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Abstract
This study investigated the effects of the single programming approach (plugged-in and 
unplugged) and the mixed programming approach (plugged-in-first and unplugged-first) 
on the computational thinking (CT) skills of first-grade students. However, focusing only 
on the programming learning approach itself is insufficient. Therefore, the influences of 
students’ gender, programming experience, programming interest, and programming con-
fidence factors on CT skills were also examined. 121 students from China were divided 
into four experimental and one control groups and engaged in the programming activities 
intervention for 10 weeks. The data consisted mainly of students’ CT skill scores before 
and after the programming activities intervention. The results showed that both single 
and mixed programming approaches significantly improved students’ CT skills, with the 
mixed programming approaches being more effective. Furthermore, the study found that 
the implementation of unplugged activities in the first stage attenuated the effects of pro-
gramming experience. Furthermore, it was found that the unplugged-first programming 
approach was able to diminish the effect of students’ programming experience on the 
development of CT skills and could be an essential condition to promote the development 
of equal CT skills. We also clarified the important role of programming interest and pro-
gramming confidence in students’ CT development. More importantly, a chain mediation 
effect of programming experience and programming interest between programming confi-
dence and CT was also found. Finally, this study further discusses ideas and approaches for 
the future of CT education for primary school students and provides certain practical sug-
gestions and insights for teachers and researchers.
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Introduction

Computational thinking (CT), deemed an indispensable foundational skill of digital intel-
ligence, is fundamentally altering the way individuals approach problem-solving (Kong 
& Wang, 2020). Nowadays, educational reforms at the policy and curriculum scales are 
underway around the world intending to develop students’ CT skills starting from the com-
pulsory education level. As Bocconi et al. (2022) reported, 24 countries in the European 
Union have already incorporated CT into their curricula at the primary or middle school 
level. This is due to the digital benefits of CT, which not only helps students to fully under-
stand the digital world around them but also to innovate based on it (European Commis-
sion, 2020). Consequently, this has motivated educators to search for the most effective 
way to develop CT at the compulsory education level, allowing every student to master 
it (Israel et  al., 2015; Yadav et  al., 2014). Actually, CT has become one of the impor-
tant topics explored in the field of programming education. This is because CT involves 
abstraction, decomposition, algorithm design, and other competencies closely intertwined 
with programming. Therefore, programming has emerged as a pivotal means to develop 
students’ CT skills (Liu et al., 2021). In the existing research, programming curricula are 
mostly implemented using plugged-in or unplugged programming (Sigayret et al., 2022). 
Unplugged programming activities are separated from electronic devices such as comput-
ers and represent concepts related to computer science through a series of logical tasks that 
deepen the learning of programming thinking. The advantage of the unplugged approach 
by reducing the abstraction of programming concepts, especially for students with no pro-
gramming experience (Brackmann et al., 2017). Plugged-in programming usually involves 
interaction with programming software on the computer and allows for the development of 
students’ programming skills by increasing their interest in programming through a gami-
fied interactive interface (Ouahbi et al., 2015).

Plugged-in and unplugged programming are commonly used at the K-12 education level 
to develop students’ CT skills. Plugged-in programming activities usually require students 
to have some basic knowledge of computer operations, and students need to embrace cer-
tain programming concepts in the process of coding. Therefore, it is usually recommended 
for implementation in upper elementary and middle school grades (Sigayret et al., 2022). 
By contrast, unplugged programming activities are usually carried out in primary schools, 
where on the one hand they can escape the issues that occur with exposure to comput-
ers, and on the other hand, they are not even influenced by the teacher’s teaching level. 
Generally, most studies have used plugged-in or unplugged programming alone to develop 
CT skills (Polat & Yilmaz, 2022). It has been demonstrated that both single plugged-in 
programming activities and unplugged programming activities significantly enhance stu-
dents’ CT skills (del Olmo-Muñoz et  al., 2020; Sun et  al., 2021b). As research in pro-
gramming education advances, the effects of combinations of plugged-in and unplugged 
programming approaches have attracted the attention of researchers. del Olmo-Muñoz 
et  al. (2020) found that implementing unplugged activities before plugged-in activities 
improved CT skills more than fully plugged-in activities. Similarly, several researchers 
have demonstrated that this mixed programming approach significantly improves the CT 
skills of 6th and 7th graders (Hermans & Aivaloglou, 2017; Sun et al., 2021b). There may 
be current stereotypes about the implementation of the mixed programming approach, and 
it is often assumed that implementing the unplugged activities first is more effective (del 
Olmo-Muñoz et al., 2020). However, there is a lack of systematic empirical evidence on 
the impact of the sequences of implementation of the mixed programming approach on 
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students’ CT skills. In addition, relevant studies have mainly focused on the upper primary 
and junior secondary levels. According to Hsu et  al. (2018), the cognitive abilities and 
knowledge structures of students at different ages vary greatly. In other words, it is difficult 
to replicate the same approach to CT development at different grade levels. Therefore, to 
better promote programming education, there is a need to systematically explore the effects 
of mixed programming approaches with different combination sequences on the CT skills 
of first-grade students.

