
Vol.:(0123456789)

Education Tech Research Dev (2024) 72:557–584
https://doi.org/10.1007/s11423-023-10312-2

1 3

RESEARCH ARTICLE

Different programming approaches on primary students’
computational thinking: a multifactorial chain mediation
effect

Lihui Sun1  · Junjie Liu2

Accepted: 10 October 2023 / Published online: 18 October 2023
© Association for Educational Communications and Technology 2023

Abstract
This study investigated the effects of the single programming approach (plugged-in and
unplugged) and the mixed programming approach (plugged-in-first and unplugged-first)
on the computational thinking (CT) skills of first-grade students. However, focusing only
on the programming learning approach itself is insufficient. Therefore, the influences of
students’ gender, programming experience, programming interest, and programming con-
fidence factors on CT skills were also examined. 121 students from China were divided
into four experimental and one control groups and engaged in the programming activities
intervention for 10 weeks. The data consisted mainly of students’ CT skill scores before
and after the programming activities intervention. The results showed that both single
and mixed programming approaches significantly improved students’ CT skills, with the
mixed programming approaches being more effective. Furthermore, the study found that
the implementation of unplugged activities in the first stage attenuated the effects of pro-
gramming experience. Furthermore, it was found that the unplugged-first programming
approach was able to diminish the effect of students’ programming experience on the
development of CT skills and could be an essential condition to promote the development
of equal CT skills. We also clarified the important role of programming interest and pro-
gramming confidence in students’ CT development. More importantly, a chain mediation
effect of programming experience and programming interest between programming confi-
dence and CT was also found. Finally, this study further discusses ideas and approaches for
the future of CT education for primary school students and provides certain practical sug-
gestions and insights for teachers and researchers.

Keywords  Primary school students · Computational thinking · Plugged-in · Unplugged ·
Mixed programming approach

Lihui Sun and Junjie Liu have share the first authorship.

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9188-9022
http://crossmark.crossref.org/dialog/?doi=10.1007/s11423-023-10312-2&domain=pdf

558	 L. Sun, J. Liu

1 3

Introduction

Computational thinking (CT), deemed an indispensable foundational skill of digital intel-
ligence, is fundamentally altering the way individuals approach problem-solving (Kong
& Wang, 2020). Nowadays, educational reforms at the policy and curriculum scales are
underway around the world intending to develop students’ CT skills starting from the com-
pulsory education level. As Bocconi et al. (2022) reported, 24 countries in the European
Union have already incorporated CT into their curricula at the primary or middle school
level. This is due to the digital benefits of CT, which not only helps students to fully under-
stand the digital world around them but also to innovate based on it (European Commis-
sion, 2020). Consequently, this has motivated educators to search for the most effective
way to develop CT at the compulsory education level, allowing every student to master
it (Israel et al., 2015; Yadav et al., 2014). Actually, CT has become one of the impor-
tant topics explored in the field of programming education. This is because CT involves
abstraction, decomposition, algorithm design, and other competencies closely intertwined
with programming. Therefore, programming has emerged as a pivotal means to develop
students’ CT skills (Liu et al., 2021). In the existing research, programming curricula are
mostly implemented using plugged-in or unplugged programming (Sigayret et al., 2022).
Unplugged programming activities are separated from electronic devices such as comput-
ers and represent concepts related to computer science through a series of logical tasks that
deepen the learning of programming thinking. The advantage of the unplugged approach
by reducing the abstraction of programming concepts, especially for students with no pro-
gramming experience (Brackmann et al., 2017). Plugged-in programming usually involves
interaction with programming software on the computer and allows for the development of
students’ programming skills by increasing their interest in programming through a gami-
fied interactive interface (Ouahbi et al., 2015).

Plugged-in and unplugged programming are commonly used at the K-12 education level
to develop students’ CT skills. Plugged-in programming activities usually require students
to have some basic knowledge of computer operations, and students need to embrace cer-
tain programming concepts in the process of coding. Therefore, it is usually recommended
for implementation in upper elementary and middle school grades (Sigayret et al., 2022).
By contrast, unplugged programming activities are usually carried out in primary schools,
where on the one hand they can escape the issues that occur with exposure to comput-
ers, and on the other hand, they are not even influenced by the teacher’s teaching level.
Generally, most studies have used plugged-in or unplugged programming alone to develop
CT skills (Polat & Yilmaz, 2022). It has been demonstrated that both single plugged-in
programming activities and unplugged programming activities significantly enhance stu-
dents’ CT skills (del Olmo-Muñoz et al., 2020; Sun et al., 2021b). As research in pro-
gramming education advances, the effects of combinations of plugged-in and unplugged
programming approaches have attracted the attention of researchers. del Olmo-Muñoz
et al. (2020) found that implementing unplugged activities before plugged-in activities
improved CT skills more than fully plugged-in activities. Similarly, several researchers
have demonstrated that this mixed programming approach significantly improves the CT
skills of 6th and 7th graders (Hermans & Aivaloglou, 2017; Sun et al., 2021b). There may
be current stereotypes about the implementation of the mixed programming approach, and
it is often assumed that implementing the unplugged activities first is more effective (del
Olmo-Muñoz et al., 2020). However, there is a lack of systematic empirical evidence on
the impact of the sequences of implementation of the mixed programming approach on

559Different programming approaches on primary students’…

1 3

students’ CT skills. In addition, relevant studies have mainly focused on the upper primary
and junior secondary levels. According to Hsu et al. (2018), the cognitive abilities and
knowledge structures of students at different ages vary greatly. In other words, it is difficult
to replicate the same approach to CT development at different grade levels. Therefore, to
better promote programming education, there is a need to systematically explore the effects
of mixed programming approaches with different combination sequences on the CT skills
of first-grade students.

Based on this, we designed a quasi-experimental study containing four experimental
groups and one control group. The four experimental groups were designed with the single
plugged-in and unplugged programming approach and the mixed programming approach
with combined plugged-in and unplugged. Moreover, two different combination sequences
were designed, i.e., the plugged-in-first and the unplugged-first programming approaches.
An empirical study was conducted to compare the effects of the single and mixed program-
ming approaches on students’ CT skills, in addition to exploring the differences caused by
the combination sequence of the mixed programming approaches. Ultimately, it was pos-
sible to determine the most effective way to develop CT skills in first-grade students, filling
the gap in the current research field. Meanwhile, we also focused on the variability of stu-
dents’ gender when developing CT skills across different programming approaches (Webb
et al., 2017). Students’ programming experience was also an important factor influencing
CT (Lye & Koh, 2014). However, the question of whether it can contribute to students’ CT
skills or play distinct roles in different programming approaches still needs to be answered.
More importantly, it is worthwhile to investigate the factors that influence students’ learn-
ing process, for example, whether students have interest in programming (Kong et al.,
2018), or whether students have confidence in programming (Chiu & Klassen, 2010). Stu-
dents with interest and confidence in programming generally have a strong intrinsic moti-
vation and are constantly driven to explore themselves. This is accompanied by heightened
self-efficacy and enhanced programming proficiency (Weber et al., 2005). However, these
influences have not received much attention from researchers. Additionally, the potential
relationships and influence pathways among these influences need further investigation.
Therefore, we constructed a chain mediation effect model between programming experi-
ence, programming interest, programming confidence, and post-pre-test of CT. The effects
of these influences on students’ CT skills were explored further.

Literature review

Definition of computational thinking

CT has become the core skill that everyone should have in the 21st century, but there is
no consensus in academia on the definition of CT (Lye & Koh, 2014; Wong & Cheung,
2020). Academics and institutions have also continued to redefine the concept of CT and
applied it in practice as time evolves (Kalelioglu et al., 2016). The first introduction of
the term computational thinking can be traced back to 1980 when Papert (1980) intended
to develop powerful ideas in students through LOGO programming, but at this point, it
was still “computer thinking”. Wing (2006) clarified the significance of CT from the per-
spective of computer science, pointing out that CT is the use of computer-related con-
cepts to design solutions to problems and to understand human behavior. At this point,
CT has attracted widespread attention from the academic community, leading to a wave of

560	 L. Sun, J. Liu

1 3

research on CT. Several years later, Wing (2008) redefined CT as a way of thinking about
the problem-solving process. Since then, Computer Science Teachers Association (CSTA)
and International Society for Technology in Education (ISTE) (2011) have provided more
explicit operational definitions, indicating that CT covers dimensions such as organizing
data, data analysis, and using algorithms to automate problem-solving. Many scholars have
also researched the components of CT. For example, Brennan and Resnick (2012) recon-
structed the conceptual framework of CT based on Scratch programming activities. This
includes computational concepts that learners use during programming, computational
practices for developing or debugging projects, and computational perspectives for viewing
things around them. Kalelioglu et al. (2016) proposed CT as the framework component of
the problem-solving process and that it could be applied to different scenarios rather than
only for solving computational tasks. Selby and Woollard (2013) focused on the thoughtful
characteristics of CT, arguing that CT is a mental process involved in human problem-
solving. Although there is no consensus on the conceptual definition of CT, CT has always
been inseparable from the set of core skills involved in the problem-solving process, such
as abstraction, deconstruction, algorithms, evaluation, and generalization (Barr & Stephen-
son, 2011; Kalelioglu et al., 2016; Selby & Woollard, 2013). Therefore, we used the CT
framework that includes the above core skills and tested the students’ CT skills through the
Bebras Challenge project.

Unplugged and plugged‑in programming teaching methods

In current research trends, students’ CT skills are improved mainly through plugged-in and
unplugged programming activities. Unplugged programming involves learning computer
science through outdoor activities, card games, or puzzles, separated from the computer
(Brackmann et al., 2017). For example, Kim et al. (2014) used paper and pencil program-
ming, which is programming in the form of symbols and flowcharts to help students under-
stand data structure algorithms and improve CT skills. Other researchers implemented a
quasi-experimental study with upper primary and seventh-grade students in middle school
and revealed that students who participated in unplugged programming activities had sig-
nificantly improved CT skills, especially problem-solving and logical thinking skills, com-
pared to non-participating students (Brackmann et al., 2017; Sun et al., 2021a). Li et al.
(2022) analyzed 29 pieces of literature related to unplugged programming using meta-anal-
yses, where the findings indicated that unplugged programming activities are more appli-
cable to primary school students. It is worth noting that while unplugged programming
activities provide students with an understanding of programming-related concepts with
a simple approach, they may be removed from the practice of CT skills in programming
(Bell & Vahrenhold, 2018). In addition, Shang et al. (2023)d ez-López et al. (2016) used
robotics programming and Scratch programming to conduct upper primary students with
plugged-in activities, and both found that students’ CT skills, and mastery of programming
concepts, significantly improved. Therefore, the effectiveness of plugged-in programming
activities has also been demonstrated.

