max{dw(v, u) | u ∈ V }, where
dw(v, u) is the distance between v and u under weight w, which is the length of shortest path
between u and v under w. Since T is a tree, there is a unique path from v to u (denoted by
P (v, u)), and

dw(v, u) =
∑

e∈P (v,u)

w(e).

Throughout this paper, we use (u, v) and [u, v] for a pair of vertices and an edge with two
endpoints u and v, respectively.

If s ∈ L(T), then s is a center if and only if E is a singleton. In fact, if E is a singleton, there
is only one edge in T , and the two vertices are both centers of T . So, there is no need to change
weights. If E is not a singleton, for any inner vertex u ∈ V \ L(T), we have Rw∗(s) > Rw∗(u)
since w∗ > 0, that is, s cannot be a center under w∗.

Therefore, s ∈ L(T) is a trivial case, and in the sequel, we always assume s 6∈ L(T).
For each l ∈ L(T), let P (s, l) be the unique path between s and l, and v(l) be the first

vertex from s on P (s, l).
Assertion 1 Assume that dw(s, ls) = Rw(s), i.e., P (s, ls) is the longest path from s to the

leaf set. If |P (s, ls)| = 1, i.e., P (s, ls) = {[s, ls]}, then s must be a center of T under w.
Proof For any vertex v ∈ V , the path from v to the leaf ls must take (s, ls) as the last edge,

as |P (s, ls)| = 1 implies that P (s, ls) contains edge [s, ls] only. So, Rw(v) ≥ dw(v, ls) ≥ dw(s, ls)
and hence Rw(s) ≤ Rw(v) for all v ∈ V , i.e., s is a center of T under w.

Therefore, below we consider only the case that s ∈ V \ L(T) and |P (s, ls)| > 1.
If we delete edge [s, v(ls)] from E, then T is divided into two disjoint subtrees. We denote

by T1 the subtree rooted at v(ls), and by T2 the other subtree rooted at s. Let L(T1) and L(T2)

INVERSE CENTER LOCATION PROBLEM ON A TREE 653

be the leaf sets of T1 and T2, respectively, with an exception that the roots v(ls) and s are not
put into these two sets even if their degrees in T1 or T2 are 1.

Assertion 2 s is a center under w if and only if

dw(s, ls) ≤ max{dw(v(ls), v) | ∀v ∈ L(T2)}. (1)

Proof Suppose (1) is true. In order to show that s is a center, let us prove that

Rw(s) ≤ Rw(v), for all v ∈ V. (2)

By the definition of ls, we have Rw(s) = dw(s, ls).
We consider the following three cases.
Case 1. For any v ∈ V (T2) and v 6= s, we have dw(v, ls) > dw(s, ls) since all paths between

v ∈ V (T2) and ls must pass s and w > 0. Hence, Rw(v) > dw(v, ls) = Rw(s).
Case 2. Consider the vertex v(ls). By (1), we have

Rw(v(ls)) ≥ max{dw(v(ls), v) | ∀v ∈ L(T2)} ≥ Rw(s).

Case 3. Consider any u ∈ V (T1) and v 6= v(ls). Since all paths between u and v ∈ L(T2)
must pass v(ls), we have

Rw(u) ≥ max{dw(u, v) | ∀v ∈ L(T2)} ≥ max{dw(v(ls), v) |∀v ∈ L(T2)}.

Hence, again by (1), Rw(u) ≥ Rw(s).
Combining the above three cases, we know that (2) is true and s is a center of T under w.
Conversely, suppose s is a center under w, we prove (1) by contradiction. If (1) is not true,

then
max{dw(v(ls), v) | ∀v ∈ L(T2)} < dw(s, ls) = Rw(s). (3)

Since any path from s to every vertex in L(T1) must pass through v(ls) and w([s, v(ls)]) > 0,
we have

max{dw(v(ls), v) | v ∈ L(T1)}
= max{dw(s, v)− w([s, v(ls)]) | v ∈ L(T1)}
= dw(s, ls)− w([s, v(ls)])
< dw(s, ls) = Rw(s). (4)

Combining (3) and (4), we obtain that

Rw(v(ls)) = max{max{dw(v(ls), v) | ∀v ∈ L(T2)}, max{dw(v(ls), v) | v ∈ L(T1)}}
< Rw(s).

This means that s is not a center of T , a contradiction.
By Assertions 1 and 2, we know that if s ∈ V \ L(T) is not a center of the tree under w,

then we have |P (s, ls)| > 1 and dw(s, ls) > max{dw(v(ls), v) | ∀v ∈ L(T2)}.
Assertion 3 Suppose that there are two leaves l1, l2 ∈ L(T) such that dw(s, l1) = dw(s, l2) =

Rw(s), and P (s, l1) ∩ P (s, l2) = ∅, i.e., there are no common edges between path P (s, l1) and
path P (s, l2), then s is a center of T under w.

Proof Delete s from T , T can be divided into at least two subtrees. Let T ′1 be the subtree
containing l1, and T ′2 be the subtree containing l2, and let V ′ = V \ (T ′1 ∪ T ′2 ∪ {s}). For any
v ∈ T ′1, we have Rw(v) ≥ dw(v, l2) ≥ dw(s, l2) = Rw(s) since the path between v and l2 must

654 XIAOGUANG YANG · JIANZHONG ZHANG

pass s. Similarly, for any v ∈ T ′2, we have Rw(v) ≥ dw(v, l1) ≥ dw(s, l1) = Rw(s). For any
v ∈ V ′, we have Rw(v) ≥ dw(v, l1) ≥ dw(s, l1) = Rw(s), too. Hence, s is a center of T .

