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Abstract The infinite-horizon linear quadratic regulation (LQR) problem is settled for discrete-

time systems with input delay. With the help of an autoregressive moving average (ARMA) innovation

model, solutions to the underlying problem are obtained. The design of the optimal control law involves

in resolving one polynomial equation and one spectral factorization. The latter is the major obstacle

of the present problem, and the reorganized innovation approach is used to clear it up. The calculation

of spectral factorization finally comes down to solving two Riccati equations with the same dimension

as the original systems.

Key words Diophantine equation, infinite-horizon LQR, reorganized innovation, spectral factoriza-

tion, stochastic backwards systems.

1 Introduction

The standard infinite-horizon LQR problem is commonly investigated via Dynamic Pro-
gramming by using a state-space or “internal” model of the physical system[1−2]. This is a
time-domain approach and yields the desired solutions in terms of an algebraic Riccati equa-
tion. The solutions to the problem also can be obtained via an alternative way, the so-called
Polynomial Equation approach[3−6]. It uses transfer matrices or “external” models of the phys-
ical system, and turns out to be more akin to a frequency-domain methodology. It leads us to
solve the infinite-horizon LQR problem by spectral factorization and Diophantine equation.

On the other hand, the optimal control of the systems with input/output delays has received
much attention in the past decades, and a variety of methods have been developed. Among these
previous works, papers [7–9] discuss the discrete-time systems while papers [10–12] discuss the
continuous-time systems. For infinite-horizon LQR for discrete-time systems with input delay,
one might tend to consider augmenting the systems and convert a delay problem into a delay-
free problem. In this case, the optimal control law can be designed via one spectral factorization
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and one Diophantine equation, and spectral factorization is always a key ingredient in tackling
the problem. However, the spectral factorization in augmented approach heavily depends on
solving higher dimension Riccati equation, whose dimension tends to increase in proportion
with the length and amount of the delay involved in the underlying system. To bypass high
dimension Riccati equation, paper [13] has come up with a new method, i.e., the so-called
reorganized innovation approach, and has solved the state estimation problem for the systems
with delayed measurement well. The reorganized innovation approach has been shown to be
powerful to deal with some complicated estimation and control problems for the time-delay
systems such as estimation of H∞ fixed-lag smoothing and so on[14].

The present paper is concerned with the polynomial solutions of the LQR for the systems
with delayed input, where the optimal control law will be given in view of one polynomial
equation and one spectral factorization. Here, spectral factorization for time-delay systems is
the key problem to be solved. We will adopt a different approach from state augmentation to
calculate the spectral factor. Firstly, we introduce a stochastic backwards systems with time-
delay in terms of the principle of duality between estimation and control for the time-delay
systems[15]. Further, based on the stochastic backwards systems with time-delay, the ARMA
innovation model can be derived. Finally, by applying the reorganized innovation approach
developed in the previous works, the spectral factorization is computed with the aid of the
ARMA innovation model. The spectral factor is obtained by solving two standard Riccati
equations rather than an augmented algebraic Riccati equation.

The rest of the paper is organized as follows. The problem is addressed in Section 2. Section
3 presents the polynomial solutions to the present problem by using the spectral factorization
approach. Based on the reorganized innovation approach and ARMA innovation model, spectral
factorization is calculated in Section 4. The comparison of the computational cost between the
presented approach and the conventional state augmented method for spectral factorization is
given in Section 5. The conclusions are drawn in Section 6.

2 Problem Statement

We consider the linear discrete time-invariant systems with input delay

x(t + 1) = ΦTx(t) + ΓT
(0)u0(t) + ΓT

(1)u1(t − h), (1)

where x(t) ∈ Rn is the state, ui(t) ∈ Rpi , i = 0, 1, are the control input, h is the time-delay,
and T stands for the transpose.