Despite the different learning approaches of plugged-in and unplugged programming,
both aim to improve CT skills by promoting students’ understanding of programming con-
cepts or enhancing their abilities in algorithms, deconstruction, and problem-solving. In
other words, plugged-in and unplugged programming are intended to be congruent and
complementary, not opposed to each other. Saxena et al. (2019) conducted two stages of
programming activities in kindergarten which revealed that the unplugged programming

561Different programming approaches on primary students’…

1 3

activities implemented in the first stage facilitated the concepts of pattern recognition,
sequencing, and algorithm design to pave the way for the plugged-in programming activ-
ities in the second stage. Sun et al. (2021b) implemented unplugged-first and plugged-
in-first programming activities in seventh grade which showed that students’ CT skills
improved significantly after both programming approaches intervention, and students who
implemented unplugged-first programming activities intervention had the most improve-
ment in CT skills. Therefore, the combination of plugged-in and unplugged programming
approaches may be more effective in enhancing students’ CT skills. However, the existing
experimental design of mixed programming is simple, focusing mainly on the compari-
son of the effects of the single unplugged or plugged-in programming approaches with the
mixed programming approaches, and the effects caused by the combined sequence of the
mixed programming have not yet been explored in depth. In addition, most research on
the mixed experiments of unplugged and plugged programming has focused on the upper
primary and middle school levels, and fewer experimental studies have been conducted in
the early primary grades. Due to differences in educational environments and individual
students, the existing research findings cannot be directly transferred (Hsu et al., 2018).
Therefore, the effects of these programming approaches on students’ CT skills in the lower
primary grades still need to be further explored.

Multiple factors influencing computational thinking

Gender

 Gender, as the most prevalent demographic factor, has been extensively studied in CT and
programming education. For example, Mouza et al. (2020) found that after the same inter-
vention of plugged-in programming sessions, boys’ CT skills were significantly higher than
girls’ in Grades 4–6. In fact, the stereotype that girls are inferior to boys in CT and pro-
gramming is always held (Passey, 2017). However, some researchers have found that after
the plugged-in programming intervention, girls were able to achieve the same level of CT
skills as boys (Sun et al., 2022a), and even showed higher CT skills than boys (Atmatzidou
& Demetriadis, 2016). Sun et al. (2021a) also found that unplugged programming activi-
ties were able to provide boys and girls with equitable opportunities for CT development.
These disparities in findings may be attributed to the manner in which CT is cultivated.
However, most of the current research has focused on the effect of gender on the single
programming approach and little attention has been paid to the effect of gender on the
mixed programming approach of plugged and unplugged.

Programming experience

 In the learning process, knowledge acquisition was transformed by experience (Kolb
et al., 2014). As Papert (1980) argued, children actively participate in the construction
of knowledge through previous experiences. Similarly, programming experience is also
usually a factor to be considered in the learning process of plugged-in and unplugged
programming. Some researchers have found that students with programming experience
have an easier time completing similar programming tasks and performing higher CT
skills (Fessakis et al., 2013; Sun et al., 2021b). This is probably attributed to the fact that
the neural activity processes of students with programming experience are more condu-
cive to CT skill development (Helmlinger et al., 2020). It is evident that programming

562	 L. Sun, J. Liu

1 3

experience is emerging as an important factor in widening the differences in CT skills
among students. In addition, Sun et al. (2022b) found that appropriate programming
instructional approaches can reduce the impact of students’ previous programming
experiences on the development of CT skills. Therefore, we should consider the impact
of students’ programming experience in different programming learning approaches, so
that students with different programming experiences can better engage in programming
learning.

Programming interest

It was as early as the 19th century that researchers noticed the importance of interest
in the learning process (Hidi, 2006). As the study progressed, the researcher found that
interest both contributed to sustained learning and was a key factor in student achieve-
ment (Dewey, 1913; Schiefele, 2008). Similarly, students with programming interests
are more motivated to explore the programming learning process, which helps to pro-
duce positive learning outcomes (Deci et al., 2017). Meanwhile, they will spend more
time finding solutions to complex programming problems, thus improving their CT
skills. Students without programming interest will resist participating in programming
activities, thus creating a vicious circle in terms of CT and programming skills (Beyer,
2014). Kong et al. (2018) constructed a structural equation about the programming
interest of primary school students and found that students with high programming
interest would regard programming as a meaningful activity, which is conducive to the
improvement of CT skills. In other words, students with different programming interests
may have different CT skills. However, different programming approaches may have dif-
ferent effects on primary students. For example, computer-based plugged-in program-
ming takes time for students to get used to, which can reduce the positive CT impact of
programming interest (Sigayret et al., 2022). Therefore, future research needs to explore
the effects of programming interest in different programming approaches.

Programming confidence

 Students’ intrinsic psychological factors affect the development of their CT skills, and
confidence is an important psychological factor. Within the field of programming educa-
tion, confidence enables students to believe that they are capable of performing certain
programming tasks or acquiring certain programming knowledge well (Bandura & Wes-
sels, 1994). Jong et al. (2020) also found that developing primary school students’ confi-
dence in facing difficult programming problems is as important as improving CT skills.
This is because students’ ability to solve complex problems is closely linked to their
level of programming confidence. Tsai et al. (2020) also found that in computer pro-
gramming, students’ increased programming confidence contributes to the acquisition
of algorithmic skills, logical thinking skills, and thus better development of CT skills.
Whilst the important role of programming confidence is clear, teachers who use an inap-
propriate approach to teaching programming may not have positive impacts on students’
CT skills (Gunbatar & Karalar, 2018). Therefore, there is a need to further explore the
specific role that programming confidence plays in different programming approaches.

563Different programming approaches on primary students’…

1 3

The interactions between programming experience, programming interest,
programming confidence and computational thinking

As mentioned above, programming experience, interest, and confidence are all closely
related to students’ CT skills. Generally, people who maintain confidence in program-
ming have an active interest in it. According to Kong et al. (2018), students with high
levels of programming confidence find programming activities more interest, which pro-
motes positive learning outcomes. Mason and Rich (2020) also found significant corre-
lation between programming interest and confidence. In addition, when students utilize
‘prior knowledge’ to construct CT skills, the drive generated by confidence can facili-
tate positive adjustments (Papert, 1980). Also, students with programming experience
tend to invest more interest and energy in similar programming activities. This means
that there may be correlations between programming confidence, programming experi-
ence, and programming interest. Therefore, to deeply explore the influence mechanism
between them, we developed a chain mediation effect model.

Research objectives

In conclusion, the main purpose of this research is to investigate programming
approaches that are appropriate for the development of CT skills of first-grade students.
The four experimental groups in this study implemented the single programming activi-
ties (plugged-in and unplugged) and the mixed programming activities (plugged-in-first
and unplugged-first) and measured students’ CT skills before and after the programming
activities intervention. Meanwhile, we also considered multiple factors that might influ-
ence students’ CT skills during instruction, including students’ gender, previous pro-
gramming experience, and interest and confidence in programming. More importantly, a
chain mediation effect model of programming experience and programming interest was
constructed to explore the mechanism of influence between these factors and students’
CT post-pre-test. The research questions of this study are as follows:

RQ1	� Can single programming approaches (plugged-in, unplugged) and mixed program-
ming approaches (plugged-in-first, unplugged-first) improve the CT skills of pri-
mary school students?

RQ2	� Can different programming approaches be influenced by students’ gender, pro-
gramming experience, programming interest, and programming confidence in
improving their CT skills?

RQ3	� Is there a chain mediation effect of students’ programming experience and pro-
gramming interest in the effect of programming confidence on the CT post-pre-test?

Method

Research design

Based on the purpose of this study and considering that the study was conducted in an
authentic educational environment, it was not possible to completely disrupt the existing
classes and randomize them. Therefore, all groups in this study followed the original

564	 L. Sun, J. Liu

1 3

class configuration. Ultimately, five classes were randomly selected to conduct a quasi-
experimental study lasting 10 weeks. It included four experimental groups and one con-
trol group. The programming activities throughout the experiment are divided into two
stages, each with 4 lessons, for a total of 8 lessons. Each stage had 4 plugged-in pro-
gramming sessions or unplugged programming sessions, each of which lasted 40 min.
The plugged-in group implemented 8 sessions of plugged-in programming activities and
the unplugged group implemented 8 sessions of unplugged programming activities. The
other two groups, the plugged-in-first and unplugged-first groups, which received inter-
ventions in a mixed programming approach, received four plugged-in programming ses-
sions and four unplugged programming sessions. In the first stage, the plugged-in-first
group conducted 4 sessions of plugged-in programming, while the unplugged-first group
conducted 4 sessions of unplugged programming. In the second stage, the plugged-in-
first group then conducts 4 unplugged programming sessions; while the unplugged-first
group conducts 4 plugged-in programming sessions.

It should be noted that both the experimental and control groups were taught in the IT
curriculum. The students in the control group were still taught the regular IT curriculum
and the students in the experimental group received the corresponding programming activ-
ities instead. China’s IT Curriculum Standards for Compulsory Education clearly state that
CT skills are one of the four core literacies that must be developed (Ministry of Education,
2022). Therefore, the regular IT curriculum also includes CT concepts and skills. Moreo-
ver, CT skills were measured for all students, and demographic information was collected
before the first stage of the programming sessions were conducted. At the end of the sec-
ond stage of programming sessions, students’ CT skills were measured again. Quantitative
results were analyzed to investigate the impact of the programming activities intervention
on students’ CT skills. The research route of this study is shown in Fig. 1.

Participants

The 121 students in this study were all first-grade students in a primary school in a Chi-
nese city. They all participated in this experiment voluntarily and with parental consent.
The study was divided into 5 groups with 121 students (63 boys, 58 girls) participating
in the experiment with an average age of 7.50 years (SD = .824). 4 experimental groups

Fig. 1   Research route map

565Different programming approaches on primary students’…

1 3

implemented the plugged-in programming activities (13 boys, 12 girls), the unplugged
programming activities (14 boys, 10 girls), the plugged-in-first programming activities (11
boys, 11 girls), and the unplugged-first programming activity (10 boys, 12 girls). The con-
trol group (15 boys, 13 girls) was taught the regular IT curriculum and had no additional
plugged-in and unplugged programming activities. Additionally, we collected students’
demographic information through a questionnaire, which mainly included programming
experience, programming interest, and programming confidence (1 represents have, 2 rep-
resents no). Table 1 shows the demographic information of the students in each group.
43.0% of the students had participated in programming activities, indicating that most of
the students had not yet been exposed to programming learning. 60.3% of the students
reported interest in programming. However, only 46.3% of the students had confidence in
programming, indicating that most of the students may feel that programming is difficult.