Based on this, we designed a quasi-experimental study containing four experimental 
groups and one control group. The four experimental groups were designed with the single 
plugged-in and unplugged programming approach and the mixed programming approach 
with combined plugged-in and unplugged. Moreover, two different combination sequences 
were designed, i.e., the plugged-in-first and the unplugged-first programming approaches. 
An empirical study was conducted to compare the effects of the single and mixed program-
ming approaches on students’ CT skills, in addition to exploring the differences caused by 
the combination sequence of the mixed programming approaches. Ultimately, it was pos-
sible to determine the most effective way to develop CT skills in first-grade students, filling 
the gap in the current research field. Meanwhile, we also focused on the variability of stu-
dents’ gender when developing CT skills across different programming approaches (Webb 
et al., 2017). Students’ programming experience was also an important factor influencing 
CT (Lye & Koh, 2014). However, the question of whether it can contribute to students’ CT 
skills or play distinct roles in different programming approaches still needs to be answered. 
More importantly, it is worthwhile to investigate the factors that influence students’ learn-
ing process, for example, whether students have interest in programming (Kong et  al., 
2018), or whether students have confidence in programming (Chiu & Klassen, 2010). Stu-
dents with interest and confidence in programming generally have a strong intrinsic moti-
vation and are constantly driven to explore themselves. This is accompanied by heightened 
self-efficacy and enhanced programming proficiency (Weber et al., 2005). However, these 
influences have not received much attention from researchers. Additionally, the potential 
relationships and influence pathways among these influences need further investigation. 
Therefore, we constructed a chain mediation effect model between programming experi-
ence, programming interest, programming confidence, and post-pre-test of CT. The effects 
of these influences on students’ CT skills were explored further.

Literature review

Definition of computational thinking

CT has become the core skill that everyone should have in the 21st century, but there is 
no consensus in academia on the definition of CT (Lye & Koh, 2014; Wong & Cheung, 
2020). Academics and institutions have also continued to redefine the concept of CT and 
applied it in practice as time evolves (Kalelioglu et  al., 2016). The first introduction of 
the term computational thinking can be traced back to 1980 when Papert (1980) intended 
to develop powerful ideas in students through LOGO programming, but at this point, it 
was still “computer thinking”. Wing (2006) clarified the significance of CT from the per-
spective of computer science, pointing out that CT is the use of computer-related con-
cepts to design solutions to problems and to understand human behavior. At this point, 
CT has attracted widespread attention from the academic community, leading to a wave of 



560	 L. Sun, J. Liu 

1 3

research on CT. Several years later, Wing (2008) redefined CT as a way of thinking about 
the problem-solving process. Since then, Computer Science Teachers Association (CSTA) 
and International Society for Technology in Education (ISTE) (2011) have provided more 
explicit operational definitions, indicating that CT covers dimensions such as organizing 
data, data analysis, and using algorithms to automate problem-solving. Many scholars have 
also researched the components of CT. For example, Brennan and Resnick (2012) recon-
structed the conceptual framework of CT based on Scratch programming activities. This 
includes computational concepts that learners use during programming, computational 
practices for developing or debugging projects, and computational perspectives for viewing 
things around them. Kalelioglu et al. (2016) proposed CT as the framework component of 
the problem-solving process and that it could be applied to different scenarios rather than 
only for solving computational tasks. Selby and Woollard (2013) focused on the thoughtful 
characteristics of CT, arguing that CT is a mental process involved in human problem-
solving. Although there is no consensus on the conceptual definition of CT, CT has always 
been inseparable from the set of core skills involved in the problem-solving process, such 
as abstraction, deconstruction, algorithms, evaluation, and generalization (Barr & Stephen-
son, 2011; Kalelioglu et al., 2016; Selby & Woollard, 2013). Therefore, we used the CT 
framework that includes the above core skills and tested the students’ CT skills through the 
Bebras Challenge project.

Unplugged and plugged‑in programming teaching methods

In current research trends, students’ CT skills are improved mainly through plugged-in and 
unplugged programming activities. Unplugged programming involves learning computer 
science through outdoor activities, card games, or puzzles, separated from the computer 
(Brackmann et al., 2017). For example, Kim et al. (2014) used paper and pencil program-
ming, which is programming in the form of symbols and flowcharts to help students under-
stand data structure algorithms and improve CT skills. Other researchers implemented a 
quasi-experimental study with upper primary and seventh-grade students in middle school 
and revealed that students who participated in unplugged programming activities had sig-
nificantly improved CT skills, especially problem-solving and logical thinking skills, com-
pared to non-participating students (Brackmann et al., 2017; Sun et al., 2021a). Li et al. 
(2022) analyzed 29 pieces of literature related to unplugged programming using meta-anal-
yses, where the findings indicated that unplugged programming activities are more appli-
cable to primary school students. It is worth noting that while unplugged programming 
activities provide students with an understanding of programming-related concepts with 
a simple approach, they may be removed from the practice of CT skills in programming 
(Bell & Vahrenhold, 2018). In addition, Shang et al. (2023)d ez-López et al. (2016) used 
robotics programming and Scratch programming to conduct upper primary students with 
plugged-in activities, and both found that students’ CT skills, and mastery of programming 
concepts, significantly improved. Therefore, the effectiveness of plugged-in programming 
activities has also been demonstrated.