Assertion 4 Assume that s ∈ V \L(T) is not a center of the tree under w and the inverse
center location problem is feasible, then there exists an optimal solution w∗ such that

i) Rw∗(s) = dw∗(s, ls) ≤ Rw(s);
ii) w∗(e) ≤ w(e) for e ∈ T1;
iii) there is only one l+ ∈ L(T2) such that w∗(e) ≥ w(e) for e ∈ P (s, l+), and dw∗(v(ls), ls) =

dw∗(s, l+);
iv) and w∗(e) = w(e) for all other e ∈ E \ (T1 ∪ P (v(ls), l+)).
Proof As the inverse center location problem is feasible, the optimal solution w∗ exists.

First we show that Rw∗(s) ≤ dw(s, ls).
If Rw∗(s) > dw(s, ls), let l′ ∈ L(T) be a leaf such that

dw∗(s, l′) = max{dw∗(s, l) | l ∈ L(T)}.
We consider the following two cases.
Case 1. l′ ∈ L(T2). By the assumptions made on l′ and s, we have

dw∗(s, l′) > dw(s, ls) > max{dw(v(ls), v) | ∀v ∈ L(T2)}.
Consider [s, v′] the first edge from s on the path P (s, l′) (We call it a focus edge). Delete

[s, v′] from T , we obtain two subtrees T ′1 and T ′2 such that T1 ⊂ T ′1 and T ′2 ⊂ T2.
Define a new weight vector such that

w(e) =

{
w(e), e ∈ T ′1,
w∗(e), e ∈ T ′2

and

w([s, v′]) =

{
w∗([s, v′]), w∗([s, v′]) ≤ w([s, v′]),

max{w([s, v′]), w∗([s, v′])− dw∗(s, l′) + dw(s, ls)}, w∗([s, v′]) > w([s, v′]).

From the definition of w, we can see that either w(e) = w(e) or w(e) = w∗(e), except
that w(s, v′) = w∗([s, v′]) − dw∗(s, l′) + dw(s, ls) ≤ w∗([s, v′]) when w∗([s, v′]) > w([s, v′])
and w([s, v′]) ≤ w∗([s, v′]) − dw∗(s, l′) + dw(s, ls). Hence, we know that w is feasible and
C(w) ≤ C(w∗).

Let us consider dw(s, ls) and dw(s, l′). It is directly seen that

dw(s, ls) = max{dw(s, l) | l ∈ L(T ′1)} = max{dw(s, l) | l ∈ L(T ′1)} = dw(s, ls). (5)

Moreover, if w∗([s, v′]) ≤ w([s, v′]), we have

dw(s, l′) = max{dw(s, l) | l ∈ L(T ′2)} = max{dw∗(s, l) | l ∈ L(T ′2)} = dw∗(s, l′) > dw(s, ls);

if w∗([s, v′]) > w([s, v′]), then either

dw(s, l′) = w∗([s, v′])− dw∗(s, l′) + dw(s, ls) + dw∗(v′, l′) = dw(s, ls),

if w([s, v′]) ≤ w∗([s, v′])− dw∗(s, l′) + dw(s, ls); or

dw(s, l′) = w([s, v′]) + dw∗([v′, l′])
> w∗([s, v′])− dw∗(s, l′) + dw(s, ls) + dw∗([v′, l′])
= dw(s, ls),

INVERSE CENTER LOCATION PROBLEM ON A TREE 655

otherwise.
Then we conclude

dw(s, l′) ≥ dw(s, ls). (6)

Furthermore, for l ∈ L(T ′1), we have dw(s, l) = dw(s, l) since w(e) = w(e) for e ∈ T ′1
and hence dw(s, l) ≤ dw(s, ls) since dw(s, l) ≤ dw(s, ls); for l ∈ L(T ′2), we have dw(s, l) =
w([s, v′]) + dw∗(v′, l) ≤ dw(s, l′) since w(e) = w∗(e) for e ∈ T ′2 and dw∗(v′, l) ≤ dw∗(v′, l′) for
l ∈ L(T ′2) by the definition of l′. Therefore, we have dw(s, l′) = Rw(s).

If dw(s, l′) = dw(s, ls), by Assertion 2, we know s is a center under w.
If dw(s, l′) > dw(s, ls), we consider the next edge [v′, v′′] after [s, v′] from s on the path

P (s, l′) as a focus edge.
Let us delete [v′, v′′] from T to obtain two subtrees T ′′1 and T ′′2 . We have T ′1 ⊂ T ′′1 and

T ′′2 ⊂ T ′2.
Define w′ such that w′(e) = w(e) for e ∈ T ′′1 \{[s, v′]}, w′(e) = w∗(e) for e ∈ T ′′2 , w′([s, v′]) =

w([s, v′]), and

w′([v′, v′′]) =

{
w∗([v′, v′′]), w∗([v′, v′′]) ≤ w([v′, v′′]),

max{w([v′, v′′]), w∗([v′, v′′])− dw(s, l′) + dw(s, ls)}, w∗([v′, v′′]) > w([v′, v′′]).