Research instruments

Computational thinking test

The introduction of CT into K-12 education has also contributed to the development and
research of CT assessment tools. Since the concept of CT has not reached consensus in
the academic community, many scholars have developed different assessment approaches
based on different conceptual frameworks, such as the Computational Thinking Scale
(CTS) (Korkmaz et al., 2017), the automated assessment tool Dr. Scratch (Moreno-León
et al., 2015), and the Bebras CT Challenge (Izu et al., 2017). Among them, the Bebras
CT Challenge questions can assess students’ problem-solving skills in different contexts,
and numerous studies have validated its effectiveness in measuring students’ CT skills (del
Olmo-Muñoz et al., 2020). The two sets of CT skills tests in this study were taken from
the Bebras CT Challenge, which was divided into different age groups: Kits (age 6–8),
Castors (age 8–10), Benjamins (age 10–12), and Cadets (age 10–12). − 12), Cadets (age
12–14), Juniors (age 14–16), and Seniors (age 16–18). Simultaneously, the questions were
classified according to the difficulty level as A level (easy), B level (medium), and C level
(difficult). As the experimental participants in this study were first-grade students, aged
between 6 and 8 years old. Therefore, the test questions in this study were selected from
previous Kits level questions to test the students’ CT skills before and after the program-
ming sessions intervention. Eventually, each set consisted of 12 questions from the Kits
level, including the 6 “A” level questions, 4 “B” level questions, and 2 “C” level questions.
Moreover, different scores were assigned according to the difficulty of the questions, with
1 score for “A” level questions, 2 scores for “B” level questions, and 3 scores for “C” level
questions, for a total of 20 scores. To determine the validity of the two developed tests, the
reliability of the questions was checked using the IRT package in R language. The results
indicated that Cronbach’s alpha coefficient was .713 for the CT pre-test questions and .732
for the CT post-test questions (both > .700). This demonstrated that both sets of questions
exhibited good reliability and validity (Cronbach & Meehl, 1955). Example questions for
the CT pre-test and post-test are shown in Figs. 2 and 3.

Code.org

With the popularization of programming education, there is an increasing variety of plat-
forms used to teach programming, such as Scratch, ScratchJr, Alice, and even various

566	 L. Sun, J. Liu

1 3

Ta
bl

e 
1  

D
em

og
ra

ph
ic

 in
fo

rm
at

io
n

of
 st

ud
en

ts

G
ro

up
N

G
en

de
r

Pr
og

ra
m

m
in

g
ex

pe
rie

nc
e

Pr
og

ra
m

m
in

g
In

te
re

st
Pr

og
ra

m
m

in
g

C
on

fid
en

ce

B
oy

s
G

irl
s

H
av

e
N

o
H

av
e

N
o

H
av

e
N

o

Pl
ug

ge
d-

in
25

13
12

8
17

14
11

9
16

U
np

lu
gg

ed
24

14
10

10
14

16
8

10
14

Pl
ug

ge
d-

in
-

fir
st

22
11

11
11

11
14

8
10

12

U
np

lu
gg

ed
-

fir
st

22
10

12
8

14
14

8
15

7

C
on

tro
l

G
ro

up
28

15
13

15
13

15
13

12
16

To
ta

l
12

1
63 (5

2.
1%

)
58 (4

7.
9%

)
52 (4

3.
0%

)
69 (5

7.
0%

)
73 (6

0.
3%

)
48 (3

9.
7%

)
56 (4

6.
3%

)
65 (5

3.
7%

)

567Different programming approaches on primary students’…

1 3

Fig. 2   Pre-test questions of computational thinking skills (“A” level)

Fig. 3   Post-test questions of computational thinking skills (“B” level)

568	 L. Sun, J. Liu

1 3

unplugged programming methods. In particular, the Code.org platform uses drag-and-drop
programming blocks to teach students programming. It attracted the attention of many pro-
gramming educators as soon as it was launched in 2013 (Code.org, 2013). Code.org has
designed different course content for students aged 4–18, including an online version of
plugged-in programming activities and an offline version of unplugged programming activ-
ities (Kalelioğlu, 2015). These programming courses covered programming concepts such
as sequences, loops, events, conditional statements, functions, etc. As mentioned by Kale
and Yuan (2020), Code.org enables students to understand the correspondence between
programming blocks and visual objects by manipulating them. Students’ CT skills and
problem-solving abilities improved after the Code.org curriculum intervention. Kalelioğlu
(2015) also observed that Code.org has a good motivational function that helps students to
master computer science, especially for those who have no previous programming experi-
ence. Therefore, this study developed plugged-in and unplugged programming sessions for
first-grade students based on the Code.org project.

Instructional design

As described earlier, we designed 8 plugged-in programming sessions and 8 unplugged
programming sessions, with 40 min each, for the single plugged-in and unplugged pro-
gramming instruction. Moreover, four lessons were selected from each of them to form the
mixed plugged-in-first and unplugged-first programming sessions, and only the order of
the combination of sessions was changed. The effect of different programming approaches
on the CT skills of first-grade students was investigated. The plugged-in programming ses-
sions were selected from the “Crash Course for Preschoolers” (https://​studio.​code.​org/s/​
pre-​expre​ss-​2019), and the unplugged programming sessions were selected from the
“Unplugged Version of Computer Science Basics” (https://​code.​org/​curri​culum/​unplu​
gged). The programming activities we have chosen cover sequences, algorithms, loops, and
events, and they have been proven suitable for first-grade students. It is important to note
that the Code.org platform offers combinations and substitutions between different forms
of programming activities. Hence we ensured that the programming knowledge taught in
each session was the same, only with various teaching approaches (del Olmo-Muñoz et al.,
2020). The programming sessions of this study were organized as shown in Fig. 4.

Fig. 4   Programming sessions arrangement map

https://studio.code.org/s/pre-express-2019
https://studio.code.org/s/pre-express-2019
https://code.org/curriculum/unplugged
https://code.org/curriculum/unplugged

569Different programming approaches on primary students’…

1 3

The content of the control group is designed according to the standards of the IT cur-
riculum, which mainly includes experiencing the process of problem-solving using digital
devices and knowing the various ways of expressing information. For the given task, it is
possible to identify the main steps in the implementation of the task and to express them in
the form of graphical symbols, etc.

After determining the teaching contents, a suitable teaching model is needed to organ-
ize the teaching and learning process. The traditional model of teaching programming is
usually lecture-based and students are passive recipients of programming knowledge (Tsai,
2019). This may lead to a lack of learning motivation, which is detrimental to the develop-
ment of students’ CT skills. Therefore, to fully develop students’ CT skills, we designed
the teaching activities according to the “5E” teaching model, which includes five stages:
engagement, exploration, explanation, elaboration, and evaluation. The “5E” teaching
model returns the main body of the classroom to the students, providing them with the
opportunity to actively explore programming practices and motivating them to solve pro-
gramming problems (Bybee et al., 2006). In addition, the “5E” teaching model can help
students understand programming concepts in a step-by-step manner through inquiry,
thus better helping them master CT skills. Gao and Hew (2021) also found that courses
designed according to the “5E” instructional model significantly improved primary stu-
dents’ understanding of CT concepts and programming problem-solving skills. Eventually,
we designed an instructional guide for each lesson, including the theme, key instructional
content, instructional objectives, and instructional focus. An example of the instructional
guide is shown in Table 2.

Intervention fidelity

Intervention fidelity refers to the degree to which the intervention is implemented as
intended, and the key to effective experimental interventions depends on increasing the
fidelity of the intervention. If the intervention fidelity is not valued, it may lead to a dimin-
ished effectiveness of the intervention, making it difficult to conclude reliably (Clements
et al., 2015). In this study, we considered intervention fidelity across all aspects. First, to
ensure the fidelity of the course implementation, the same teacher experienced in teaching
programming in our research team taught the experimental and control groups. Second,
the curriculum guidelines for both the experimental and control groups were designed fol-
lowing the “5E” teaching model, and teachers were trained to implement the curriculum
in strict accordance with the guidelines. In addition, the content was carefully designed to
ensure that the experimental groups were taught the same content in each lesson, differing
only in the way it was implemented (del Olmo-Muñoz et al., 2020).

Data analysis

Data analysis for this study was completed in SPSS 25.0 and Amos Graphics 26.0. In the
current study, the data were primarily the students’ CT test scores, separately collected
before and after the 8-week programming activity intervention. In addition, demographic
information about the students was collected before the programming activities interven-
tion. First, descriptive analyses were used to present the pre-test and post-test scores of stu-
dents in the plugged-in, unplugged, plugged-in-first, unplugged-first, and control groups, to
observe the changes in students’ CT scores. Second, paired-samples T-tests were used to
investigate the differences in students’ CT skills before and after the programming activities

570	 L. Sun, J. Liu

1 3

Ta
bl

e 
2  

 E
xa

m
pl

e
of

 in
str

uc
tio

na
l g

ui
de

 fo
r p

ro
gr

am
m

in
g

ac
tiv

iti
es

C
on

te
nt

D
es

cr
ip

tio
n

Ex
am

pl
e

Te
ac

hi
ng

 th
em

es
Th

e
th

em
e

of
 th

is
 le

ss
on

B
ui

ld
in

g
C

up
 T

ow
er

Te
ac

hi
ng

 c
on

te
nt

Pr
og

ra
m

m
in

g
kn

ow
le

dg
e

or
 p

ro
gr

am
m

in
g

ac
tiv

iti
es

 c
ov

er
ed

 in
 e

ac
h

pl
ug

ge
d-

in
 o

r u
np

lu
gg

ed
 p

ro
gr

am
m

in
g

se
ss

io
n

Le
ar

ni
ng

 a
nd

 p
ra

ct
ic

e
of

 “
se

qu
en

ce
s”

 a
nd

 “
al

go
rit

hm
s”

 in
 p

ro
gr

am
m

in
g

co
nc

ep
ts

Te
ac

hi
ng

 o
bj

ec
tiv

es
Pr

og
ra

m
m

in
g

kn
ow

le
dg

e
or

 c
on

ce
pt

s t
ha

t s
tu

de
nt

s n
ee

d
to

 m
as

te
r i

n
ea

ch

se
ss

io
n

U
nd

er
st

an
d

th
e

m
ea

ni
ng

 o
f p

ro
gr

am
m

in
g

co
nc

ep
ts

 “
se

qu
en

ce
”