Consider the following quadratic performance index for the systems (1)

J =
∞∑

t=0

uT
0 (t)R0u0(t) +

∞∑
t=h

uT
1 (t − h)R1u1(t − h) +

∞∑
t=0

xT(t)Qx(t), (2)

where the matrices Ri, i = 0, 1, are positive definite and the matrix Q is non-negative definite.
The infinite-horizon LQR problem is stated as follows:
Find the input sequences {ui(t), i = 0, 1, 0 ≤ t < ∞}, which can make the resultant system

asymptotically stable and minimizes the cost function J of (2) for any initial state x0.

3 Solutions to Infinite-Horizon LQR

To the best of our knowledge, it is difficult to directly deal with the problem. To go further,
we introduce the following notation.
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Denote
u(t) =

[
u0(t)
u1(t)

]
, (3)

system (1) and quadratic performance index (2) can thus be rewritten as

x(t + 1) = ΦTx(t) + Γ
T
(q−1)u(t) (4)

and

J =
∞∑

t=0

uT(t)Ru(t) +
∞∑

t=0

xT(t)Qx(t) (5)

respectively, where Γ
T
(q−1) =

[
ΓT

(0) ΓT
(1)q

−h
]
, q−1 is the backward shift operator, i.e.,

q−1s(t) = s(t − 1), and

R =
[

R0 0
0 R1

]
.

Let us introduce a right coprime matrix-fraction description (MFD) of the transfer matrix
for the systems (4)

(In − ΦTq−1)−1Γ
T
(q−1)q−1 = CT(q−1)A−T(q−1),

where CT(q−1) and A−T(q−1) are polynomial matrices of dimensions n× (p0 +p1) and, respec-
tively, (p0 + p1) × (p0 + p1).

It can be shown[6] that the optimal control law

u∗(t) = −F−1(q−1)G(q−1)x(t), (6)

where F(q−1) and G(q−1) are the solutions of the following Diophantine equation

F(q−1)AT(q−1) + G(q−1)CT(q−1) = DT(q−1), (7)

where DT(q−1) is a stable polynomial matrix and satisfies the following right spectral factor-
ization

D(q)DT(q−1) = C(q)QCT(q−1) + A(q)RAT(q−1). (8)

In terms of the above discussion, the following theorem is now straightforward.
Theorem 3.1 Consider the system (1) and quadratic performance index (2). The optimal

LQR control ui(t), i = 0, 1, 0 ≤ t < ∞ that minimizes (2), is computed by

u∗
0(t) = − [ Ip0 0 ]F−1(q−1)G(q−1)x(t),

u∗
1(t) = − [ 0 Ip1 ]F−1(q−1)G(q−1)x(t).

Remark 3.1 The solvability and the uniqueness of the polynomial equation (7) have been
well studied in the previous works, see [6,16] for details.

Remark 3.2 Although we have presented the optimal control law in Theorem 3.1, the
calculation for the spectral factor DT(q−1) remains to be computed. Note (8), and one possible
approach to such spectral factorization is the state augmentation which, however, would result
in tremendous computation.
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Remark 3.3 In next section, our aim is to come up with a simple approach to above spectral
factorization (8) based on ARMA innovation model. The key technique is the reorganized
innovation analysis approach.

4 Spectral Factorization

4.1 ARMA Innovation Model

In this subsection, based on ARMA innovation model, the spectral factor DT(q−1) in (7)
can be calculated.

Next, we introduce the following backwards dual state-space model associated with systems
(1) and performance index (2):

x(t) = Φx(t + 1) + e(t), (9)

y(0)(t) = Γ(0)x(t + 1) + v(0)(t), 0 ≤ t < ∞, (10)

y(1)(t) = Γ(1)x(th + 1) + v(1)(t), th ≡ t + h, (11)

where x(t) ∈ Rn and e(t) ∈ Rn represent the state and the system noise, v(i)(t) ∈ Rpi , i = 0, 1
are the measurement noises, e(t) and v(i)(t) are mutually uncorrelated white noises with zero
means and covariance matrices ε[e(k)eT(j)] = Qδkj , ε[v(i)(k)vT

(i)(j)] = Riδkj , where δkj is
Kronecker delta function, and ε denotes the mathematical expectation.