Despite the different learning approaches of plugged-in and unplugged programming, 
both aim to improve CT skills by promoting students’ understanding of programming con-
cepts or enhancing their abilities in algorithms, deconstruction, and problem-solving. In 
other words, plugged-in and unplugged programming are intended to be congruent and 
complementary, not opposed to each other. Saxena et al. (2019) conducted two stages of 
programming activities in kindergarten which revealed that the unplugged programming 
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activities implemented in the first stage facilitated the concepts of pattern recognition, 
sequencing, and algorithm design to pave the way for the plugged-in programming activ-
ities in the second stage.  Sun et  al. (2021b) implemented unplugged-first and plugged-
in-first programming activities in seventh grade which showed that students’ CT skills 
improved significantly after both programming approaches intervention, and students who 
implemented unplugged-first programming activities intervention had the most improve-
ment in CT skills. Therefore, the combination of plugged-in and unplugged programming 
approaches may be more effective in enhancing students’ CT skills. However, the existing 
experimental design of mixed programming is simple, focusing mainly on the compari-
son of the effects of the single unplugged or plugged-in programming approaches with the 
mixed programming approaches, and the effects caused by the combined sequence of the 
mixed programming have not yet been explored in depth. In addition, most research on 
the mixed experiments of unplugged and plugged programming has focused on the upper 
primary and middle school levels, and fewer experimental studies have been conducted in 
the early primary grades. Due to differences in educational environments and individual 
students, the existing research findings cannot be directly transferred (Hsu et  al., 2018). 
Therefore, the effects of these programming approaches on students’ CT skills in the lower 
primary grades still need to be further explored.

Multiple factors influencing computational thinking

Gender

 Gender, as the most prevalent demographic factor, has been extensively studied in CT and 
programming education. For example, Mouza et al. (2020) found that after the same inter-
vention of plugged-in programming sessions, boys’ CT skills were significantly higher than 
girls’ in Grades 4–6. In fact, the stereotype that girls are inferior to boys in CT and pro-
gramming is always held (Passey, 2017). However, some researchers have found that after 
the plugged-in programming intervention, girls were able to achieve the same level of CT 
skills as boys (Sun et al., 2022a), and even showed higher CT skills than boys (Atmatzidou 
& Demetriadis, 2016).  Sun et al. (2021a) also found that unplugged programming activi-
ties were able to provide boys and girls with equitable opportunities for CT development. 
These disparities in findings may be attributed to the manner in which CT is cultivated. 
However, most of the current research has focused on the effect of gender on the single 
programming approach and little attention has been paid to the effect of gender on the 
mixed programming approach of plugged and unplugged.

Programming experience

 In the learning process, knowledge acquisition was transformed by experience (Kolb 
et al., 2014). As Papert (1980) argued, children actively participate in the construction 
of knowledge through previous experiences. Similarly, programming experience is also 
usually a factor to be considered in the learning process of plugged-in and unplugged 
programming. Some researchers have found that students with programming experience 
have an easier time completing similar programming tasks and performing higher CT 
skills (Fessakis et al., 2013; Sun et al., 2021b). This is probably attributed to the fact that 
the neural activity processes of students with programming experience are more condu-
cive to CT skill development (Helmlinger et al., 2020). It is evident that programming 
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experience is emerging as an important factor in widening the differences in CT skills 
among students. In addition, Sun et  al. (2022b) found that appropriate programming 
instructional approaches can reduce the impact of students’ previous programming 
experiences on the development of CT skills. Therefore, we should consider the impact 
of students’ programming experience in different programming learning approaches, so 
that students with different programming experiences can better engage in programming 
learning.

Programming interest

It was as early as the 19th century that researchers noticed the importance of interest 
in the learning process (Hidi, 2006). As the study progressed, the researcher found that 
interest both contributed to sustained learning and was a key factor in student achieve-
ment (Dewey, 1913; Schiefele, 2008). Similarly, students with programming interests 
are more motivated to explore the programming learning process, which helps to pro-
duce positive learning outcomes (Deci et al., 2017). Meanwhile, they will spend more 
time finding solutions to complex programming problems, thus improving their CT 
skills. Students without programming interest will resist participating in programming 
activities, thus creating a vicious circle in terms of CT and programming skills (Beyer, 
2014). Kong et  al. (2018) constructed a structural equation about the programming 
interest of primary school students and found that students with high programming 
interest would regard programming as a meaningful activity, which is conducive to the 
improvement of CT skills. In other words, students with different programming interests 
may have different CT skills. However, different programming approaches may have dif-
ferent effects on primary students. For example, computer-based plugged-in program-
ming takes time for students to get used to, which can reduce the positive CT impact of 
programming interest (Sigayret et al., 2022). Therefore, future research needs to explore 
the effects of programming interest in different programming approaches.

Programming confidence

 Students’ intrinsic psychological factors affect the development of their CT skills, and 
confidence is an important psychological factor. Within the field of programming educa-
tion, confidence enables students to believe that they are capable of performing certain 
programming tasks or acquiring certain programming knowledge well (Bandura & Wes-
sels, 1994). Jong et al. (2020) also found that developing primary school students’ confi-
dence in facing difficult programming problems is as important as improving CT skills. 
This is because students’ ability to solve complex problems is closely linked to their 
level of programming confidence. Tsai et  al. (2020) also found that in computer pro-
gramming, students’ increased programming confidence contributes to the acquisition 
of algorithmic skills, logical thinking skills, and thus better development of CT skills. 
Whilst the important role of programming confidence is clear, teachers who use an inap-
propriate approach to teaching programming may not have positive impacts on students’ 
CT skills (Gunbatar & Karalar, 2018). Therefore, there is a need to further explore the 
specific role that programming confidence plays in different programming approaches.
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The interactions between programming experience, programming interest, 
programming confidence and computational thinking

As mentioned above, programming experience, interest, and confidence are all closely 
related to students’ CT skills. Generally, people who maintain confidence in program-
ming have an active interest in it. According to Kong et al. (2018), students with high 
levels of programming confidence find programming activities more interest, which pro-
motes positive learning outcomes. Mason and Rich (2020) also found significant corre-
lation between programming interest and confidence. In addition, when students utilize 
‘prior knowledge’ to construct CT skills, the drive generated by confidence can facili-
tate positive adjustments (Papert, 1980). Also, students with programming experience 
tend to invest more interest and energy in similar programming activities. This means 
that there may be correlations between programming confidence, programming experi-
ence, and programming interest. Therefore, to deeply explore the influence mechanism 
between them, we developed a chain mediation effect model.