an
d

“a
lg

o-
rit

hm
”,

 a
nd

 b
e

ab
le

 to
 d

es
ig

n
th

e
se

qu
en

ce
 o

f b
ui

ld
in

g
pa

pe
r c

up
s a

nd

th
en

 w
rit

e
th

e
co

rr
ec

t p
ro

gr
am

m
in

g
in

str
uc

tio
n

sy
m

bo
ls

Te
ac

hi
ng

hi
gh

lig
ht

s
Pr

og
ra

m
m

in
g

co
nc

ep
ts

 th
at

 st
ud

en
ts

 n
ee

d
to

 fo
cu

s o
n

or
 h

av
e

di
ffi

cu
lty

un

de
rs

ta
nd

in
g

U
nd

er
st

an
d

th
e

m
ea

ni
ng

 o
f “

al
go

rit
hm

”
in

 p
ro

gr
am

m
in

g
co

nc
ep

ts
; d

es
ig

n
an

d
w

rit
e

co
rr

ec
t p

ro
gr

am
m

in
g

in
str

uc
tio

n
sy

m
bo

ls
A

ct
iv

ity
 p

re
pa

ra
tio

n
M

at
er

ia
ls

 th
at

 st
ud

en
ts

 m
ay

 n
ee

d
in

 th
e

co
ur

se
 o

f t
he

ir
stu

di
es

Pa
pe

r c
up

s,
“B

ui
ld

in
g

C
up

 T
ow

er
”

ac
tiv

ity
 p

ap
er

, p
en

s
En

ga
ge

m
en

t
(8

 m
in

)
Te

ac
he

rs
 c

an
 p

ro
vi

de
 fu

n
ac

tiv
iti

es
 to

 e
ng

ag
e

stu
de

nt
s’

 in
te

re
st

Th
e

te
ac

he
r s

ho
w

s t
he

 “
B

ui
ld

in
g

C
up

 T
ow

er
”

ac
tiv

ity
 p

ap
er

 u
se

d
in

 th
is

le

ss
on

 a
nd

 te
lls

 st
ud

en
ts

 th
at

 th
ey

 n
ee

d
to

 w
rit

e
sy

m
bo

lic
 in

str
uc

tio
ns

 to

m
ov

e
th

e
pa

pe
r c

up
s

Ex
pl

or
at

io
n

(2
0

m
in

)
In

 th
is

 se
ss

io
n,

 st
ud

en
ts

 a
re

 re
qu

ire
d

to
 e

xp
lo

re
 a

nd
 c

om
pl

et
e

th
e

ta
sk

s o
f

th
e

pr
og

ra
m

m
in

g
ac

tiv
ity

 o
n

th
ei

r o
w

n
B

as
ed

 o
n

th
ei

r u
nd

er
st

an
di

ng
 o

f t
he

 sy
m

bo
ls

 o
n

th
e

pr
og

ra
m

m
in

g
in

str
uc

-
tio

n
ca

rd
s,

stu
de

nt
s w

rit
e

a
se

rie
s o

f p
ro

gr
am

m
in

g
in

str
uc

tio
n

sy
m

bo
ls

 a
s

re
qu

ire
d

by
 th

e
“B

ui
ld

in
g

C
up

 T
ow

er
”

pr
og

ra
m

m
in

g
ta

sk
Ex

pl
an

at
io

n
(7

 m
in

)
A

t t
he

 e
nd

 o
f t

he
 e

xp
lo

ra
tio

n,
 st

ud
en

ts
 a

re
 re

qu
ire

d
to

 e
xp

la
in

 th
e

pr
og

ra
m

m
in

g
co

nc
ep

ts
 fr

om
 th

e
pr

og
ra

m
m

in
g

ac
tiv

ity
 b

as
ed

 o
n

th
ei

r
un

de
rs

ta
nd

in
g.

 S
ub

se
qu

en
tly

, t
he

 te
ac

he
r g

iv
es

 a
n

ac
cu

ra
te

 a
nd

 w
el

l-
de

fin
ed

 d
efi

ni
tio

n
of

 th
e

pr
og

ra
m

m
in

g
co

nc
ep

t,
as

 w
el

l a
s a

 c
or

re
ct

un

de
rs

ta
nd

in
g

Th
e

te
ac

he
r i

de
nt

ifi
es

 th
e

co
nc

ep
ts

 o
f “

se
qu

en
ce

”
an

d
“a

lg
or

ith
m

s”

in
vo

lv
ed

 in
 th

e
pr

og
ra

m
m

in
g

ac
tiv

ity
 a

fte
r t

he
 st

ud
en

ts
 h

av
e

co
m

pl
et

ed

th
e

ta
sk

. S
tu

de
nt

s e
xp

er
ie

nc
e

th
e

pr
og

ra
m

m
in

g
co

nc
ep

ts
 in

 th
e

co
nt

ex
t o

f
th

e
te

ac
he

r’s
 e

xp
la

na
tio

ns
 a

nd
 a

ct
iv

iti
es

El
ab

or
at

io
n

(3
 m

in
)

Te
ac

he
rs

 g
ui

de
 st

ud
en

ts
 to

 th
in

k
ab

ou
t h

ow
 th

es
e

pr
og

ra
m

m
in

g
co

nc
ep

ts

re
la

te
 to

 re
al

-li
fe

 si
tu

at
io

ns
Th

e
te

ac
he

r a
ls

o
as

ks
 q

ue
sti

on
s t

o
gu

id
e

stu
de

nt
s t

o
re

la
te

 th
e

“a
lg

or
ith

m
s”

to

 re
al

-li
fe

 si
tu

at
io

ns
. F

or
 e

xa
m

pl
e,

 a
sk

 st
ud

en
ts

 to
 d

es
cr

ib
e

w
ha

t t
he

pr

oc
es

s o
f c

le
an

in
g

at
 h

om
e

is
 li

ke
Ev

al
ua

tio
n

(2
 m

in
)

Te
ac

he
rs

 n
ee

d
to

 o
bs

er
ve

 st
ud

en
ts’

 u
nd

er
st

an
di

ng
 a

nd
 a

pp
lic

at
io

n
of

pr

og
ra

m
m

in
g

co
nc

ep
ts

St
ud

en
ts

 a
ns

w
er

 q
ue

sti
on

s p
os

ed
 b

y
th

e
te

ac
he

r,
an

d
th

e
te

ac
he

r r
ec

or
ds

 a
nd

ev

al
ua

te
s t

he
 st

ud
en

ts’
 re

sp
on

se
s

571Different programming approaches on primary students’…

1 3

intervention to validate the effectiveness of the different programming approaches. Further,
independent sample T-tests were used to explore the variability between the different pro-
gramming approaches and to visualize the variability between the groups’ pre-test, post-
test, and post-pre-test of CT. To explore the most suitable programming approach for the
development of CT skills in first-grade students. Finally, Multifactor Analysis of Variance
(MANOVA) was used to explore the effects of students’ gender, programming experience,
programming interest, and programming confidence on CT skills. The above data analyses
were done in SPSS 25.0. More importantly, a chain mediation effect model of program-
ming experience and programming interest was established in Amos Graphics 26.0 while
exploring the effect of students’ programming confidence on the CT post-pre-test. It pro-
vides evidence to support our study for the mechanisms of influence of these factors.

Results

Comparison of CT skill scores before and after instructional intervention

First, we began by exploring the effectiveness of the various programming approaches in
RQ 1. Table 3 shows the pre-test and post-test scores of CT skills for students in the single
programming approach (plugged-in and unplugged) and the mixed programming approach
(plugged-in-first and unplugged-first), control group. The mean scores of students in the
pre-test were, from highest to lowest, for the plugged-in group (M = 11.08, SD = 3.16), the
plugged-in-first group (M = 10.55, SD = 2.84), the unplugged group (M = 9.83, SD = 3.67),
the control group (M = 9.79, SD = 2.54), and the unplugged-first group (M = 9.55,
SD = 2.37). Figure 5 shows the results of independent sample T-tests between the pre-test
and post-test, and the post-pre-test of CT skills for each group. It can be seen that there was
no significant difference between the pre-test of CT for each group (p > .05). In summary,
it was possible to directly compare the differences between the students’ CT skills of post-
test and post-pre-test.

As shown in Table 3 for each group on the CT post-test, the highest CT scores after the
instructional intervention were found in the unplugged-first group (M = 17.91, SD = 1.80),
followed by the plugged-in-first group (M = 17.23, SD = 2.79). Next was the unplugged
group (M = 13.25, SD = 4.31) and the plugged group (M = 12.36, SD = 3.12). The control
group had the lowest score (M = 10.21, SD = 2.69). To explore the effect of different pro-
gramming approaches, paired-samples T-tests were conducted on the post-test and pre-test

Table 3   Pre-test and post-test scores for each group of computational thinking

MinCT represents the lowest CT score for the group; MaxCT represents the highest CT score for the group

Group Pre-test MinCT MaxCT Post-test MinCT MaxCT

N M SD M SD

Plugged-in 25 11.08 3.16 6 16 12.36 3.12 7 19
Unplugged 24 9.83 3.67 3 17 13.25 4.31 5 20
Plugged-in-first 22 10.55 2.84 5 18 17.23 2.79 11 20
Unplugged-first 22 9.55 2.37 4 13 17.91 1.80 14 20
Control 28 9.79 2.54 4 15 10.21 2.69 6 17

572	 L. Sun, J. Liu

1 3

scores of each group for CT, and the results are shown in Table 4. It was found that the
plugged-in (t = 2.118, p < .05), unplugged (t = 3.975, p < .01), plugged-in-first (t = 9.893,
p < .001), and unplugged-first (t = 13.433, p < .001) programming approaches were able to
significantly improve students’ CT skills, while the control group (t = .0840, p > .05) stu-
dents’ CT skills were not significantly improved. The unplugged-first group improved CT
scores the most (M = 8.36, SD = 2.92), followed by the plugged-in-first programming group
(M = 6.68, SD = 3.17). Following again were the unplugged programming group (M = 3.42,
SD = 4.21) and the plugged-in programming group (M = 1.28, SD = 3.02). Meanwhile, the

Fig. 5   The independent sample T-test for each group pre-test, post-test, and post-pre-test

Table 4   Paired samples T-test
for each group of computational
thinking

* = p < .05, ** = p < .01, *** = p < .001

Group Post-pre-test

N M SD t df p Cohen’s d

Plugged-in 25 1.28 3.02 2.118* 24 .045 .424
Unplugged 24 3.42 4.21 3.975** 23 .001 .811
Plugged-in-first 22 6.68 3.17 9.893*** 21 .000 2.109
Unplugged-first 22 8.36 2.92 13.433*** 21 .000 2.864
Control 28 .43 2.70 .840 27 .408 .159

573Different programming approaches on primary students’…

1 3

unplugged group, plugged-in-first group, and unplugged-first group all had large effect
sizes, and the plugged-in group had medium effect sizes. In summary, both the mixed pro-
gramming approach (Plugged-in-first and unplugged-first) and the single programming
approach (Plugged-in and unplugged) proved to be effective in enhancing students’ CT
skills.