Let y(t) denote the observation of the system (9)–(11) at time t. We have

y(t) =
[
y(0)(t)
y(1)(t)

]
. (12)

Exploiting (12), and the following definition can be given by

w(t) ≡ y(t) − ŷ(t|t + 1), (13)

where w(t) is called the innovation, and ŷ(t|t + 1) is the one-step prediction.
From (10), (11), and (13), we get

y(t) =
[
Γ(0) 0
0 Γ(1)

] [
x̂(t + 1|t + 1)
x̂(th + 1|t + 1)

]
+ w(t). (14)

Since x̂(th + 1|t + 1) is the projection of x(th + 1) onto the linear space L{w(t + 1),w(t +
2), · · ·}, by applying the projection formula in Hilbert space, x̂(th + |t + 1) can be expressed as

x̂(th + 1|t + 1) = qhx̂(t + 1|t + 1) + K(q)w(t), (15)

where qhx̂(t + 1|t + 1) = x̂(th + 1|th + 1), q is the forward shift operator, i.e., qs(t) = s(t + 1),
and K(q) is given by

K(q) =
h∑

i=1

Kiq
i. (16)

In the above, Ki is defined as

Ki ≡ ε[x(th + 1)wT(t + i)]Q−1
w , i = 1, 2, · · · , h, (17)
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where innovation covariance matrix Qw is defined as

Qw ≡ ε[w(t)wT(t)]. (18)

Substituting (15) into (14), it follows that

y(t) = Γ (q)x̂(t + 1|t + 1) + K(q)w(t) + w(t), (19)

where

K(q) =
[

0
Γ(1)K(q)

]
(20)

and

Γ (q) =
[

Γ(0)

Γ(1)q
h

]
.

On the other hand, x̂(t+1|t+1) is the projection of x(t+1) onto the linear space L{w(t+
1),w(t + 2), · · ·}, accordingly,

x̂(t + 1|t + 1) = Φx̂(t + 2|t + 2) + K0w(t + 1), (21)

where K0 is defined as

K0 ≡ ε[x(t + 1)wT(t + 1)]Q−1
w . (22)

Substituting (21) into (19), we obtain the ARMA innovation model as

A(q)y(t) = C(q)K0w(t) + A(q)K(q)w(t) + A(q)w(t), (23)

where A(q) and C(q) satisfy the following left coprime MFD of the transfer matrix for (9)–(11),

Γ (q)(In − Φq)−1q = A−1(q)C(q). (24)

In view of ARMA innovation model (23), the spectral factor D(q) in (8) can be achieved by

D(q) = {C(q)K0 + A(q)K(q) + A(q)}Q
1
2
w. (25)

We summarize now the above discussion, and state the main results in the following theorem.
Theorem 4.1 The spectral factor DT(q−1) in (7) obeys that

DT(q−1) = Q
1
2
w

{
KT

0 CT(q−1) + KT(q−1)AT(q−1) + AT(q−1)
}

, (26)

where Qw and K0 are given by (18) and (22), respectively. K(q−1) can be generated by combining
(16), (20) with (17).

Proof By using (25), the proof is straightforward.
Remark 4.1 Although we have given the solutions to spectral factor DT(q−1) in Theorem

4.1, it should be noted that DT(q−1) in (26) is related with unknown Ki, i = 0, 1, · · · , h and
Qw. In what follows, we shall manage to compute these unknown polynomial matrices with the
help of the reorganized innovation.
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4.2 Computation of Qw and Ki, i = 0, 1, · · · , h

To obtain the explicit expressions of Qw and Ki, i = 0, 1, · · · , h, we firstly assume that the
backwards systems (9)–(11) are finite-horizon, i.e., 0 ≤ t ≤ N. Then, the observation y(t) in
(12) can be rewritten as

y(t) =

⎧⎨⎩
y(0)(t), N − h ≤ t ≤ N,[
y(0)(t)
y(1)(t)

]
, t ≤ N − h.