Research objectives

In conclusion, the main purpose of this research is to investigate programming 
approaches that are appropriate for the development of CT skills of first-grade students. 
The four experimental groups in this study implemented the single programming activi-
ties (plugged-in and unplugged) and the mixed programming activities (plugged-in-first 
and unplugged-first) and measured students’ CT skills before and after the programming 
activities intervention. Meanwhile, we also considered multiple factors that might influ-
ence students’ CT skills during instruction, including students’ gender, previous pro-
gramming experience, and interest and confidence in programming. More importantly, a 
chain mediation effect model of programming experience and programming interest was 
constructed to explore the mechanism of influence between these factors and students’ 
CT post-pre-test. The research questions of this study are as follows:

RQ1	� Can single programming approaches (plugged-in, unplugged) and mixed program-
ming approaches (plugged-in-first, unplugged-first) improve the CT skills of pri-
mary school students?

RQ2	� Can different programming approaches be influenced by students’ gender, pro-
gramming experience, programming interest, and programming confidence in 
improving their CT skills?

RQ3	� Is there a chain mediation effect of students’ programming experience and pro-
gramming interest in the effect of programming confidence on the CT post-pre-test?

Method

Research design

Based on the purpose of this study and considering that the study was conducted in an 
authentic educational environment, it was not possible to completely disrupt the existing 
classes and randomize them. Therefore, all groups in this study followed the original 
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class configuration. Ultimately, five classes were randomly selected to conduct a quasi-
experimental study lasting 10 weeks. It included four experimental groups and one con-
trol group. The programming activities throughout the experiment are divided into two 
stages, each with 4 lessons, for a total of 8 lessons. Each stage had 4 plugged-in pro-
gramming sessions or unplugged programming sessions, each of which lasted 40 min. 
The plugged-in group implemented 8 sessions of plugged-in programming activities and 
the unplugged group implemented 8 sessions of unplugged programming activities. The 
other two groups, the plugged-in-first and unplugged-first groups, which received inter-
ventions in a mixed programming approach, received four plugged-in programming ses-
sions and four unplugged programming sessions. In the first stage, the plugged-in-first 
group conducted 4 sessions of plugged-in programming, while the unplugged-first group 
conducted 4 sessions of unplugged programming. In the second stage, the plugged-in-
first group then conducts 4 unplugged programming sessions; while the unplugged-first 
group conducts 4 plugged-in programming sessions.

It should be noted that both the experimental and control groups were taught in the IT 
curriculum. The students in the control group were still taught the regular IT curriculum 
and the students in the experimental group received the corresponding programming activ-
ities instead. China’s IT Curriculum Standards for Compulsory Education clearly state that 
CT skills are one of the four core literacies that must be developed (Ministry of Education, 
2022). Therefore, the regular IT curriculum also includes CT concepts and skills. Moreo-
ver, CT skills were measured for all students, and demographic information was collected 
before the first stage of the programming sessions were conducted. At the end of the sec-
ond stage of programming sessions, students’ CT skills were measured again. Quantitative 
results were analyzed to investigate the impact of the programming activities intervention 
on students’ CT skills. The research route of this study is shown in Fig. 1.

Participants

The 121 students in this study were all first-grade students in a primary school in a Chi-
nese city. They all participated in this experiment voluntarily and with parental consent. 
The study was divided into 5 groups with 121 students (63 boys, 58 girls) participating 
in the experiment with an average age of 7.50 years (SD = .824). 4 experimental groups 

Fig. 1   Research route map
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implemented the plugged-in programming activities (13 boys, 12 girls), the unplugged 
programming activities (14 boys, 10 girls), the plugged-in-first programming activities (11 
boys, 11 girls), and the unplugged-first programming activity (10 boys, 12 girls). The con-
trol group (15 boys, 13 girls) was taught the regular IT curriculum and had no additional 
plugged-in and unplugged programming activities. Additionally, we collected students’ 
demographic information through a questionnaire, which mainly included programming 
experience, programming interest, and programming confidence (1 represents have, 2 rep-
resents no). Table  1 shows the demographic information of the students in each group. 
43.0% of the students had participated in programming activities, indicating that most of 
the students had not yet been exposed to programming learning. 60.3% of the students 
reported interest in programming. However, only 46.3% of the students had confidence in 
programming, indicating that most of the students may feel that programming is difficult.