To further investigate which programming approach was more effective in enhancing
students’ CT skills, independent sample T-tests were conducted on the post-pre-test of CT
for each group, and the results are shown in Fig. 5. When comparing the single program-
ming approaches, we found significant differences between the plugged-in and unplugged
groups (p < .05) and students in the unplugged group had higher CT skills (M = 3.42,
SD = 4.21). While comparing the mixed programming approaches, there was no significant
difference between the plugged-in-first and unplugged-first groups (p > .05). Furthermore,
comparing the mixed programming approaches with the single programming approaches,
we found that the mixed programming approaches (plugged-in-first, unplugged-first) were
significantly better than the single programming approaches (plugged-in, unplugged)
(p < .001). In summary, in terms of improving students’ CT skills, the plugged-in-first and
unplugged-first programming approaches were equally effective, but both were superior to
the plugged-in and unplugged programming approaches. That said, plugged-in-first and
unplugged-first programming approaches improve CT better than the always plugged-in or
unplugged approaches.

Exploring multiple influencing factors in programming education

We used MANOVA to explore the effects of students’ gender, programming experience,
programming interest, and programming confidence on students’ CT pre-test and CT
post-pre-test scores in different groups. The independent variables were students’ gen-
der, programming experience, programming interest, and programming confidence, and
the dependent variables were students’ CT pre-test scores and CT post-pre-test scores.
In addition, we tested the CT scores for each classification for all variables, and they all
conformed to a normal distribution, so the MANOVA could be conducted. The results of
MANOVA are shown in Table 5.

As seen in Table 5, there was no four- factor and three- factor interaction (p > .05) in
any of the groups. We only observed significant interaction effects between gender and
programming experience (F = 7.471, p < .05), and gender and programming confidence
(F = 8.090, p < .05) on the CT pre-test in the plugged-in-first group. Therefore, we ana-
lyzed simple effects on gender, programming experience, and programming confidence in
the plugged-in-first group. Therefore, the results of the simple effect analyses for gender,
programming experience, and programming confidence in the plugged-in-first group are
recorded in Table 5. Subsequently, we analyzed the impact of these factors in different pro-
gramming approaches.

Gender

There was no significant difference for the gender factor in the CT pre-test in the control
(F = .041, p > .05), plugged-in (F = .996, p > .05), unplugged (F = 1.078, p > .05), plugged-
in-first (F = 3.141, p > .05), and unplugged-first (F = 0.160, p > .05) groups. Likewise, there
was no significant difference in the gender factor on the post-pre-test of CT between the

574	 L. Sun, J. Liu

1 3

Ta
bl

e 
5  

 R
es

ul
ts

 o
f M

A
N

O
VA

*
=

 p
 <

 .0
5,

 *
*

=
 p

 <
 .0

1.
 A

 re
pr

es
en

ts
 th

e
ge

nd
er

 fa
ct

or
, B

 re
pr

es
en

ts
 th

e
pr

og
ra

m
m

in
g

ex
pe

rie
nc

e
fa

ct
or

, C
 re

pr
es

en
ts

 th
e

pr
og

ra
m

m
in

g
in

te
re

st
fa

ct
or

, a
nd

 D
 re

pr
es

en
ts

 th
e

pr
og

ra
m

m
in

g
co

nfi
de

nc
e

fa
ct

or

Fa
ct

or
s

Pl
ug

ge
d-

in
U

np
lu

gg
ed

Pl
ug

ge
d-

in
-fi

rs
t

U
np

lu
gg

ed
-fi

rs
t

C
on

tro
l

Pr
e-

te
st

F
Po

st-
pr

e-
te

st
F

Pr
e-

te
st

F
Po

st-
pr

e-
te

st
F

Pr
e-

te
st

F
Po

st-
pr

e-
te

st
F

Pr
e-

te
st

F
Po

st-
pr

e-
te

st
F

Pr
e-

te
st

F
Po

st-
pr

e-
te

st
F

(A
) G

en
de

r
.9

96
.0

24
1.

07
8

0.
03

0
3.

14
1

1.
50

6
0.

16
0

3.
36

3
0.

04
1

0.
12

8
(B

) P
ro

gr
am

m
in

g
Ex

pe
rie

nc
e

.5
07

6.
41

4*
4.

27
4*

1.
27

6
0.

04
4

6.
87

2*
5.

25
3*

1.
65

4
2.

26
9

1.
40

9
(C

) P
ro

gr
am

m
in

g
In

te
re

st
.5

23
1.

51
3

0.
24

0
10

.0
27

**
0.

00
1

0.
09

4
2.

41
5

8.
91

7*
0.

91
6

0.
02

4
(D

) P
ro

gr
am

m
in

g
C

on
fid

en
ce

.4
70

.1
11

3.
49

9
16

.4
63

**
1.

09
7

7.
17

3*
.1

05
6.

05
9*

.7
96

.7
24

A
 ×

 B
.9

14
.7

07
.7

26
.4

48
7.

47
1*

1.
50

6
1.

49
2

.8
68

.1
68

.0
11

A
 ×

 C
.6

72
1.

40
9

.0
81

.7
73

.6
56

.0
69

1.
89

5
2.

63
7

.0
84

.2
80

A
 ×

 D
.4

38
1.

41
1

.5
46

1.
90

8
8.

09
0*

.3
09

1.
32

4
.7

96
.0

09
.5

62
B

 ×
 C

.0
39

.4
80

.0
18

.1
28

3.
42

8
.6

21
.4

07
1.

76
9

.0
46

.0
03

B
 ×

 D
.1

02
.8

07
.0

62
1.

20
9

3.
71

2
.4

61
.0

10
.0

24
2.

24
8

1.
37

7
C

 ×
 D

.3
27

.7
63

.5
46

1.
09

5
.0

16
.4

05
.2

41
.0

00
.4

31
.0

05

575Different programming approaches on primary students’…

1 3

control group and the four experimental groups (p > .05). This suggested that the effective-
ness of different programming education approaches is not affected by gender.

Programming experience

In both the CT pre-test and CT post-pre-test in the control group, no significant difference
in programming experience were observed. In the CT pre-test, we found significant differ-
ences in programming experience in the unplugged (F = 4.274, p < .05) and unplugged-first
groups (F = 5.253, p < .05), and no significant differences in the plugged-in group (F = .507,
p > .05) and plugged-in-first group (F = .044, p > .05). However, in the CT post-pre-test,
we found that programming experience showed significant differences in the plugged-in
group (F = 6.414, p < .05) and the plugged-in-first group (F = 6.872, p < .05), and no signifi-
cant difference in the unplugged group (F = 1.276, p > .05) and the unplugged-first group
(F = 1.654, p > .05). In conclusion, programming experience had different effects during
the intervention of different programming approaches.

Programming interest

 In the CT pre-test, there was no significant difference in programming interest in any of
the five groups (p > .05). In the CT post-pre-test, we only observed significant differences
in the unplugged group (F = 10.027, p < .01) and unplugged-first group (F = 8.917, p < .05),
which were not found in the control group (F = .024, p > .05), plugged-in group (F = 1.153,
p > .05), and plugged-in-first group (F = .04, p > .05). This showed that programming inter-
est can significantly affect students in the unplugged group and the unplugged-first group,
and we found that students who were interested improved their CT skills more.

Programming confidence

In the CT pre-test, programming confidence showed no significant difference in any of
the 5 groups (p > .05). In the CT post-pre-test, we observed significant differences in pro-
gramming confidence in the unplugged group (F = 16.463, p < .01), plugged-in-first group
(F = 7.173, p < .05), and unplugged-first group (F = 6.059, p < .05). However, there was also
no significant difference in the control group (F = .724, p > .05) and the plugged-in group
(F = 0.11, p > .05). Furthermore, students with programming confidence showed more
improvement in CT skills.

Chain mediation effect model of programming experience, programming interest,
programming confidence, and computational thinking

First, the correlations of programming experience, programming interest, programming
confidence, and post-pre-test of CT were analyzed for the four experimental groups of stu-
dents. We used the point biserial correlation coefficient to calculate correlations between
the continuous variable CT post-pre-test scores and the categorical variables programming
experience, programming interest, and programming confidence. In addition, we used the
coefficient of contingency to calculate the correlation between categorical variables. The
results are shown in Table 6. It was found that there were significant correlations (p < .05)
among all of these factors, which provided the basis for later structural equations to explore
the relationships among the influencing factors.

576	 L. Sun, J. Liu

1 3

Then, we developed a multiple chain mediation effect model. This included the direct
effect paths between programming confidence, programming interest, programming expe-
rience, and performance on the post-pre-test of CT. The direct path between programming
experience and programming interest. As well as, the indirect path of influence between
programming experience and programming interest. In this process, we excluded stu-
dents’ gender from the model because no significant difference due to gender was found
in the one-way ANOVA in Table 5. The results of the chain mediation effect are shown
in Table 7; Fig. 6. Since there was significant direct effect between programming confi-
dence and the post-pre-test of CT (p < .01), and programming interest was able to play sig-
nificant mediation effect (p < .05). Meanwhile, programming experience and programming
interest also had a chain mediation effect (p < .05) so that programming experience can

Table 6   Correlations Analysis of Programming Experience, Programming Interest, Programming Confi-
dence and Computational Thinking

* = p < .05, ** = p < .01, *** = p < .001

Variables Computational
thinking

Programming
experience

Programming
interest

Program-
ming confi-
dence

Computational Thinking –
Programming Experience .363** –
Programming Interest .377*** .303** –
Programming Confidence .578*** .235* .292** –

Table 7   Results of Multiple Chain Mediation Effect (N = 93)

* = p < .05, ** = p < .01, *** = p < .001, PC Programming Confidence, PE Programming Experience,
PI Programming Interest, CT Computational Thinking of Post-pre-test. The lower and upper limits of the
95% confidence interval (bootstrap = 5000). If the 95% confidence interval does not contain 0, the path is
established

Effect paths Direct effect Indirect effect P Lower bounds Upper bounds Mediation effect

P1: PC-PE-CT − .260 .068 − .909 .025 Partial mediation
P2: PC-PI-CT − .408* .023 − .039 − 1.203
P3: PC-PE-PI-CT − .105* .019 − .099 − .455
P4: PC-CT − 4.250** .001 − 5.728 − 2.687

Fig. 6   Multiple chain mediation effect model (N = 93)

577Different programming approaches on primary students’…

1 3

play significant mediation effects as well. Therefore, programming confidence was able to
influence CT through programming experience and programming interest, in addition to
directly influencing CT. Thus, there is a partial mediation effect between students’ pro-
gramming experience, programming interest, programming confidence, and CT. In other
words, programming experience and programming interest were able to moderate the rela-
tionship between programming confidence and CT to a certain extent.