(27)

The linear space spanned by the measurement {y(N), y(N − 1), · · · , y(t)} is denoted as
L{y(N), y(N − 1), · · · , y(t)}. As N → ∞, it is easy to known that

L{y(t), y(t + 1), · · ·} = L{y(t),y(t + 1), · · ·}. (28)

Note (27), y(1)(t) is an additional measurement of the state x(th + 1) which is received at
time instant t, i.e., a delayed measurement. Next, we are to organize the instantaneous and
delayed measurements, and thus attain a delay-free measurement.

1) Reorganized Innovation
In view of (10)–(11), and (27), it is clear that the linear space L{y(N), y(N − 1), · · · , y(t)}

can be reorganized equivalently as

L{{y2(s)}th

s=N ,y1(th − 1), · · · ,y1(t)}.

y1(t) and y2(t) satisfy

y1(t) = Γ1x(t + 1) + v1(t), (29)

y2(t) = Γ2x(t + 1) + v2(t), (30)

where

Γ1 = Γ(0), Γ2 =
[Γ(0)

Γ(1)

]
, y1(t) = y(0)(t), y2(t) =

[
y(0)(t)

y(1)(t − h)

]
,

and
v1(t) = v(0)(t), v2(t) =

[
v(0)(t)

v(1)(t − h)

]
with zero means and covariance matrices

Qv1 = R0, Qv2 =
[
R0 0
0 R1

]
,

respectively.
Obviously, the new measurements y1(t) and y2(t) are no longer with time-delay. With the

new measurements, we can introduce the following sequence

w(t, 1) = y1(t) − ŷ1(t, 1), (31)

w(t, 2) = y2(t) − ŷ2(t, 2), (32)

where ŷ1(t, 1) is the projection of y1(t) onto the linear space L{{y2(i)}th

i=N , {y1(i)}t+1
i=th−1

}
,

and ŷ2(t, 2) is the projection of y2(t) onto the linear space L{{y2(i)}t+1
i=N

}
.



52 HONGGUO ZHAO et al.

In view of (29)–(32),

w(t, 1) = Γ1x̃(t + 1|t + 1, 1) + v1(t),

w(t, 2) = Γ2x̃(t + 1|t + 1, 2) + v2(t),

where

x̃(t + 1|t + 1, 1) = x(t + 1) − x̂(t + 1|t + 1, 1),

x̃(t + 1|t + 1, 2) = x(t + 1) − x̂(t + 1|t + 1, 2),

in the above, x̂(t+1|t+1, 1) is the projection of x(t+1) onto linear space L{{y2(i)}th

i=N ,y1(th−1),
· · · ,y1(t+1)}, and x̂(t+1|t+1, 2) is the projection of x(t+1) onto the linear space L{{y2(i)}t+1

i=N

}
.

Based on the above discussion, we give the following lemma.
Lemma 4.1 {w(N, 2), · · · ,w(th, 2),w(th − 1, 1), · · · ,w(t, 1)} is uncorrelated white noise

sequence and spans the same space as L{y(N),y(N − 1), · · · , y(t)}.
Proof The proof is similar to the Lemma 2.1 in [13].
Remark 4.2 From Lemma 4.1 and (28), as N → ∞, the linear space L{y(t),y(t + 1), · · ·}

is equivalent to L{w(t, 1), · · · ,w(th − 1, 1),w(th, 2), · · ·}. As usual, {w(t, 1), · · · ,w(th − 1, 1),w
(th, 2),w(th + 1, 2), · · ·} is called the reorganized innovation sequence.