It is clear that w′(e) ≤ w(e) for e ∈ T ′′1 , w′(e) = w∗(e) for e ∈ T ′′2 , and C(w′) ≤ C(w) ≤
C(w∗).

Using the similar arguments, it is not difficult to show that w′ is feasible, Rw′(s) =
dw′(s, l′) ≥ dw′(s, ls) = dw(s, ls), dw′(s, l′) ≤ dw(s, l′).

Similarly, if dw′(s, l′) = dw′(s, ls), s becomes the center under w′; if dw′(s, l′) > dw′(s, ls),
we go further to consider the next edge [v′′, v′′′] on the path P (s, l′) as a focus edge, and repeat
the above procedure.

Note that if the procedure does not stop, the weights of the focus edges are not greater than
their original weights during the procedure, e.g., w′′([s, v′]) ≤ w([s, v′]), w′′([v′, v′′] ≤ w([v′, v′′]),
w′′([v′′, v′′′]) ≤ w([v′′, v′′′]), etc. Since dw∗(s, l′) > dw(s, ls) ≥ dw(s, l′) and the path P (s, l′) has
finite edges, the procedure must stop with a w∗ such that dw∗(s, l′) = dw∗(s, ls) = Rw∗(s). By
Assertion 3, we know that s is a center of T under w∗. Moreover, as the modification costs
never increase in the procedure, we have C(w∗) ≤ C(w∗).

Case 2. l′ ∈ L(T1).
From Assertion 2, we know that s is the center under w∗ if and only if

dw∗(s, l′) ≤ max{dw∗(v(ls), l) | ∀l ∈ L(T2)}.

Note that dw∗(s, l′) = w∗([s, v(ls)])+dw∗(v(ls), l′) and dw∗(v(ls), l) = w∗([s, v(ls)])+dw∗(s, l)
for l ∈ L(T2). Therefore, without loss of generality, we can assume w∗([s, v(ls)]) = w([s, v(ls)]).
Moreover, we can easily get

dw∗(v(ls), l′) ≤ max{dw∗(s, l) | ∀l ∈ L(T2)}.

Hence, there exists l′′ ∈ L(T2) such that

dw∗(s, l′′) = max{dw∗(s, l) | ∀l ∈ L(T2)} ≥ dw∗(v(ls), l′) > dw(v(ls), ls),

the last inequality holds because dw∗(s, l′) > dw(s, l) by the assumption on l′, and w∗([s, v(ls)]) =
w([s, v(ls)]).

656 XIAOGUANG YANG · JIANZHONG ZHANG

Define w as

w(e) =

w(e), e ∈ T1,

w∗(e), e ∈ T2,

w([s, v(ls)]), e = [s, v(ls)].

We have dw(v(ls), ls) = dw(v(ls), ls), and dw(s, l′′) = max{dw∗(s, l) | l ∈ L(T2)} = dw∗(s, l′′) >
dw(v(ls), ls).

We further claim that max{dw(s, l) | l ∈ L(T2)} < dw(v(ls), ls).
In fact, if max{dw(s, l) | l ∈ L(T2)} ≥ dw(v(ls), ls), then dw(s, ls) = w([s, v(ls)])+dw(v(ls), ls)

≤ max{dw(v(ls), l) | l ∈ L(T2)}. Hence, s is already the center under w. This contradicts with
the assumption that s is not a center under w.

Now let [s, v′], the first edge from s on the path P (s, l′′), be a focus edge. Delete [s, v′] from
T , we obtain two subtrees T ′1 and T ′2 such that T1 ⊂ T ′1 and T ′2 ⊂ T2.

Define a new weight vector such that

w(e) =

{
w(e), e ∈ T ′1,
w∗(e), e ∈ T ′2;

and

w([s, v′]) =

{
w∗([s, v′]), w∗([s, v′]) ≤ w([s, v′]),

max{w([s, v′]), w∗([s, v′])− dw∗(s, l′′) + dw(v(ls), ls)}, w∗([s, v′]) > w([s, v′]).

Use the same technique as Case 1, we can construct w by reducing the over-increasing on
T2 such that

dw(s, ls) = dw(s, ls) = Rw(s),

dw(s, l′′) = max{dw(s, l) | l ∈ L(T ′2)} = dw(v(ls), ls) = dw(v(ls), ls).

Therefore, we obtain that

dw(s, ls) = w([s, v(ls)]) + dw(v(ls), ls)
≤ w([s, v(ls)]) + dw(s, l′′)
≤ max{dw(v(ls), l) | l ∈ L(T ′2)}.

By Assertion 2, s is also a center of T under w. Once again, C(w) ≤ C(w∗).
Combining both cases, we have Rw∗(s) ≤ Rw(s).
Second, we prove Rw∗(s) = dw∗(s, ls).
By the assumptions on w∗ and ls, we have Rw∗(s) ≥ dw∗(s, ls). If Rw∗(s) > dw∗(s, ls), we

have dw∗(s, ls) < dw(s, ls) from Rw∗(s) ≤ Rw(s) = dw(s, ls).
The same as before, let l′ ∈ L(T) be a leaf such that dw∗(s, l′) = max{dw∗(s, l) | l ∈ L(T)}.