Discussion

The purpose of this study was to determine the effectiveness of different programming
approaches on students’ CT skill development. To investigate whether the effects of differ-
ent programming approaches on students’ CT are related to gender, programming experi-
ence, programming interest, and programming confidence factors, in addition to clarify-
ing what the mechanisms of effect between those factors are. Therefore, we conducted a
10-week quasi-experimental study among 121 first-year students. We explored the effects
of plugged-in, unplugged, plugged-in-first, unplugged-first, and regular IT courses on stu-
dents’ CT skills. We also collected demographic information about the students and their
CT scores before and after the intervention.

In RQ1, quantitative results showed that CT skills improved significantly in all four
experimental groups after the intervention. This proved the effectiveness of plugged-in,
unplugged, plugged-in-first, and unplugged-first programming in improving the CT skills
of first-grade students. This is consistent with the findings of several current studies, where
many researchers have similarly found that plugged-in and unplugged programming are
well suited to developing CT skills in students at the primary education level, and can even
enhance students’ ability to solve programming problems (Kale & Yuan, 2020; Kalelioğlu,
2015). We have also demonstrated the effectiveness of Code.org’s instructional materials in
enhancing students’ CT skills. However, no significant difference in CT skills was shown in
the control group which surprised us. In fact, the Ministry of Education has already put in
place policies to develop students’ CT skills (Ministry of Education, 2018). This situation
may be attributed to the lack of systematic programming curriculum design, which makes
it difficult to achieve the objective of developing students’ CT skills. Sun et al. (2022a)
also proposed that policy level and programming curriculum implementation level can only
be improved together to provide opportunities for students to fully develop their CT skills.
More interestingly, we found that the mixed plugged-in and unplugged programming meth-
ods work equally well, but better than the always plugged-in or unplugged programming
methods. This is consistent with the findings of del Olmo-Muñoz et al. (2020) who also
found that the mixed programming approach gave better results than the always plugged-
in programming approach. This may be related to the style of programming activities,
where repeating the same style of plugged-in or unplugged programming activities may
lead to a loss of interest among students (Jiang & Wong, 2021). The mixed programming
approach consistently engages students’ attention and promotes their active engagement in
programming activities. In summary, the mixed programming approach of plugged-in and
unplugged is also an effective way to improve CT skills for primary students.

We also found that the gender of students does not affect their CT skills. In other words,
there was no significant difference between boys’ and girls’ CT skills after the experimen-
tal group’s activity intervention. However, some researchers have found that boys’ CT
skills are significantly higher than girls’ after the same programming intervention (Gao

578	 L. Sun, J. Liu

1 3

et al., 2022), and that it even takes girls more time to achieve the same level of CT as
boys (Atmatzidou & Demetriadis, 2016). Similarly, according to Gur et al. (2012), boys
and girls have different rates of neurological brain function development, which can lead
to differences in how boys and girls deal with reasoning problems and spatial problems.
This gender difference usually becomes apparent with age. However, the younger age
of the first graders in this study and the fact that their cognitive skills were not yet fully
developed may be the reason why significant differences were not observed. As a matter of
fact, breaking gender stereotypes in programming education is what we have been waiting
for. In summary, these programming approaches can be considered as one of the ways to
achieve equitable CT instruction.

In addition, it was found that the plugged-in and plugged-in-first approaches amplified
the impact of students’ programming experience on CT skills, where students with pro-
gramming experience improved their CT skills more. Indeed, as Sun et al. (2021a) argued,
there is a positive relationship between CT performance and programming experience,
where students with programming experience are more likely to understand the abstract
concepts involved in programming activities. Also, students with programming experience
perform better on various cognitive tests (Liao & Bright, 1991). In contrast, the unplugged
and unplugged-first approaches drove students with different programming experience to
achieve the same CT improvement, weakening the effect of programming experience on
CT skills. This could be caused by the implementation of different types of programming
activities in the first stage of instruction. The implementation of unplugged activities first
can provide the programming conceptual foundation required for the development of sub-
sequent plugged activities, which facilitates the mastery of complex CT concepts (Saxena
et al., 2019). Meanwhile, unplugged programming activities can reduce the cognitive load
of students using digital products and help to smooth the transition of children to complex
digital programming environments (Sigayret et al., 2022; Tsarava et al., 2017). In other
words, implementing unplugged programming activities first allows students to adapt to
programming most familiarly, and can diminish the impact of prior experience as well as
the psychological aspects.

Moreover, we found that programming interest and programming confidence signifi-
cantly affect CT skills. Specifically, students who were interested and confident in pro-
gramming had higher CT skills. This confirms the statement shown by Sun et al. (2022b)
that besides cognitive factors such as programming experience, psychological dispositional
factors such as interest and confidence also significantly affect students’ CT skills. This was
probably attributed to the fact that, in the face of negative attitudes or negativity carried
by programming learning difficulties, students with interest and confidence in program-
ming would actively adjust and work towards achieving the set learning goals (Gunbatar
& Karalar, 2018). Kong (2016) even designed an interest-driven programming curriculum
framework to better develop students’ CT skills. This showed that interest and confidence
are important factors that should be considered in CT education and programming edu-
cation. However, this phenomenon was not observed in the plugged-in group. Plugged-in
programming has a certain threshold of computer operation and requires sitting in front of
the computer for periods, which is not conducive to a child’s instincts for a first-grade stu-
dent (Bray, 2018). This may diminish the positive impact of student programming interest
and programming confidence on CT.

In addition, we found a chain mediation effect of programming experience and pro-
gramming interest between programming confidence and CT skills. Indeed, programming
confidence is generally recognized as being closely related to academic achievement or
specific skills (Tsai et al., 2018). In this study, programming confidence demonstrated a

579Different programming approaches on primary students’…

1 3

strong relationship with CT skills, which can serve as an important factor in influencing
CT directly, or indirectly through programming experience and programming interest. Pia-
get and Cook (1952) also argued that children’s exploration of things or mastery of learn-
ing outcomes requires the stimulation of confidence-generating internal motivation. This
is also consistent with some of the current results that programming confidence acts as a
powerful internal driver of students’ programming interest (Kong et al., 2018). In addi-
tion, when students have programming-related experience it increases their willingness and
interest in learning programming, which is supported by the study of Usher and Pajares
(2008). Mason and Rich’s (2020) Attitude Scale for Elementary School Students, devel-
oped based on Expectancy Theory, similarly showed that programming experience affects
programming interest. This showed that increased attention should be paid to the psycho-
logical aspects of students’ confidence and interest in the programming learning process.

Implications for policy and practice

Generally, CT skill development relies on single plugged-in or unplugged program-
ming. This study demonstrated the effectiveness of the mixed approach of plugged-in and
unplugged programming to help better develop CT skills in primary students. Meanwhile,
we clarified that programming experience, programming interest, and programming con-
fidence are all important factors affecting students’ CT skills. We explored the influence
of these factors on CT and the chain mediation mechanism. These findings can provide
references for programming education researchers and front-line IT teachers in primary
schools. Firstly, we found that the mixed programming approaches (plugged-in-first,
unplugged-first) are more effective than the single programming approaches (plugged-in,
unplugged) in developing CT skills in primary school students, enriching the research find-
ings in the fields of programming education and CT education. Secondly, it is more effec-
tive to use the mixed programming approach to develop students’ CT skills in the primary
school IT curriculum than in the regular IT curriculum. Therefore, education authorities
can appropriately integrate plugged-in and unplugged activities into primary school IT cur-
ricula. Thirdly, given that most primary school students have no programming experience
and are unfamiliar with computer operations, teachers need to pay attention to the sequence
in which programming activities are implemented. We advocate implementing unplugged
activities first to help students understand programming concepts more intimately at the
beginning. This reduces the cognitive load and unfamiliarity with the complex digital pro-
gramming environment when students are subsequently exposed to plugged-in program-
ming activities. Finally, the important role of students’ programming interest and program-
ming confidence was clarified when it comes to CT skill development. Therefore, teachers
should use sensible ways to maintain students’ interest and confidence in programming and
promote the strong development of CT skills.

Limitations and future research

This study also has some limitations. First, this study was conducted in the Chinese edu-
cational context with first-grade primary school students. Due to the different educational
environments in different countries and the variation among individual students, careful
thought is needed if the study findings are generalized. Second, this study only collected
data on students’ CT skills before and after the experimental intervention, and only stud-
ied the short-term effects of the programming activities. In the next step of the study, it

580	 L. Sun, J. Liu

1 3

is appropriate to consider whether there is a sustained impact and to track the changes in
students’ CT skills sometime after the programming activity. Further, only binary variable
type data were collected when exploring the effects of students’ interest and confidence on
CT skills. Future research should use more accurate assessment scales to measure these
characteristics of students while considering the possible effects of programming learning
activities on these factors. Finally, this study focused only on students’ development of CT
skills during programming activities, but not on specific programming concepts. Future
research could use instruments to measure students’ mastery of specific programming con-
cepts and CT subskills.

Conclusion

Considering that CT skills have become an essential core skill for every student in K-12
education, teachers and educators are constantly exploring ways to introduce CT into class-
room education. Therefore, this study conducted a quasi-experimental study to investi-
gate the effects of the single programming approach (plugged-in and unplugged) and the
mixed programming approach (plugged-in-first and unplugged-first) on the CT skills of
first-grade students. Also, students’ factors (including gender, programming experience,
programming interest, and programming confidence) were considered in addition to the
effects of the programming learning approach itself. Our study revealed the effectiveness
of mixed plugged-in and unplugged programming approaches on CT skill enhancement for
first-year students. We also found that implementing unplugged programming in the first
phase would provide students with the same opportunities for CT development, attenuating
the impact of the programming experience. Moreover, programming interest and program-
ming confidence will play an important role in the CT learning process. In addition, when
exploring the relationship and mediation mechanisms between CT and the main factors
influencing CT, it was found that programming experience and programming interest had a
significant chain mediation between programming confidence and CT. This study enriches
the research findings in the field of programming education and CT in primary schools. It
also provides evidence for teachers and educators to teach programming.

Declarations 

Conflict of interest  The authors declare no conflicts of interest.

References

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through edu-
cational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems,
75, 661–670. https://​doi.​org/​10.​1016/j.​robot.​2015.​10.​008.