By use of Lemma 4.1, as t = 0 and N → +∞, state equation (9) together with reorganized
measurement (30) can bring forth the following steady-state Riccati equation

P2 = ΦP2ΦT + Q − ΦP2ΓT
2 Q−1

w2
Γ2P2ΦT, (33)

where P2 is the steady-state state estimation error covariance matrices, and Qw2 denotes the
steady-state covariance matrices of w(·, 2), and satisfies

Qw2 = Γ2P2ΓT
2 + Qv2 . (34)

Similarly, as t = 0 and N → +∞, state equation (9) and reorganized measurement (29) can
yield the following steady-state Riccati equation

P1(i + 1) = ΦP1(i)ΦT + Q − ΦP1(i)ΓT
1 Q−1

w (i, 1)Γ1P1(i)ΦT, i ≥ 0, (35)

P1(0) = P2,

where P1(i) is steady-state state estimation error covariance matrices, and Qw(i, 1) denotes the
steady-state covariance matrices of w(i, 1), and admits

Qw(i, 1) = Γ1P1(i)ΓT
1 + Qv1 , i > 0. (36)

Further, for the sake of convenience to discuss, we now define

M2(t − j, t) ≡ ε[x(t − j)x̃T(t|t, 2)],

M1(t − j, t − i) ≡ ε[x(t − j)x̃T(t − i|t − i, 1)], i > 0,

with

x̃(t|t, 2) = x(t) − x̂(t|t, 2),

x̃(t − i|t − i, 1) = x(t − i) − x̂(t − i|t − i, 1),
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where x̂(t|t, 2) is the projection of x(t) onto the linear space L{{w(s, 2)}T
s=N

}
, and x̂(t− i|t−

i, 1) the projection of x(t − i) onto the linear space L{{w(s, 2)}T
s=N , {w(s, 1)}t−i

s=t−1

}
.

As t = 0 and N → +∞, M2(t− j, t) and M1(t− j, t− i) will be independent of the time t,
which is rewritten as M2(j, 0) and M1(j, i), and can be achieved by

M2(j, 0) =

{
P2[AT

2 ]−j , j ≤ 0,

ΦjP2, j > 0,
(37)

M1(j, i) =

{
P1(j)AT

1 (j) · · · AT
1 (i − 1), i ≥ j,

Φj−iP1(i), i < j,
(38)

where

A2 = Φ − ΦP2ΓT
2 Q−1

w2
Γ2,

A1(i) = Φ − ΦP1(i)ΓT
1 Q−1

w (i, 1)Γ1, i > 0,

and P2 and P1(i) are calculated by (33) and (35). Qw(i, 1) and Qw2 are calculated via (36)
and (34).

2) Solutions to Qw and Ki, i = 0, 1, · · · , h
In order to stress that the unknown matrices Qw and Ki, i = 0, 1, · · · , h, play important

roles in designing the optimal control law, we give following theorems based on the reorganized
innovation approach. The calculation does not require the augmented systems.

Theorem 4.2 The steady-state innovation covariance matrix Qw complies with

Qw =

⎡⎣Γ(0)M1(h − 1, h − 1)ΓT
(0) + R0 Γ(0)[M1(−1, h − 1)]TΓT

(1)

Γ(1)M1(−1, h − 1)ΓT
(0) Γ(1)PΓT

(1) + R1

⎤⎦ , (39)

where M1(·, ·) is calculated by (38), and

P = P2 −M2(0, 0)ΓT
2 Q−1

w2
Γ2[M2(0, 0)]T

−
h−1∑
i=1

M1(−1, i − 1)ΓT
1 Q−1

w (i, 1)Γ1[M1(−1, i − 1)]T,

while Qw(i, 1), i = 1, 2, · · · , h and P2 are given by (36) and (33), respectively.
Proof See Appendix A.
What comes on next is, based on the reorganized innovation approach, to give the explicit

formula of Ki, i = 0, 1, · · · , h, in the following theorem.
Theorem 4.3 K0 obeys that

K0 = [M1(h − 1, h − 2) S ]
[
Γ(0) 0
0 Γ(1)

]T

Q−1
w , (40)

where

S = P2 −
0∑

j=−1

M2(h − j, 0)ΓT
2 Q−1

w2
Γ2[M2(−j − 1, 0)]T

−
h−2∑
j=1

M1(h − 1, j − 1)ΓT
1 Q−1

w (j, 1)Γ1[M1(−2, j − 1)]T.
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Ki, i = 1, 2, · · · , h, satisfy that