We discuss two cases.
Case A. l′ ∈ L(T2). We now prove that there exists w such that dw(s, ls) = Rw(s) =

Rw∗(s) = dw(s, l′), and C(w) ≤ C(w∗).
By the the assumptions on ls, w∗, and l′, we have dw(s, ls) ≥ dw∗(s, l′) > dw∗(s, ls).
Let u′ be the first vertex from ls on path P (s, ls). First of all, let w(e) = w∗(e) for all

e ∈ E, and update w([u′, ls]) = min{w([u′, ls]), w∗([u′, ls])+Rw∗(s)−dw∗(s, ls)} if w∗([u′, ls]) <
w([u′, ls]).

INVERSE CENTER LOCATION PROBLEM ON A TREE 657

It is easy to see that under w we have

Rw(s) = Rw∗(s) = dw(s, l′) = max{dw(s, l) | l ∈ L(T2)}, (7)
max{dw(s, l) | l ∈ L(T1)} ≤ Rw∗(s), (8)
dw∗(s, ls) ≤ dw(s, ls) ≤ Rw∗(s). (9)

If dw(s, ls) = Rw(s), s is a center under w by Assertion 3. Otherwise, we have w∗([u′, ls]) ≥
w([u′, ls]). Let u′′ be the next vertex of u′ on the path P (s, ls). Denote by L(u′′) ⊂ L(T1) the
set of leaves connected with s via u′′.

For each q ∈ L(u′′) and q 6= ls, if dw(s, q) > dw(s, ls), we have w([u′, ls]) < dw(u′, q), and
w([u′, ls]) ≥ dw(u′, q) since dw(s, ls) ≥ dw(s, q). Hence, dw(u′, q) > dw(u′, q).

Now let us set ŵ([u′′, u′]) by min{w([u′′, u′]), w([u′′, u′])+Rw(s)− dw(s, ls)} if w([u′′, u′]) <
w([u′′, u′]). Let ∆ be the difference between the new ŵ([u′′, u′]) and the old w([u′′, u′]). Let us
update d

ŵ
(u′, q) by max{dw(u′, q)−∆, dw(u′, q)}. It is clear that d

ŵ
(s, ls) ≤ Rw∗(s). Moreover,

we claim d
ŵ
(s, q) ≤ Rw∗(s).

In fact, by the assumption on d
ŵ
(u′, q), we have

d
ŵ
(s, q) = dw(s, u′) + ∆ + d

ŵ
(u′, q) ≤ dw(s, u′) + ∆ + max{dw(u′, q)−∆, dw(u′, q)}.

If dw(u′, q)−∆ ≥ dw(u′, q), we have

d
ŵ
(s, q) = dw(s, q) ≤ Rw∗(s),

otherwise we have

d
ŵ
(s, q) = d

ŵ
(s, u′) + dw(u′, q)

≤ d
ŵ
(s, u′) + w([u′, ls])

= d
ŵ
(s, ls) ≤ Rw∗(s).

Therefore, (7)–(9) are still true for ŵ.
Therefore, step by step, we can obtain a w satisfying (7)–(9) and

dw(s, ls) = Rw(s) = Rw∗(s).

By Assertion 3, s is a center under w, and it is clear that C(w) ≤ C(w∗).
Case B. l′ ∈ L(T1). By Assertion 2, we have

dw∗(s, l′) ≤ max{dw∗(v(ls), l) | ∀l ∈ L(T2)}.

It is clear that w∗([s, v(ls)]) = w([s, v(ls)]), for otherwise we set w∗([s, v(ls)]) = w([s, v(ls)])
which will make s be a center of T under w∗, and the cost incurred by changing w([s, v(ls)]) to
w∗([s, v(ls)]) is unnecessary.

Hence, we have

max{dw∗(s, l) | ∀l ∈ L(T2)} ≥ dw∗(v(ls), l′) = Rw∗(s)− w([s, v(ls)]).

Since dw∗(s, ls) < Rw∗(s) and dw(s, ls) < dw(s, l′), we have

dw∗(v(ls), ls) < dw∗(v(ls), l′),
dw(v(ls), ls) ≥ dw∗(v(ls), l′).

658 XIAOGUANG YANG · JIANZHONG ZHANG

Using the technique in Case A, we can construct a w by restoring the over-reduction on T1

such that

dw(v(ls), ls) = dw∗(v(ls), l′),
max{dw(s, l) | ∀l ∈ L(T2)} = max{dw∗(s, l) | ∀l ∈ L(T2)}.

Hence, by Assertion 2, s is a center of T under w. Moreover, we have C(w) ≤ C(w∗).
Therefore, we can conclude that

dw∗(s, ls) = Rw∗(s) ≤ Rw(s).

Third, as dw(v(ls), ls) > max{dw(s, l) | l ∈ L(T2)}, in order to make w∗ satisfy that
dw∗(v(ls), ls) ≤ max{dw∗(s, l) | l ∈ L(T2)}, we only need to decrease (never increase) weights
of edges in T1, and increase (never decrease) weights of edges in T2, and we only need to make
dw∗(v(ls), ls) = dw∗(s, l+) since any over-increment or over-decrement is useless.

Moreover, let l+ = arg max{dw∗(v(ls), v) | ∀v ∈ L(T2)}. Obviously, we only need to modify
the weights of P (v(ls), l+), and keep the weights of other edges in T2 unchanged.