Research instruments

Computational thinking test

The introduction of CT into K-12 education has also contributed to the development and 
research of CT assessment tools. Since the concept of CT has not reached consensus in 
the academic community, many scholars have developed different assessment approaches 
based on different conceptual frameworks, such as the Computational Thinking Scale 
(CTS) (Korkmaz et al., 2017), the automated assessment tool Dr. Scratch (Moreno-León 
et  al., 2015), and the Bebras CT Challenge (Izu et  al., 2017). Among them, the Bebras 
CT Challenge questions can assess students’ problem-solving skills in different contexts, 
and numerous studies have validated its effectiveness in measuring students’ CT skills (del 
Olmo-Muñoz et al., 2020). The two sets of CT skills tests in this study were taken from 
the Bebras CT Challenge, which was divided into different age groups: Kits (age 6–8), 
Castors (age 8–10), Benjamins (age 10–12), and Cadets (age 10–12). − 12), Cadets (age 
12–14), Juniors (age 14–16), and Seniors (age 16–18). Simultaneously, the questions were 
classified according to the difficulty level as A level (easy), B level (medium), and C level 
(difficult). As the experimental participants in this study were first-grade students, aged 
between 6 and 8 years old. Therefore, the test questions in this study were selected from 
previous Kits level questions to test the students’ CT skills before and after the program-
ming sessions intervention. Eventually, each set consisted of 12 questions from the Kits 
level, including the 6 “A” level questions, 4 “B” level questions, and 2 “C” level questions. 
Moreover, different scores were assigned according to the difficulty of the questions, with 
1 score for “A” level questions, 2 scores for “B” level questions, and 3 scores for “C” level 
questions, for a total of 20 scores. To determine the validity of the two developed tests, the 
reliability of the questions was checked using the IRT package in R language. The results 
indicated that Cronbach’s alpha coefficient was .713 for the CT pre-test questions and .732 
for the CT post-test questions (both > .700). This demonstrated that both sets of questions 
exhibited good reliability and validity (Cronbach & Meehl, 1955). Example questions for 
the CT pre-test and post-test are shown in Figs. 2 and 3.

Code.org

With the popularization of programming education, there is an increasing variety of plat-
forms used to teach programming, such as Scratch, ScratchJr, Alice, and even various 
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Fig. 2   Pre-test questions of computational thinking skills (“A” level)

Fig. 3   Post-test questions of computational thinking skills (“B” level)
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unplugged programming methods. In particular, the Code.org platform uses drag-and-drop 
programming blocks to teach students programming. It attracted the attention of many pro-
gramming educators as soon as it was launched in 2013 (Code.org, 2013). Code.org has 
designed different course content for students aged 4–18, including an online version of 
plugged-in programming activities and an offline version of unplugged programming activ-
ities (Kalelioğlu, 2015). These programming courses covered programming concepts such 
as sequences, loops, events, conditional statements, functions, etc. As mentioned by Kale 
and Yuan (2020), Code.org enables students to understand the correspondence between 
programming blocks and visual objects by manipulating them. Students’ CT skills and 
problem-solving abilities improved after the Code.org curriculum intervention. Kalelioğlu 
(2015) also observed that Code.org has a good motivational function that helps students to 
master computer science, especially for those who have no previous programming experi-
ence. Therefore, this study developed plugged-in and unplugged programming sessions for 
first-grade students based on the Code.org project.

Instructional design

As described earlier, we designed 8 plugged-in programming sessions and 8 unplugged 
programming sessions, with 40  min each, for the single plugged-in and unplugged pro-
gramming instruction. Moreover, four lessons were selected from each of them to form the 
mixed plugged-in-first and unplugged-first programming sessions, and only the order of 
the combination of sessions was changed. The effect of different programming approaches 
on the CT skills of first-grade students was investigated. The plugged-in programming ses-
sions were selected from the “Crash Course for Preschoolers” (https://​studio.​code.​org/s/​
pre-​expre​ss-​2019), and the unplugged programming sessions were selected from the 
“Unplugged Version of Computer Science Basics” (https://​code.​org/​curri​culum/​unplu​
gged). The programming activities we have chosen cover sequences, algorithms, loops, and 
events, and they have been proven suitable for first-grade students. It is important to note 
that the Code.org platform offers combinations and substitutions between different forms 
of programming activities. Hence we ensured that the programming knowledge taught in 
each session was the same, only with various teaching approaches (del Olmo-Muñoz et al., 
2020). The programming sessions of this study were organized as shown in Fig. 4.

Fig. 4   Programming sessions arrangement map

https://studio.code.org/s/pre-express-2019
https://studio.code.org/s/pre-express-2019
https://code.org/curriculum/unplugged
https://code.org/curriculum/unplugged
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The content of the control group is designed according to the standards of the IT cur-
riculum, which mainly includes experiencing the process of problem-solving using digital 
devices and knowing the various ways of expressing information. For the given task, it is 
possible to identify the main steps in the implementation of the task and to express them in 
the form of graphical symbols, etc.

After determining the teaching contents, a suitable teaching model is needed to organ-
ize the teaching and learning process. The traditional model of teaching programming is 
usually lecture-based and students are passive recipients of programming knowledge (Tsai, 
2019). This may lead to a lack of learning motivation, which is detrimental to the develop-
ment of students’ CT skills. Therefore, to fully develop students’ CT skills, we designed 
the teaching activities according to the “5E” teaching model, which includes five stages: 
engagement, exploration, explanation, elaboration, and evaluation. The “5E” teaching 
model returns the main body of the classroom to the students, providing them with the 
opportunity to actively explore programming practices and motivating them to solve pro-
gramming problems (Bybee et al., 2006). In addition, the “5E” teaching model can help 
students understand programming concepts in a step-by-step manner through inquiry, 
thus better helping them master CT skills. Gao and Hew (2021) also found that courses 
designed according to the “5E” instructional model significantly improved primary stu-
dents’ understanding of CT concepts and programming problem-solving skills. Eventually, 
we designed an instructional guide for each lesson, including the theme, key instructional 
content, instructional objectives, and instructional focus. An example of the instructional 
guide is shown in Table 2.