Ki = [M1(−1, h − i − 1) N (i) ]
[
Γ(0) 0
0 Γ(1)

]T

Q−1
w , (41)

where

N (i) = M2(i, 0) −
0∑

j=−i

M2(−j, 0)ΓT
2 Q−1

w2
Γ2[M2(−j − i, 0)]T

−
h−i−1∑

j=1

M1(−1, j − 1)ΓT
1 Q−1

w (j, 1)Γ1[M1(−i − 1, j − 1)]T

with M1(·, ·),M2(·, ·), Qw(·, 1), and Qw2 are computed as in (38), (37), (36), and (34), respec-
tively.

Proof See Appendix B.
Remark 4.3 Theorem 4.2 and Theorem 4.3 have given Qw and Ki, i = 0, 1, · · · , h, based

on projection theory and time-domain reorganized innovation approach. Thus, by applying
Theorem 4.2 and Theorem 4.3, spectral factor DT(q−1) can easily be computed by Theorem
4.1. It should be pointed out that the reorganized innovation is completely different from the
innovation in conventional Kalman filtering formulation, which is defined in (13).

5 Comparison of Computational Cost

Since the spectral factorization is the key problem solved in this paper, the section is devoted
to compare the computational cost of the spectral factorization via the presented approach and
the state augmented method.

Now, we introduce an augmented state

xT
a (t + 1) = [xT(t + 1) xT(t + 2) · · · xT(t + h + 1) ] . (42)

The backwards state-space model (9)–(11) can be rewritten as an augmented systems

xa(t) = Φaxa(t + 1) + ea(t), (43)

y(t) = Γaxa(t + 1) + v(t), (44)

where

Φa =

⎡⎢⎢⎢⎢⎢⎣
Φ
In 0

In
. . .
. . . . . .

In 0

⎤⎥⎥⎥⎥⎥⎦ , Γa =
[
Γ(0) · · · 0
0 · · · Γ(1)

]
,

and

vT(t) =
[
vT

(0)(t) vT
(1)(t)

]
, eT

a (t) = [eT(t) 0 · · · 0 ]
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are mutually uncorrelated white noises with zero means and covariance matrices Qv = R,

Qea
=

⎡⎢⎢⎣
Q

0
. . .

0

⎤⎥⎥⎦ ,

respectively.
In light of (43)–(44), spectral factor D(q) is directly calculated by

D(q) = [Ca(q)Ka + Aa(q)]Q
1
2
wa , (45)

where Ka = ΦaPaΓT
a Q−1

wa
and Qwa

= Qv + ΓaPaΓT
a are the Kalman gain and innovations

variance, respectively, and Pa satisfies the algebraic Riccati equation

Pa = ΦaPaΦT
a + Qea − KaQ−1

wa
KT

a .

In (45), Ca(q) and Aa(q) are produced via a left MFD of the transfer matrix for the aug-
mented systems (43) and (44) as follows

Γa(In+hn − Φaq)−1q = A−1
a (q)Ca(q),

where Aa(q) and Ca(q) are (p0 + p1)× (p0 + p1) and (p0 + p1)× (n + hn) polynomial matrices,
respectively.

According to (45), DT(q−1) is easily computed as

DT(q−1) = Q
1
2
wa [KT

a CT
a (q−1) + AT

a (q−1)]. (46)

As well-known, the computational cost is measured by the amount of multiplication and
division[13]. Observe (46) and (26), it is not difficult to find that, the former involves much
higher dimension matrices operation, and thus yields much more multiplication and division,
intuitive higher computational count than the latter. If it is not enough, the below numerical
example can supply more convincing argument.

We consider the systems (9)–(11) with n = p0 = p1 = 1. The results of computational cost
for the state augmentation and the presented approach are shown in Figure 1.
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Figure 1 1 state augmentation; 2 the presented approach
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Obviously, when the delay h is sufficiently large, it is easy to know that the computational
cost for the presented approach is less than that for the state augmentation. Moreover, the
larger the delay h is, the larger the difference of the computational cost between the state
augmentation and the presented approach is, which implies the presented approach in this
paper is more effective.