Bandura, A., & Wessels, S. (1994). Self-efficacy (Vol. 4). na.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is

the role of the computer science education community? Acm Inroads, 2(1), 48–54.
Bell, T., & Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It Work? In Progress in Pat-

tern Recognition, Image Analysis, Computer Vision, and Applications (pp. 497–521). https://​doi.​org/​
10.​1007/​978-3-​319-​98355-4_​29.

https://doi.org/10.1016/j.robot.2015.10.008
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/978-3-319-98355-4_29

581Different programming approaches on primary students’…

1 3

Beyer, S. (2014). Why are women underrepresented in Computer Science? Gender differences in stereo-
types, self-efficacy, values, and interests and predictors of future CS course-taking and grades. Com-
puter Science Education, 24(2–3), 153–192. https://​doi.​org/​10.​1080/​08993​408.​2014.​963363.

Bocconi, S., Chioccariello, A., Kampylis, P., Dagienė, V., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M.
A., Jasutė, E., & Malagoli, C. (2022). Reviewing computational thinking in Compulsory Education.
Joint Research Centre. https://​digit​al-​skills-​jobs.​europa.​eu/​en/​inspi​ration/​resea​rch/​revie​wing-​compu​
tatio​nal-​think​ing-​compu​lsory-​educa​tion-​jrc-​2022-1 (Seville site).

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D. (2017).
Development of computational thinking skills through unplugged activities in primary school. Pro-
ceedings of the 12th workshop on primary and secondary computing education (pp.65–72).

Bray, M. (2018). Plugged in: The dangers of modern technology. https://​go.​gale.​com/.
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of com-

putational thinking. Proceedings of the 2012 annual meeting of the American educational research
association (pp. 1–25), Vancouver, Canada.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006).
The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs Co: BSCS, 5, 88–98.

Chiu, M. M., & Klassen, R. M. (2010). Relations of mathematics self-concept and its calibration with
mathematics achievement: Cultural differences among fifteen-year-olds in 34 countries. Learning and
Instruction, 20(1), 2–17. https://​doi.​org/​10.​1016/j.​learn​instr​uc.​2008.​11.​002.

Clements, D. H., Sarama, J., Wolfe, C. B., & Spitler, M. E. (2015). Sustainability of a Scale-Up intervention
in early mathematics: A longitudinal evaluation of implementation fidelity [Article]. Early Education
and Development, 26(3), 427–449. https://​doi.​org/​10.​1080/​10409​289.​2015.​968242.

Code.org (2013). Anybody can learn. https://​houro​fcode.​com/​us/​zh.
Computer Science Teachers Association (CSTA), & International Society for Technology in Education

(ISTE) (2011). Operational Defnition of Computational Thinking for K-12 Education. http://​www.​iste.​
org/​docs/​pdfs/​Opera​tional-​Defni​tion-​of-​Compu​tatio​nal-​Think​ing.​pdf.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin,
52(4), 281.

Deci, E. L., Olafsen, A. H., & Ryan, R. M. (2017). Self-determination theory in work organizations: The
state of a science. Annual Review of Organizational Psychology and Organizational Behavior, 4,
19–43. https://​doi.​org/​10.​1146/​annur​ev-​orgps​ych-​032516-​113108.

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking through
unplugged activities in early years of Primary Education. Computers & Education. https://​doi.​org/​10.​
1016/j.​compe​du.​2020.​103832

Dewey, J. (1913). Interest and effort in education. London: Forgotten Books.
European Commission (2020). Digital Education Action Plan 2021–2027. https://​educa​tion.​ec.​europa.​eu/​

focus-​topics/​digit​al-​educa​tion/​about-​digit​al-​educa​tion.
Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten children in

a computer programming environment: A case study. Computers & Education, 63, 87–97. https://​doi.​
org/​10.​1016/j.​compe​du.​2012.​11.​016.

Gao, X., & Hew, K. F. (2021). Toward a 5E-Based flipped Classroom Model for Teaching Computational
thinking in Elementary School: Effects on Student Computational thinking and problem-solving per-
formance. Journal of Educational Computing Research, 60(2), 512–543. https://​doi.​org/​10.​1177/​
07356​33121​10377​57.

Gao, H., Hasenbein, L., Bozkir, E., Göllner, R., & Kasneci, E. (2022). Exploring gender differences in
computational thinking learning in a VR Classroom: Developing machine learning models using Eye-
Tracking Data and explaining the models. International Journal of Artificial Intelligence in Education.
https://​doi.​org/​10.​1007/​s40593-​022-​00316-z.

Gunbatar, M. S., & Karalar, H. (2018). Gender differences in middle school students’ attitudes and self-
efficacy perceptions towards mBlock programming. European Journal of Educational Research, 7(4),
925–933. https://​doi.​org/​10.​12973/​EU-​JER.7.​4.​925.

Gur, R. C., Richard, J., Calkins, M. E., Chiavacci, R., Hansen, J. A., Bilker, W. B., Loughead, J., Connolly,
J. J., Qiu, H., Mentch, F. D., Abou-Sleiman, P. M., Hakonarson, H., & Gur, R. E. (2012). Age group
and sex differences in performance on a computerized neurocognitive Battery in children age 8–21.
Neuropsychology, 26(2), 251–265. https://​doi.​org/​10.​1037/​a0026​712.

Helmlinger, B., Sommer, M., Feldhammer-Kahr, M., Wood, G., Arendasy, M. E., & Kober, S. E. (2020).
Programming experience associated with neural efficiency during figural reasoning. Scientific Reports,
10(1), 13351. https://​doi.​org/​10.​1038/​s41598-​020-​70360-z.

Hermans, F., & Aivaloglou, E. (2017). To Scratch or not to Scratch? Proceedings of the 12th Workshop on
Primary and Secondary Computing Education (pp. 49–56).

https://doi.org/10.1080/08993408.2014.963363
https://digital-skills-jobs.europa.eu/en/inspiration/research/reviewing-computational-thinking-compulsory-education-jrc-2022-1
https://digital-skills-jobs.europa.eu/en/inspiration/research/reviewing-computational-thinking-compulsory-education-jrc-2022-1
https://go.gale.com/
https://doi.org/10.1016/j.learninstruc.2008.11.002
https://doi.org/10.1080/10409289.2015.968242
https://hourofcode.com/us/zh
http://www.iste.org/docs/pdfs/Operational-Defnition-of-Computational-Thinking.pdf
http://www.iste.org/docs/pdfs/Operational-Defnition-of-Computational-Thinking.pdf
https://doi.org/10.1146/annurev-orgpsych-032516-113108
https://doi.org/10.1016/j.compedu.2020.103832
https://doi.org/10.1016/j.compedu.2020.103832
https://education.ec.europa.eu/focus-topics/digital-education/about-digital-education
https://education.ec.europa.eu/focus-topics/digital-education/about-digital-education
https://doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.1016/j.compedu.2012.11.016
https://doi.org/10.1177/07356331211037757
https://doi.org/10.1177/07356331211037757
https://doi.org/10.1007/s40593-022-00316-z
https://doi.org/10.12973/EU-JER.7.4.925
https://doi.org/10.1037/a0026712
https://doi.org/10.1038/s41598-020-70360-z

582	 L. Sun, J. Liu

1 3

Hidi, S. (2006). Interest: A unique motivational variable. Educational Research Review, 1(2), 69–82.
Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking:

Suggestions based on a review of the literature. Computers & Education, 126, 296–310. https://​doi.​
org/​10.​1016/j.​compe​du.​2018.​07.​004.

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in
school-wide computational thinking: A cross-case qualitative analysis. Computers & Education,
82, 263–279. https://​doi.​org/​10.​1016/j.​compe​du.​2014.​11.​022.

Izu, C., Mirolo, C., Settle, A., Mannila, L., & Stupuriene, G. (2017). Exploring Bebras tasks Content
and performance: A multinational study. Informatics in Education, 16(1), 39–59. https://​doi.​org/​10.​
15388/​infedu.​2017.​03.

Jiang, S., & Wong, G. K. W. (2021). Exploring age and gender differences of computational thinkers
in primary school: A developmental perspective. Journal of Computer Assisted Learning, 38(1),
60–75. https://​doi.​org/​10.​1111/​jcal.​12591.

Jong, M. S. Y., Geng, J., Chai, C. S., & Lin, P. Y. (2020). Development and predictive validity of the
computational thinking disposition questionnaire. Sustainability. https://​doi.​org/​10.​3390/​su121​
14459

Kale, U., & Yuan, J. (2020). Still a new kid on the Block? Computational thinking as Problem solving
in Code.org. Journal of Educational Computing Research, 59(4), 620–644. https://​doi.​org/​10.​1177/​
07356​33120​972050.

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a
systematic research review.

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Comput-
ers in Human Behavior, 52, 200–210. https://​doi.​org/​10.​1016/j.​chb.​2015.​05.​047.

Kim, B., Kim, T., & Kim, J. (2014). Paper-and-Pencil Programming Strategy toward Computational
thinking for non-majors: Design your solution. Journal of Educational Computing Research, 49(4),
437–459. https://​doi.​org/​10.​2190/​EC.​49.4.b.

Kolb, D. A., Boyatzis, R. E., & Mainemelis, C. (2014). Experiential learning theory: Previous research
and new directions. Perspectives on thinking, learning, and cognitive styles (pp. 227–248). Eng-
land: Routledge.

Kong, S. C. (2016). A framework of curriculum design for computational thinking development in
K-12 education. Journal of Computers in Education, 3(4), 377–394. https://​doi.​org/​10.​1007/​
s40692-​016-​0076-z.

Kong, S. C., & Wang, Y. Q. (2020). Formation of computational identity through computational think-
ing perspectives development in programming learning: A mediation analysis among primary
school students. Computers in Human Behavior. https://​doi.​org/​10.​1016/j.​chb.​2019.​106230

Kong, S. C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’ interest, collaboration
attitude, and programming empowerment in computational thinking education. Computers & Edu-
cation, 127, 178–189. https://​doi.​org/​10.​1016/j.​compe​du.​2018.​08.​026.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational
thinking scales (CTS). Computers in Human Behavior, 72, 558–569. https://​doi.​org/​10.​1016/j.​chb.​
2017.​01.​005.

Li, F., Wang, X., He, X., Cheng, L., & Wang, Y. (2022). The effectiveness of unplugged activities and
programming exercises in computational thinking education: A Meta-analysis. Education and
Information Technologies, 27(6), 7993–8013. https://​doi.​org/​10.​1007/​s10639-​022-​10915-x.

Liao, Y. K. C., & Bright, G. W. (1991). Effects of computer programming on cognitive outcomes: A
meta-analysis. Journal of Educational Computing Research, 7(3), 251–268.