Furthermore, as pointed out in Case B, w∗([s, v(ls)]) = w([s, v(ls)]). Therefore, we conclude
that

w∗(e) ≤ w(e), e ∈ T1,

w∗(e) ≥ w(e), e ∈ P (s, l+),
w∗(e) = w(e), e ∈ T \ (T1 ∪ P (v(ls), l+)).

The assertion is proved.
Define

w̃(e) =

{
w(e)− b−(e), e ∈ T1,

w(e) + b+(e), e ∈ T2.

Combining Assertions 2 and 4, we have that the inverse center location problem is feasible if
and only if

min{dw̃(v(ls), l) | l ∈ L(T1)} ≤ max{dw̃(s, l) | l ∈ L(T2)}.
By the special structure of tree, the computation for all {dw̃(v(ls), l) | l ∈ L(T1)}∪{dw̃(s, l) | l ∈
L(T2)} and finding the minimum of {dw̃(v(ls), l), | l ∈ L(T1)} and maximum of {dw̃(s, l) | l ∈
L(T2)} can be done in linear time. Therefore,

Theorem 1 Checking the feasibility of the inverse center location problem restricted on a
tree can be done in linear time.

By Assertion 4, we can formulate the inverse center location problem by a series of combi-
natorial linear programming problems.

For any l+ ∈ L(T2), we can define a combinatorial linear program LP (l+) as follows:

min
∑

e∈T1

c−(e)x−(e) +
∑

e∈P (s,l+)

c+(e)x+(e)

s.t.
∑

e∈P (v(ls),l)

[w(e)− x−(e)] ≤
∑

e∈P (v(ls),ls)

[w(e)− x−(e)], l ∈ L(T1) \ {ls},
∑

e∈P (v(ls),ls)

[w(e)− x−(e)] =
∑

e∈P (s,l+)

[w(e) + x+(e)],

0 ≤ x−(e) ≤ b−(e), e ∈ T1,
0 ≤ x+(e) ≤ b+(e), e ∈ P (s, l+).

(10)

INVERSE CENTER LOCATION PROBLEM ON A TREE 659

From Assertion 4, we know that if the optimal modification w∗ exists, it must be an optimal
solution of some problems LP (l+). Hence, if each LP (l+) is infeasible, the inverse center
location problem is infeasible. We can check the feasibility of each LP (l+) in linear time (see
the next section). Note that the optimal solution of some problems LP (l+) may not correspond
to a feasible solution of the inverse center location problem, i.e., s may not be a center under
the modified weights. Therefore, when we enumerate all possible cases of problems LP (l+), we
need to judge whether the optimal solution of LP (l+) corresponds to a feasible solution of the
inverse center location problem. We can do this in the following way.

If LP (l+) is infeasible, discard it. If LP (l+) has an optimal solution w+, let w′(e) = w+(e)
for e ∈ T1 ∪ P (s, l+) and w′(e) = w(e) for e ∈ E \ (T1 ∪ P (s, l+)). Check whether s is a
center under w′. If the answer is no, discard LP (l+). The one with minimum objective value
of remaining problems LP (l+) corresponds to an optimal solution of the inverse center location
problem.

Notice that the number of variables in LP (l+) is |T1|+ |P (s, l+)| ≤ |V | − 1, the number of
constraints is |L(T1)|+ 2|T1|+ 2|P (s, l+)| ≤ 3|V |, and the coefficients of variables x+(e), x−(e)
are ±1 or 0. LP (l+) is a combinatorial linear program in the definition of Tardos[5], and it can
be solved in a strongly polynomial time. Moreover since the number of LP (l+)s is |L(T2)| < |V |,
we can conclude that in the following theorem.

Theorem 2 The inverse center location problem restricted on a tree can be solved in a
strongly polynomial time.

3 Combinatorial Polynomial Algorithm

Let us consider LP (l+). Denote L(l) = dw(v(ls), l) for l ∈ L(T1), and L(l+) = dw(s, l+).
Since we only need to decrease the weights on T1 and increase the weights on P (s, l+), for
notation simplicity, we can ignore the superscript •+, •− of c+, c−, b+, b− and x+, x−, and
re-write LP (l+) as follows:

min
∑

e∈T1

c(e)x(e) +
∑

e∈P (s,l+)

c(e)x(e)

s.t. R +
∑

e∈P (v(ls),l)

x(e) ≥ L(l), l ∈ L(T1),

−R +
∑

e∈P (s,l+)

x(e) ≥ −L(l+),

0 ≤ x(e) ≤ b(e), e ∈ T1,
0 ≤ x(e) ≤ b(e), e ∈ P (s, l+),

(11)

where the value of variable R in the optimal solution corresponds to dw∗(v(ls), ls) = dw∗(s, l+).
Note that by the tree structure, computing all {dw(v(ls), l) | l ∈ L(T1)} ∪ {dw(s, l) | l ∈

L(T2)} and
{ ∑

e∈P (v(ls),l)

b(e) | l ∈ L(T1)
}
∪

{ ∑
e∈P (s,l)

b(e) | l ∈ L(T2)
}

can be done in linear

time. For instance, setting π(s) = 0, and letting π(v) = π(u)+w([u, v]) from root s to leaves in
T2, π(v) then corresponds to the distance from s to v under w, and π(l) = dw(s, l) for l ∈ L(T2).