6 Conclusions

In this paper, the infinite-horizon LQR problem for discrete-time systems with input delay
has been investigated. The optimal controller is designed via one spectral factorization and one
polynomial equation, where the key technique for deriving spectral factorization is the time-
domain reorganized innovation approach. In contrast to the state augmentation, the presented
approach is much simpler for derivation and calculation, especially when the time-delay is larger.

Appendix A: Proof of the Theorem 4.2

From (13), we have

w(t) =
[
Γ(0) 0
0 Γ(1)

] [
x(t + 1) − x̂(t + 1|t + 1)

x(th + 1) − x̂(th + 1|t + 1)

]
+

[
v(0)(t) 0

0 v(1)(t)

]
, (A.1)

where x̂(t + 1|t + 1) and x̂(th + 1|t + 1) are the projection of x(t + 1) and x(th + 1) onto the
linear space L{w(t + 1),w(t + 2), · · · , }, which is equivalent with linear space

L{w(t + 1, 1), · · · ,w(th − 1, 1),w(th, 2), · · ·}.
Then x̂(th + 1|t + 1) becomes the projection of x(th + 1) onto the linear space

L{w(t + 1, 1), · · · ,w(th − 1, 1),w(th, 2), · · ·}.
Therefore, using projection formula, x̂(th + 1|t + 1) can be formulated as

x̂(th + 1|t + 1) = Proj{x(th + 1)|w(t + 1, 1), · · · ,w(th − 1, 1),w(th, 2),w(th + 1, 2) · · · , }
= x̂(th + 1|th + 1, 2) + ε[x(th + 1)wT(th, 2)]Q−1

w2
w(th, 2)

+
h−1∑
i=1

ε[x(th + 1)wT(th − i, 1)]Q−1
w (i, 1)w(th − i, 1)

= x̂(th + 1|th + 1, 2) + M2(0, 0)ΓT
2 Q−1

w2
w(th, 2)

+
h−1∑
i=1

M1(−1, i − 1)ΓT
1 Q−1

w (i, 1)w(th − i, 1). (A.2)

Note that

x̂(t + 1|t + 1) = x̂(t + 1|t + 1, 1). (A.3)

By substituting (A.2) and (A.3) into (A.1), the innovation w(t) allows us to be rewritten as

w(t) =
[
Γ(0) 0
0 Γ(1)

] [
x̃(t + 1|t + 1, 1)

ς(t)

]
+

[
v(0)(t) 0

0 v(1)(t)

]
, (A.4)
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where

x̃(t + 1|t + 1, 1) = x(t + 1) − x̂(t + 1|t + 1, 1)

and

ς(t) = x(th + 1) − x̂(th + 1|t + 1)

= x̃(th + 1|th + 1, 2) −M2(0, 0)ΓT
2 Q−1

w2
w(th, 2)

−
h−1∑
i=1

M1(−1, i − 1)ΓT
1 Q−1

w (i, 1)w(th − i, 1).

Consequently, the innovation covariance matrix Qw is given by

Qw=
[

Γ(0) 0
0 Γ(1)

]
Θ

[
Γ(0) 0
0 Γ(1)

]T

+
[

R0 0
0 R1

]
, (A.5)

where

Θ =

⎡⎣ ε[x̃(t + 1|t + 1, 1)x̃T(t + 1|t + 1, 1)] ε[x̃(t + 1|t + 1, 1)ςT(t)]

ε[ς(t)x̃T(t + 1|t + 1, 1)] ε[ς(t)ςT(t)]

⎤⎦ .