Intervention fidelity

Intervention fidelity refers to the degree to which the intervention is implemented as 
intended, and the key to effective experimental interventions depends on increasing the 
fidelity of the intervention. If the intervention fidelity is not valued, it may lead to a dimin-
ished effectiveness of the intervention, making it difficult to conclude reliably (Clements 
et al., 2015). In this study, we considered intervention fidelity across all aspects. First, to 
ensure the fidelity of the course implementation, the same teacher experienced in teaching 
programming in our research team taught the experimental and control groups. Second, 
the curriculum guidelines for both the experimental and control groups were designed fol-
lowing the “5E” teaching model, and teachers were trained to implement the curriculum 
in strict accordance with the guidelines. In addition, the content was carefully designed to 
ensure that the experimental groups were taught the same content in each lesson, differing 
only in the way it was implemented (del Olmo-Muñoz et al., 2020).

Data analysis

Data analysis for this study was completed in SPSS 25.0 and Amos Graphics 26.0. In the 
current study, the data were primarily the students’ CT test scores, separately collected 
before and after the 8-week programming activity intervention. In addition, demographic 
information about the students was collected before the programming activities interven-
tion. First, descriptive analyses were used to present the pre-test and post-test scores of stu-
dents in the plugged-in, unplugged, plugged-in-first, unplugged-first, and control groups, to 
observe the changes in students’ CT scores. Second, paired-samples T-tests were used to 
investigate the differences in students’ CT skills before and after the programming activities 
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intervention to validate the effectiveness of the different programming approaches. Further, 
independent sample T-tests were used to explore the variability between the different pro-
gramming approaches and to visualize the variability between the groups’ pre-test, post-
test, and post-pre-test of CT. To explore the most suitable programming approach for the 
development of CT skills in first-grade students. Finally, Multifactor Analysis of Variance 
(MANOVA) was used to explore the effects of students’ gender, programming experience, 
programming interest, and programming confidence on CT skills. The above data analyses 
were done in SPSS 25.0. More importantly, a chain mediation effect model of program-
ming experience and programming interest was established in Amos Graphics 26.0 while 
exploring the effect of students’ programming confidence on the CT post-pre-test. It pro-
vides evidence to support our study for the mechanisms of influence of these factors.

Results

Comparison of CT skill scores before and after instructional intervention

First, we began by exploring the effectiveness of the various programming approaches in 
RQ 1. Table 3 shows the pre-test and post-test scores of CT skills for students in the single 
programming approach (plugged-in and unplugged) and the mixed programming approach 
(plugged-in-first and unplugged-first), control group. The mean scores of students in the 
pre-test were, from highest to lowest, for the plugged-in group (M = 11.08, SD = 3.16), the 
plugged-in-first group (M = 10.55, SD = 2.84), the unplugged group (M = 9.83, SD = 3.67), 
the control group (M = 9.79, SD = 2.54), and the unplugged-first group (M = 9.55, 
SD = 2.37). Figure 5 shows the results of independent sample T-tests between the pre-test 
and post-test, and the post-pre-test of CT skills for each group. It can be seen that there was 
no significant difference between the pre-test of CT for each group (p > .05). In summary, 
it was possible to directly compare the differences between the students’ CT skills of post-
test and post-pre-test.

As shown in Table 3 for each group on the CT post-test, the highest CT scores after the 
instructional intervention were found in the unplugged-first group (M = 17.91, SD = 1.80), 
followed by the plugged-in-first group (M = 17.23, SD = 2.79). Next was the unplugged 
group (M = 13.25, SD = 4.31) and the plugged group (M = 12.36, SD = 3.12). The control 
group had the lowest score (M = 10.21, SD = 2.69). To explore the effect of different pro-
gramming approaches, paired-samples T-tests were conducted on the post-test and pre-test 

Table 3    Pre-test and post-test scores for each group of computational thinking

MinCT represents the lowest CT score for the group; MaxCT represents the highest CT score for the group

Group Pre-test MinCT MaxCT Post-test MinCT MaxCT

N M SD M SD

Plugged-in 25 11.08 3.16 6 16 12.36 3.12 7 19
Unplugged 24 9.83 3.67 3 17 13.25 4.31 5 20
Plugged-in-first 22 10.55 2.84 5 18 17.23 2.79 11 20
Unplugged-first 22 9.55 2.37 4 13 17.91 1.80 14 20
Control 28 9.79 2.54 4 15 10.21 2.69 6 17
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scores of each group for CT, and the results are shown in Table 4. It was found that the 
plugged-in (t = 2.118, p < .05), unplugged (t = 3.975, p < .01), plugged-in-first (t = 9.893, 
p < .001), and unplugged-first (t = 13.433, p < .001) programming approaches were able to 
significantly improve students’ CT skills, while the control group (t = .0840, p > .05) stu-
dents’ CT skills were not significantly improved. The unplugged-first group improved CT 
scores the most (M = 8.36, SD = 2.92), followed by the plugged-in-first programming group 
(M = 6.68, SD = 3.17). Following again were the unplugged programming group (M = 3.42, 
SD = 4.21) and the plugged-in programming group (M = 1.28, SD = 3.02). Meanwhile, the 

Fig. 5   The independent sample T-test for each group pre-test, post-test, and post-pre-test

Table 4    Paired samples T-test 
for each group of computational 
thinking

* = p < .05, ** = p < .01, *** = p < .001

Group Post-pre-test

N M SD t df p Cohen’s d

Plugged-in 25 1.28 3.02 2.118* 24 .045 .424
Unplugged 24 3.42 4.21 3.975** 23 .001 .811
Plugged-in-first 22 6.68 3.17 9.893*** 21 .000 2.109
Unplugged-first 22 8.36 2.92 13.433*** 21 .000 2.864
Control 28 .43 2.70 .840 27 .408 .159
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unplugged group, plugged-in-first group, and unplugged-first group all had large effect 
sizes, and the plugged-in group had medium effect sizes. In summary, both the mixed pro-
gramming approach (Plugged-in-first and unplugged-first) and the single programming 
approach (Plugged-in and unplugged) proved to be effective in enhancing students’ CT 
skills.