It is straightforward to prove that (11) is feasible if and only if

max
{

L(l)−
∑

e∈P (v(ls),l)

b(e) | l ∈ L(T1)
}
≤ L(l+) +

∑

e∈P (s,l+)

b(e). (12)

660 XIAOGUANG YANG · JIANZHONG ZHANG

Therefore, checking the feasibility of all LP (l+) for l+ ∈ L(T2) can be done in linear time.
Below we only consider problems LP (l+) which have feasible solutions.

Consider the dual problem of linear program (11). It can be written as

min
∑

e∈T1∪P (s,l+)

b(e)z(e) + L(l+)y(l+)−
∑

l∈L(T1)

L(l)y(l)

s.t.
∑

{y(l) | P (v(ls), l) 3 e, l ∈ L(T1)} − z(e) ≤ c(e), ∀e ∈ T1,

y(l+)− z(e) ≤ c(e), e ∈ P (s, l+),
∑

l∈L(T1)

y(l)− y(l+) = 0,

y(l) ≥ 0, ∀l ∈ L(T1) ∪ {l+},
z(e) ≥ 0, ∀e ∈ T1 ∪ P (s, l+).

(13)

Now construct an auxiliary directed network N = (V +, A+, c+, k+). Let V + = V (T1) ∪
V (P (s, l+))∪{t} be the vertex set of N , where t is an extra transit vertex. For each [u, v] ∈ T1,
we assign two arcs e1 = [u, v] and e2 = [u, v], both oriented from v(ls), i.e., u is nearer to v(ls)
than v. For each [u, v] ∈ P (s, l+), we assign two arcs e1 = [u, v] and e2 = [u, v], too, and both
oriented from l+, i.e., u is nearer to l+ than v. From each l ∈ L(T1), we assign an arc e = [l, t].
From t we assign an arc e = [t, l+]. Namely, the arc set of N can be written as

A+ = {e1 = [u, v], e2 = [u, v] | [u, v] ∈ T1 ∪ P (s, l+)} ∪ {[l, t] | l ∈ L(T1)} ∪ {[t, l+]}.

c+ and k+ are capacity vector and cost vector of N , respectively, which are defined as
follows:

c+(e) =

{
c([u, v]), e = e1 = [u, v] ∈ A+,

+∞, otherwise.

k+(e) =

0, ∀e = e1 = [u, v] ∈ A+,

b([u, v]), ∀e = e2 = [u, v] ∈ A+,

−L(l), ∀e = [l, t] ∈ A+,

L(l+), e = [t, l+].

Assertion 5 Linear program (13) is equivalent to finding a minimum cost flow from v(ls)
to s on N .

Proof First, suppose f be a minimum cost flow from v(ls) to s on N . Define y(l) = f(l, t)
for any l ∈ L(T1), and z(e) = f(e2) for any e ∈ T1 ∪ P (s, l+). It is easy to verify that (y, z) is
a feasible solution of (13).

Moreover, the minimum cost is
∑

e∈A+

k+(e)f(e) =
∑

e∈T1∪P (s,l+)

b(e)z(e) + L(l+)y(l+)−
∑

l∈L(T1)

L(l)y(l),

which is just the objective value of (13) at the feasible solution (y, z).
Conversely, if (y, z) is an optimal solution of (13), we have

z(e) =

max
{

0,
∑

{y(l) | P (v(ls), l) 3 e, l ∈ L(T1)} − c(e)
}

, e ∈ T1,

max{0, y(l+)− c(e)}, e ∈ P (s, l+).

INVERSE CENTER LOCATION PROBLEM ON A TREE 661

Define

f(e1) = min{c(e), ∑{y(l) | P (v(ls), l) 3 e, l ∈ L(T1)}}, ∀e ∈ T1,

f(e1) = min{c(e), y(l+)}, ∀e ∈ P (s, l+),
f(e2) = z(e), ∀e ∈ T1 ∪ P (s, l+),
f(l, t) = y(l), ∀l ∈ L(T1),
f(t, l+) = y(l+).

As for any e ∈ T1 ∪ P (s, l+), f(e1) ≤ c(e), the capacity requirement is met. Also, by the
definition on f , the flow satisfies

f(e1) + f(e2) =
∑

{y(l) | P (v(ls), l) 3 e, l ∈ L(T1)}, e ∈ T1,

f(e1) + f(e2) = y(l+), e ∈ P (s, l+),

from which it is easy to see that f is a feasible flow on N , and the total cost of the flow f is
equal to the minimum objective value of (13).

Hence, we conclude that solving (13) is equivalent to finding a minimum cost flow from v(ls)
to s on N .

Notice that N belongs to the class of two-terminal series parallel graphs. Applying Booth
and Tarjan’s algorithm[6], the minimum cost flow problem can be solved in O(|V +| log |V +|) =
O(|V | log |V |) times.

Now we discuss how to recover the optimal solution of LP (l+) from an optimal solution of
(13).

Let (y∗, z∗) be the optimal solution of (13). We claim that y∗(l+) > 0 first. Otherwise, we
can deduce that y∗(l) = 0 for all l ∈ L(T1), and z∗(e) = 0 for all e ∈ T1 ∪ P (s, l+). This means
that the optimal value of (13) (hence LP (l+)) is 0, and thus, we have dw(v(ls), ls) ≤ dw(s, l+),
which means that s is already a center, contradicting the assumption that s is not a center.