Liu, Y. C., Huang, T. H., & Sung, C. L. (2021). The determinants of impact of personal traits on compu-
tational thinking with programming instruction. Interactive Learning Environments. https://​doi.​org/​
10.​1080/​10494​820.​2021.​19836​10

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

Mason, S. L., & Rich, P. J. (2020). Development and analysis of the elementary student coding attitudes
survey. Computers & Education. https://​doi.​org/​10.​1016/j.​compe​du.​2020.​103898

Ministry of Education (2022). Compulsory Information Technology Curriculum Standards http://​www.​
gov.​cn/​zheng​ce/​zheng​ceku/​2022-​04/​21/​conte​nt_​56865​35.​htm.

Ministry of Education (2018). Education Informatization 2.0 Action Plan. http://​www.​moe.​gov.​cn/​srcsi​
te/​A16/​s3342/​201804/​t2018​0425_​334188.​html.

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of scratch
projects to assess and foster computational thinking. RED Revista de Educación a Distancia, 46,
1–23.

https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.compedu.2014.11.022
https://doi.org/10.15388/infedu.2017.03
https://doi.org/10.15388/infedu.2017.03
https://doi.org/10.1111/jcal.12591
https://doi.org/10.3390/su12114459
https://doi.org/10.3390/su12114459
https://doi.org/10.1177/0735633120972050
https://doi.org/10.1177/0735633120972050
https://doi.org/10.1016/j.chb.2015.05.047
https://doi.org/10.2190/EC.49.4.b
https://doi.org/10.1007/s40692-016-0076-z
https://doi.org/10.1007/s40692-016-0076-z
https://doi.org/10.1016/j.chb.2019.106230
https://doi.org/10.1016/j.compedu.2018.08.026
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1007/s10639-022-10915-x
https://doi.org/10.1080/10494820.2021.1983610
https://doi.org/10.1080/10494820.2021.1983610
https://doi.org/10.1016/j.compedu.2020.103898
http://www.gov.cn/zhengce/zhengceku/2022-04/21/content_5686535.htm
http://www.gov.cn/zhengce/zhengceku/2022-04/21/content_5686535.htm
http://www.moe.gov.cn/srcsite/A16/s3342/201804/t20180425_334188.html
http://www.moe.gov.cn/srcsite/A16/s3342/201804/t20180425_334188.html

583Different programming approaches on primary students’…

1 3

Mouza, C., Pan, Y. C., Yang, H., & Pollock, L. (2020). A multiyear investigation of Student Computational
thinking concepts, practices, and perspectives in an after-School Computing Program. Journal of Edu-
cational Computing Research, 58(5), 1029–1056. https://​doi.​org/​10.​1177/​07356​33120​905605.

Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015). Learning basic programming
concepts by creating games with scratch programming environment. Procedia-Social and Behavioral
Sciences, 191, 1479–1482. https://​doi.​org/​10.​1016/j.​sbspro.​2015.​04.​224.

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic books.
Passey, D. (2017). Computer science (CS) in the compulsory education curriculum: Implications for

future research. Education and Information Technologies, 22, 421–443. https://​doi.​org/​10.​1007/​
s10639-​016-​9475-z.

Piaget, J., & Cook, M. (1952). The origins of intelligence in children (Vol. 8). United States: International
Universities Press.

Polat, E., & Yilmaz, R. M. (2022). Unplugged versus plugged-in: Examining basic programming achieve-
ment and computational thinking of 6th-grade students. Education and Information Technologies,
27(7), 9145–9179. https://​doi.​org/​10.​1007/​s10639-​022-​10992-y.

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages inte-
grated across the curriculum in elementary school: A two year case study using scratch in five schools.
Computers & Education, 97, 129–141. https://​doi.​org/​10.​1016/j.​compe​du.​2016.​03.​003.

Saxena, A., Lo, C. K., Hew, K. F., & Wong, G. K. W. (2019). Designing Unplugged and plugged activities
to cultivate computational thinking: An exploratory study in early Childhood Education. The Asia-
Pacific Education Researcher, 29(1), 55–66. https://​doi.​org/​10.​1007/​s40299-​019-​00478-w.

Schiefele, U. (2008). Lernmotivation und Interesse. Handbuch Der pädagogischen Psychologie, 10, 38–49.
Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition.
Shang, X., Jiang, Z., Chiang, F. K., Zhang, Y., & Zhu, D. (2023). Effects of robotics STEM camps on rural

elementary students’ self-efficacy and computational thinking. Educational Technology Research and
Development. https://​doi.​org/​10.​1007/​s11423-​023-​10191-7.

Sigayret, K., Tricot, A., & Blanc, N. (2022). Unplugged or plugged-in programming learning: A compara-
tive experimental study. Computers & Education, 184, 104505.

Sun, L., Hu, L., & Zhou, D. (2021aa). Improving 7th-graders’ computational thinking skills through
unplugged programming activities: A study on the influence of multiple factors. Thinking Skills and
Creativity. https://​doi.​org/​10.​1016/j.​tsc.​2021.​100926

Sun, L., Hu, L., & Zhou, D. (2021b). Single or combined? A study on programming to promote Junior High
School Students’ computational thinking skills. Journal of Educational Computing Research, 60(2),
283–321. https://​doi.​org/​10.​1177/​07356​33121​10351​82.

Sun, L., Hu, L., & Zhou, D. (2022aa). The bidirectional predictions between primary school students’
STEM and language academic achievements and computational thinking: The moderating role of gen-
der. Thinking Skills and Creativity. https://​doi.​org/​10.​1016/j.​tsc.​2022.​101043

Sun, L., Hu, L., & Zhou, D. (2022b). Programming attitudes predict computational thinking: Analysis of
differences in gender and programming experience. Computers & Education. https://​doi.​org/​10.​1016/j.​
compe​du.​2022.​104457

Tsai, C. Y. (2019). Improving students’ understanding of basic programming concepts through visual pro-
gramming language: The role of self-efficacy [Article]. Computers in Human Behavior, 95, 224–232.
https://​doi.​org/​10.​1016/j.​chb.​2018.​11.​038.

Tsai, M. J., Wang, C. Y., & Hsu, P. F. (2018). Developing the Computer Programming Self-Efficacy Scale
for Computer Literacy Education. Journal of Educational Computing Research, 56(8), 1345–1360.
https://​doi.​org/​10.​1177/​07356​33117​746747.

Tsai, M. J., Liang, J. C., & Hsu, C. Y. (2020). The computational thinking scale for Computer Literacy Edu-
cation. Journal of Educational Computing Research, 59(4), 579–602. https://​doi.​org/​10.​1177/​07356​
33120​972356.

Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus, M. (2017). Training computa-
tional thinking: Game-based unplugged and plugged-in activities in primary school. European confer-
ence on games based learning (pp. 687–695).

Usher, E. L., & Pajares, F. (2008). Sources of self-efficacy in school: Critical review of the literature and
future directions. Review of Educational Research, 78(4), 751–796. https://​doi.​org/​10.​3102/​00346​
54308​321456.

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2017). Computer
science in K-12 school curricula of the 2lst century: Why, what and when? Education and Information
Technologies, 22, 445–468. https://​doi.​org/​10.​1007/​s10639-​016-​9493-x.

Weber, K., Martin, M. M., & Cayanus, J. L. (2005). Student interest: A two-study re-examination of the
concept. Communication Quarterly, 53(1), 71–86. https://​doi.​org/​10.​1080/​01463​37050​00559​96.

https://doi.org/10.1177/0735633120905605
https://doi.org/10.1016/j.sbspro.2015.04.224
https://doi.org/10.1007/s10639-016-9475-z
https://doi.org/10.1007/s10639-016-9475-z
https://doi.org/10.1007/s10639-022-10992-y
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1007/s40299-019-00478-w
https://doi.org/10.1007/s11423-023-10191-7
https://doi.org/10.1016/j.tsc.2021.100926
https://doi.org/10.1177/07356331211035182
https://doi.org/10.1016/j.tsc.2022.101043
https://doi.org/10.1016/j.compedu.2022.104457
https://doi.org/10.1016/j.compedu.2022.104457
https://doi.org/10.1016/j.chb.2018.11.038
https://doi.org/10.1177/0735633117746747
https://doi.org/10.1177/0735633120972356
https://doi.org/10.1177/0735633120972356
https://doi.org/10.3102/0034654308321456
https://doi.org/10.3102/0034654308321456
https://doi.org/10.1007/s10639-016-9493-x
https://doi.org/10.1080/01463370500055996

584	 L. Sun, J. Liu

1 3

Wing, J. M. (2006). Computational thinking. Communications of the Acm, 49(3), 33–35.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of

the Royal Society A: Mathematical Physical and Engineering Sciences, 366(1881), 3717–3725. https://​
doi.​org/​10.​1098/​rsta.​2008.​0118.

Wong, G. K. W., & Cheung, H. Y. (2020). Exploring children’s perceptions of developing twenty-first cen-
tury skills through computational thinking and programming. Interactive Learning Environments,
28(4), 438–450. https://​doi.​org/​10.​1080/​10494​820.​2018.​15342​45.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elemen-
tary and secondary teacher education. ACM Transactions on Computing Education (TOCE), 14(1),
1–16. https://​doi.​org/​10.​1145/​25768​72.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Lihui Sun  is an associate professor in the Department of Educational Technology, School of Education,
Minzu University of China. His research interests include computational thinking and programming educa-
tion for children.

Junjie Liu  is a master degree student in the Key Laboratory of Child Development and Learning Science,
Ministry of Education, Southeast University.

Authors and Affiliations

Lihui Sun1  · Junjie Liu2

 *	 Lihui Sun
	 slhphd@yeah.net

	 Junjie Liu
	 liujunjieny@foxmail.com

1	 School of Education, Minzu University of China, No. 27 Zhongguancun South Avenue,
Beijing 100081, China

2	 Key Laboratory of Child Development and Learning Sciences, Ministry of Education, Southeast
University, Nanjing 210096, China

https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1080/10494820.2018.1534245
https://doi.org/10.1145/2576872
http://orcid.org/0000-0002-9188-9022

	Different programming approaches on primary students’ computational thinking: a multifactorial chain mediation effect
	Abstract
	Introduction
	Literature review
	Definition of computational thinking
	Unplugged and plugged-in programming teaching methods
	Multiple factors influencing computational thinking
	Gender
	Programming experience
	Programming interest
	Programming confidence

	The interactions between programming experience, programming interest, programming confidence and computational thinking
	Research objectives

	Method
	Research design
	Participants
	Research instruments
	Computational thinking test
	Code.org
	Instructional design

	Intervention fidelity
	Data analysis

	Results
	Comparison of CT skill scores before and after instructional intervention
	Exploring multiple influencing factors in programming education
	Gender
	Programming experience
	Programming interest
	Programming confidence

	Chain mediation effect model of programming experience, programming interest, programming confidence, and computational thinking

	Discussion
	Implications for policy and practice
	Limitations and future research

	Conclusion
	References