To further investigate which programming approach was more effective in enhancing 
students’ CT skills, independent sample T-tests were conducted on the post-pre-test of CT 
for each group, and the results are shown in Fig. 5. When comparing the single program-
ming approaches, we found significant differences between the plugged-in and unplugged 
groups (p < .05) and students in the unplugged group had higher CT skills (M = 3.42, 
SD = 4.21). While comparing the mixed programming approaches, there was no significant 
difference between the plugged-in-first and unplugged-first groups (p > .05). Furthermore, 
comparing the mixed programming approaches with the single programming approaches, 
we found that the mixed programming approaches (plugged-in-first, unplugged-first) were 
significantly better than the single programming approaches (plugged-in, unplugged) 
(p < .001). In summary, in terms of improving students’ CT skills, the plugged-in-first and 
unplugged-first programming approaches were equally effective, but both were superior to 
the plugged-in and unplugged programming approaches. That said, plugged-in-first and 
unplugged-first programming approaches improve CT better than the always plugged-in or 
unplugged approaches.

Exploring multiple influencing factors in programming education

We used MANOVA to explore the effects of students’ gender, programming experience, 
programming interest, and programming confidence on students’ CT pre-test and CT 
post-pre-test scores in different groups. The independent variables were students’ gen-
der, programming experience, programming interest, and programming confidence, and 
the dependent variables were students’ CT pre-test scores and CT post-pre-test scores. 
In addition, we tested the CT scores for each classification for all variables, and they all 
conformed to a normal distribution, so the MANOVA could be conducted. The results of 
MANOVA are shown in Table 5.

As seen in Table 5, there was no four- factor and three- factor interaction (p > .05) in 
any of the groups. We only observed significant interaction effects between gender and 
programming experience (F = 7.471, p < .05), and gender and programming confidence 
(F = 8.090, p < .05) on the CT pre-test in the plugged-in-first group. Therefore, we ana-
lyzed simple effects on gender, programming experience, and programming confidence in 
the plugged-in-first group. Therefore, the results of the simple effect analyses for gender, 
programming experience, and programming confidence in the plugged-in-first group are 
recorded in Table 5. Subsequently, we analyzed the impact of these factors in different pro-
gramming approaches.

Gender

There was no significant difference for the gender factor in the CT pre-test in the control 
(F = .041, p > .05), plugged-in (F = .996, p > .05), unplugged (F = 1.078, p > .05), plugged-
in-first (F = 3.141, p > .05), and unplugged-first (F = 0.160, p > .05) groups. Likewise, there 
was no significant difference in the gender factor on the post-pre-test of CT between the 
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control group and the four experimental groups (p > .05). This suggested that the effective-
ness of different programming education approaches is not affected by gender.

Programming experience

In both the CT pre-test and CT post-pre-test in the control group, no significant difference 
in programming experience were observed. In the CT pre-test, we found significant differ-
ences in programming experience in the unplugged (F = 4.274, p < .05) and unplugged-first 
groups (F = 5.253, p < .05), and no significant differences in the plugged-in group (F = .507, 
p > .05) and plugged-in-first group (F = .044, p > .05). However, in the CT post-pre-test, 
we found that programming experience showed significant differences in the plugged-in 
group (F = 6.414, p < .05) and the plugged-in-first group (F = 6.872, p < .05), and no signifi-
cant difference in the unplugged group (F = 1.276, p > .05) and the unplugged-first group 
(F = 1.654, p > .05). In conclusion, programming experience had different effects during 
the intervention of different programming approaches.

Programming interest

 In the CT pre-test, there was no significant difference in programming interest in any of 
the five groups (p > .05). In the CT post-pre-test, we only observed significant differences 
in the unplugged group (F = 10.027, p < .01) and unplugged-first group (F = 8.917, p < .05), 
which were not found in the control group (F = .024, p > .05), plugged-in group (F = 1.153, 
p > .05), and plugged-in-first group (F = .04, p > .05). This showed that programming inter-
est can significantly affect students in the unplugged group and the unplugged-first group, 
and we found that students who were interested improved their CT skills more.

Programming confidence

In the CT pre-test, programming confidence showed no significant difference in any of 
the 5 groups (p > .05). In the CT post-pre-test, we observed significant differences in pro-
gramming confidence in the unplugged group (F = 16.463, p < .01), plugged-in-first group 
(F = 7.173, p < .05), and unplugged-first group (F = 6.059, p < .05). However, there was also 
no significant difference in the control group (F = .724, p > .05) and the plugged-in group 
(F = 0.11, p > .05). Furthermore, students with programming confidence showed more 
improvement in CT skills.