By the complementary slackness theorem of linear programming, (R∗, x∗) is an optimal
solution of (11) if and only if

−R∗ +
∑

e∈P (s,l+)

x∗(e) = −L(l+), (14)

R∗ +
∑

e∈P (v(ls),l)

x∗(e) = L(l), ∀l ∈ L(T1) and y∗(l) > 0, (15)

R∗ +
∑

e∈P (v(ls),l)

x∗(e) ≥ L(l), ∀l ∈ L(T1) and y∗(l) = 0, (16)

0 ≤ x∗(e) ≤ b(e), ∀e ∈ T1 ∪ P (s, l+), (17)

x∗(e) = 0, ∀e ∈ T1 and
∑

P (v(ls),l)3e

y∗(l)− z∗(e) < c(e), (18)

x∗(e) = 0, ∀e ∈ P (s, l+) and y∗(l+)− z∗(e) < c(e), (19)
x∗(e) = b(e), ∀e ∈ T1 ∪ P (s, l+) and z∗(e) > 0. (20)

Now we consider how to solve the above inequality system. First, we process the edges
satisfying (18), (19), and (20). If e satisfies (18) and (19), set x∗(e) = 0; if e satisfies (20),
set x∗(e) = b(e). Then we contract these edges and modify L(l+) and L(l) for each l ∈ L(T1)
accordingly. For instance, update L(l+) by L(l+) +

∑{b(e) | z∗(e) > 0, and e ∈ P (s, l+)}, and
update L(l) by L(l)−∑{b(e) | z∗(e) > 0, and e ∈ P (v(ls), l)} for all l ∈ L(T1).

662 XIAOGUANG YANG · JIANZHONG ZHANG

Second, denote Q′′ = {l ∈ L(T1) | y∗(l) > 0} and T ∗1 = {e ∈ T1 | there exists l ∈
Q′′ such that P (v(ls), l) 3 e}.

For each e ∈ T1 \ T ∗1 , it is clear that e belongs to only one P (v(ls), l) for some l ∈ L(T1)
with y∗(l) = 0. We may set x∗(e) = b(e) to guarantee (16). Hence, without loss of generality,
we can assume T1 = T ∗1 .

After the above two steps, the inequality system has been transformed into a reduced one
as follows:

−R∗ +
∑

e∈P (s,l+)

x∗(e) = −L(l+), (21)

R∗ +
∑

e∈P (v(ls),l)

x∗(e) = L(l), ∀l ∈ L(T1), (22)

0 ≤ x∗(e) ≤ b(e), ∀e ∈ T1 ∪ P (s, l+), (23)

where T1 and P (s, l+) are modified by deleting some edges in the above two steps.
Combining (21) and (22), we obtain

∑

e∈P (s,l+)

x∗(e) +
∑

e∈P (v(ls),l)

x∗(e) = L(l)− L(l+), ∀l ∈ L(T1). (24)

Therefore, we have L(l) ≥ L(l+) for all l ∈ L(T1), and
∑

e∈P (s,l+)

x∗(e) ≤ min{L(l)−L(l+) | l ∈
L(T1)} := H.

If H ≥ ∑
e∈P (s,l+)

b(e), let x∗(e) = b(e) for e ∈ P (s, l+), and R∗ = L(l+) +
∑

e∈P (s,l+)

b(e).

Otherwise from l+ to s, edge by edge, set x∗(e) = min{b(e),H}, and update H by H − x∗(e),
until H becomes zero. Let R∗ = L(l+) + H.

By the definition of H, it is not difficult to see that
∑

e∈P (v(ls),l)

b(e) ≥ L(l)−R∗ if the system

of (21)–(23) has a feasible solution.
The remaining unknowns are {x∗(e) | e ∈ T1} satisfying

∑

e∈P (v(ls),l)

x∗(e) = L(l)−R∗, ∀l ∈ L(T1), (25)

0 ≤ x∗(e) ≤ b(e), ∀e ∈ T1. (26)

Sort all vertices in L(T1) in the nondecreasing order of L(l). Define a potential function
as follows: p(v(ls)) = 0, and scan each l ∈ L(T1) by the just determined order. Suppose
that v′ is the last vertex which has already been assigned a potential p(v′) on P (v(ls), l). Let
p(v) = min{p(u) + b([u, v]), L(l) − R∗} for the successive vertices from v′ to l, where u is the
vertex preceding v.

It is clear that p(l) = L(l) − R∗ for all l ∈ L(T1). Let x∗([u, v]) = p(v) − p(u) for all
[u, v] ∈ T1. It is straightforward to check that {x∗(e) | e ∈ T1} satisfies (25) and (26).

Since the dominating computation in the recovering procedure is to sort vertices in L(T1),
the computational complexity of recovering procedure is O(|V | log |V |). Note that finding a
minimum cost flow from v(ls) to s on N can be done in O(|V | log |V |) time. So, we conclude
that solving each LP (l+) can be done in O(|V | log |V |) time.

Since the number of problems LP (l+) is |L(T2)| < |V |, we obtain the following theorem.
Theorem 3 The inverse center location problem on a tree can be solved in O(|V |2 log |V |)

time.