In view of (38), the following equation can be easily obtained:

ε[x̃(t + 1|t + 1, 1)x̃T(t + 1|t + 1, 1)] = M1(h − 1, h − 1). (A.6)

Also, by considering the fact that ς(t) is uncorrelated with w(th − i, 1), i = 1, 2, · · · , h − 1, it
follows that

ε[ς(t)x̃T(t + 1|t + 1, 1)] = ε[x̃(th + 1|th + 1, 2)x̃T(t + 1|t + 1, 1)]

= M1(−1, h − 1). (A.7)

Further, taking into account (A.5), we have

ε[ς(t)ςT(t)] = P2 −M2(0, 0)ΓT
2 Q−1

w2
Γ2[M2(0, 0)]T

−
h−1∑
i=1

M1(−1, i − 1)ΓT
1 Q−1

w (i, 1)Γ1[M1(−1, i − 1)]T. (A.8)

Substituting (A.6)–(A.8) into (A.5), (39) can be obtained.

Appendix B: Proof of the Theorem 4.3

Note that (A.4), we obtain

w(t + i) =
[
Γ(0) 0
0 Γ(1)

] [
x̃(t + i + 1|t + i + 1, 1)

ς(t + i)

]
+

[
v(0)(t + i) 0

0 v(1)(t + i)

]
, (B.1)
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where

x̃(t + i + 1|t + i + 1, 1) = x(t + i + 1) − x̂(t + i + 1|t + i + 1, 1)

and

ς(t + i) = x(th + i + 1) − x̂(th + i + 1|t + i + 1).

Applying the projection formula and the reorganization innovation, we get

ς(t + i) = x(th + i + 1) − Proj{x(th + i + 1)|w(t + i + 1, 1), · · · ,w(th − 1, 1),

w(th, 2), · · · ,w(th + i, 2),w(th + i + 1, 2), · · ·}

= x̃(th + i + 1|th + i + 1, 2) −
0∑

j=−i

ε[x(th + i + 1)wT(th − j, 2)]Q−1
w2

w(th − j, 2)

−
h−i−1∑

j=1

ε[x(th + i + 1)wT(th − j, 1)]Q−1
w (j, 1)w(th − j, 1)

= x̃(th + i + 1|th + i + 1, 2) −
0∑

j=−i

M2(−j − i, 0)ΓT
2 Q−1

w2
w(th − j, 2)

−
h−i−1∑

j=1

M1(−i − 1, j − 1)ΓT
1 Q−1

w (j, 1)w(th − j, 1). (B.2)

Substituting (B.1) into (17), and considering the fact that x(th +1) is uncorrelated v(0)(t+
i),v(1)(t + i), i = 0, 1, · · · , h, it follows that

Ki =
[
ε[x(th + 1)x̃T(t + i + 1|t + i + 1, 1)] ε[x(th + 1)ςT(t + i)]

] [
Γ(0) 0
0 Γ(1)

]T

Q−1
w . (B.3)

In view of (38), we have that

ε[x(th + 1)x̃T(t + i + 1|t + i + 1, 1)] = M1(−1, h − i − 1). (B.4)

Substituting (B.2) into ε[x(th + 1)ςT(t + i)], it yields that

ε[x(th + 1)ςT(t + i)] = ε[x(th + 1)x̃T(th + i + 1|th + i + 1, 2)]

−
0∑

j=−i

ε[x(th + 1)wT(th − j, 2)]Q−1
w2

Γ2[M2(−j − i, 0)]T

−
h−i−1∑

j=1

ε[x(th + 1)wT(th − j, 1)]Q−1
w (j, 1)Γ1[M1(−i − 1, j − 1)]T

= M2(i, 0) −
0∑

j=−i

M2(−j, 0)ΓT
2 Q−1

w2
Γ2[M2(−j − i, 0)]T

−
h−i−1∑

j=1

M1(−1, j − 1)ΓT
1 Q−1

w (j, 1)Γ1[M1(−i − 1, j − 1)]T. (B.5)



LINEAR QUADRATIC REGULATION: SPECTRAL FACTORIZATION 59

Substituting (B.4) and (B.5) into (B.3), we can prove (41). By applying the similar approach,
K0 can be obtained as (40).
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