INVERSE CENTER LOCATION PROBLEM ON A TREE 663

Remark 1 If T1 is a path, we can solve LP (l+) directly. In fact, we can sort the edges
in P (v(ls), ls) ∪ P (s, l+) in the nondecreasing order of c(e). Let H1 = dw(v(ls), ls), and H2 =
dw(s, l+). Starting from the first edge, if the current edge e ∈ P (v(ls), ls), let w∗(e) = w(e) −
min{b(e),H1 − H2} and update H1 by H1 − min{b(e), H1 − H2}, otherwise w∗(e) = w(e) +
min{b(e),H1 −H2} and update H2 by H2 + min{b(e),H1 −H2}.

4 Unit Modification Cost Case

In this section, we consider a simple case that the unit modification costs are identical.
Without loss of generality, we assume that c(e) ≡ 1.

Since P (s, l+) is a path, T1 is a tree, and c ≡ 1, it is cheaper to increase the weights of
edges on P (s, l+) first than to decrease the weights of edges on T1 in order to solve L(l+).
Hence, if

∑
e∈P (s,l+)

(w(e) + b(e)) ≥ dw(v(ls), ls), we only need to increase the length of P (s, l+)

to dw(v(ls), ls), and L(l+) is solved.
If

∑
e∈P (s,l+)

(w(e) + b(e)) < dw(v(ls), ls), we set w∗(e) = w(e) + b(e) for e ∈ P (s, l+), and go

further to reduce the weights of edges on T1 such that dw∗(v(ls), l) ≤ dw∗(s, l∗) := L∗.
To this end, it is intuitive that shortening an arc close to v(ls) is better than shortening an

arc which is far from v(ls) on T1. Therefore, we should decrease a close arc as much as possible
when a reduction is needed.

Let ∆(l) = max{dw(v(ls), l)−L∗, 0} for all l ∈ L(T1). For each v ∈ V (T1)\(L(T1)∪{v(ls)}),
there is only one arc [u, v] adjacent to v. Let ∆(v) = max{∆(l) | P (v(ls), l) 3 [u, v], l ∈ L(T1)}.
Note that ∆(v) is the largest required reduction of the paths P (v(ls), l) passing by v. We can
compute all ∆(v) in linear time by assigning ∆(v) = max{∆(v′) | [v, v′] ∈ T1} from leaves in
L(T1) to the root v(ls).

Denote by δ(v) the accumulating reduction on the path from v(ls) to v, and set δ(v(ls)) =
0. Then from v(ls) to leaves, for each arc [u, v] ∈ T1, we set ∆(v) = max{∆(v) − δ(u), 0},
w∗([u, v]) = w([u, v])−min{∆(v), b([u, v])}, and δ(v) = δ(u) + min{∆(v), b([u, v])}. Obviously,
the computation of w∗ and δ runs in the linear time, too. Therefore, we obtain the following
assertion.

Assertion 6 If c ≡ 1, LP (l+) can be solved in linear time.
Moreover, by the above analysis, we can also obtain the following properties:

• Let w′(e) = w(e) + b(e) for e ∈ T2. If Q := {l ∈ L(T2) | dw′(s, l) ≥ dw(v(ls), ls)} 6= ∅, we
only need to find the longest path from s to Q, and extend this path to dw(v(ls), ls).

• If Q = ∅, let Q′ := {l ∈ L(T2) | dw′(s, l) = max{dw′(s, l) | l ∈ L(T2)}} and let l+ =
arg max{dw(s, l) | l ∈ Q′}. Then L(l+) solves the inverse center location problem.

Based on the above two properties, we don’t need to solve each LP (l+) individually. We
only need to determine Q or Q′ (in case Q = ∅), and find the longest path from s to Q (or Q′).
Thus, we need to solve at most one LP (l+). Hence, we get the following theorem.

Theorem 4 When modification costs for every edge are equal, the inverse center location
problem can be solved in O(|V |) time.

5 Concluding Remarks

In the above discussion, we assume that weights of edges cannot be reduced to zero. If
we relax this restriction by allowing weights to be reduced to zero if necessary, we need more

664 XIAOGUANG YANG · JIANZHONG ZHANG

computation to find the optimal solution. The inverse center location problem with different
unit modification costs can be solved in O(|V |3 log(|V |)) time, while the inverse center location
problem with equal unit modification costs can be solved in O(|V |2) time.

A vertex in a network is called a general center if the distance from the vertex to the
remotest point (not only among vertices, but also among all points in the edges) in the network
is minimum. When the network is a tree, a center is exactly a general center, and vice versa.
Therefore, an inverse general center location problem on a tree is exactly an inverse center
location problem.

References

[1] N. Christofides, Graph Theory: An Algorithmic Approach, Academic Press, New York, 1975.
[2] J. R. Evans and E. Minieka, Optimization Algorithms for Networks and Graphs, Marcel Dekker,

Inc., New York, 1992.
[3] C. Heuburger, Inverse optimization, a survey on problems, methods, and results, Journal of Com-

binatorial Optimization, 2004, 8(3): 329–361.
[4] M. Cai, X. Yang, and J. Zhang, The complexity analysis of the inverse center location problem,

Journal of Global Optimization, 1999, 15(4), 213–218.
[5] E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Operations

Research, 1986, 34(2): 250–256.
[6] H. Booth and R. E. Tarjan, Finding the minimum-cost maximum flow in a serial-parallel network,

Journal of Algorithms, 1993, 15(3): 416–446.