Chain mediation effect model of programming experience, programming interest, 
programming confidence, and computational thinking

First, the correlations of programming experience, programming interest, programming 
confidence, and post-pre-test of CT were analyzed for the four experimental groups of stu-
dents. We used the point biserial correlation coefficient to calculate correlations between 
the continuous variable CT post-pre-test scores and the categorical variables programming 
experience, programming interest, and programming confidence. In addition, we used the 
coefficient of contingency to calculate the correlation between categorical variables. The 
results are shown in Table 6. It was found that there were significant correlations (p < .05) 
among all of these factors, which provided the basis for later structural equations to explore 
the relationships among the influencing factors.
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Then, we developed a multiple chain mediation effect model. This included the direct 
effect paths between programming confidence, programming interest, programming expe-
rience, and performance on the post-pre-test of CT. The direct path between programming 
experience and programming interest. As well as, the indirect path of influence between 
programming experience and programming interest. In this process, we excluded stu-
dents’ gender from the model because no significant difference due to gender was found 
in the one-way ANOVA in Table 5. The results of the chain mediation effect are shown 
in Table 7; Fig. 6. Since there was significant direct effect between programming confi-
dence and the post-pre-test of CT (p < .01), and programming interest was able to play sig-
nificant mediation effect (p < .05). Meanwhile, programming experience and programming 
interest also had a chain mediation effect (p < .05) so that programming experience can 

Table 6    Correlations Analysis of Programming Experience, Programming Interest, Programming Confi-
dence and Computational Thinking

* = p < .05, ** = p < .01, *** = p < .001

Variables Computational 
thinking

Programming 
experience

Programming 
interest

Program-
ming confi-
dence

Computational Thinking –
Programming Experience .363** –
Programming Interest .377*** .303** –
Programming Confidence .578*** .235* .292** –

Table 7    Results of Multiple Chain Mediation Effect (N = 93)

* = p < .05, ** = p < .01, *** = p < .001, PC Programming Confidence, PE Programming Experience, 
PI Programming Interest, CT Computational Thinking of Post-pre-test. The lower and upper limits of the 
95% confidence interval (bootstrap = 5000). If the 95% confidence interval does not contain 0, the path is 
established

Effect paths Direct effect Indirect effect P Lower bounds Upper bounds Mediation effect

P1: PC-PE-CT − .260 .068 − .909 .025 Partial mediation
P2: PC-PI-CT − .408* .023 − .039 − 1.203
P3: PC-PE-PI-CT − .105* .019 − .099 − .455
P4: PC-CT − 4.250** .001 − 5.728 − 2.687

Fig. 6   Multiple chain mediation effect model (N = 93)
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play significant mediation effects as well. Therefore, programming confidence was able to 
influence CT through programming experience and programming interest, in addition to 
directly influencing CT. Thus, there is a partial mediation effect between students’ pro-
gramming experience, programming interest, programming confidence, and CT. In other 
words, programming experience and programming interest were able to moderate the rela-
tionship between programming confidence and CT to a certain extent.

Discussion

The purpose of this study was to determine the effectiveness of different programming 
approaches on students’ CT skill development. To investigate whether the effects of differ-
ent programming approaches on students’ CT are related to gender, programming experi-
ence, programming interest, and programming confidence factors, in addition to clarify-
ing what the mechanisms of effect between those factors are. Therefore, we conducted a 
10-week quasi-experimental study among 121 first-year students. We explored the effects 
of plugged-in, unplugged, plugged-in-first, unplugged-first, and regular IT courses on stu-
dents’ CT skills. We also collected demographic information about the students and their 
CT scores before and after the intervention.

In RQ1, quantitative results showed that CT skills improved significantly in all four 
experimental groups after the intervention. This proved the effectiveness of plugged-in, 
unplugged, plugged-in-first, and unplugged-first programming in improving the CT skills 
of first-grade students. This is consistent with the findings of several current studies, where 
many researchers have similarly found that plugged-in and unplugged programming are 
well suited to developing CT skills in students at the primary education level, and can even 
enhance students’ ability to solve programming problems (Kale & Yuan, 2020; Kalelioğlu, 
2015). We have also demonstrated the effectiveness of Code.org’s instructional materials in 
enhancing students’ CT skills. However, no significant difference in CT skills was shown in 
the control group which surprised us. In fact, the Ministry of Education has already put in 
place policies to develop students’ CT skills (Ministry of Education, 2018). This situation 
may be attributed to the lack of systematic programming curriculum design, which makes 
it difficult to achieve the objective of developing students’ CT skills.  Sun et al. (2022a) 
also proposed that policy level and programming curriculum implementation level can only 
be improved together to provide opportunities for students to fully develop their CT skills. 
More interestingly, we found that the mixed plugged-in and unplugged programming meth-
ods work equally well, but better than the always plugged-in or unplugged programming 
methods. This is consistent with the findings of del Olmo-Muñoz et al. (2020) who also 
found that the mixed programming approach gave better results than the always plugged-
in programming approach. This may be related to the style of programming activities, 
where repeating the same style of plugged-in or unplugged programming activities may 
lead to a loss of interest among students (Jiang & Wong, 2021). The mixed programming 
approach consistently engages students’ attention and promotes their active engagement in 
programming activities. In summary, the mixed programming approach of plugged-in and 
unplugged is also an effective way to improve CT skills for primary students.

We also found that the gender of students does not affect their CT skills. In other words, 
there was no significant difference between boys’ and girls’ CT skills after the experimen-
tal group’s activity intervention. However, some researchers have found that boys’ CT 
skills are significantly higher than girls’ after the same programming intervention (Gao 
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et  al., 2022), and that it even takes girls more time to achieve the same level of CT as 
boys (Atmatzidou & Demetriadis, 2016). Similarly, according to Gur et  al. (2012), boys 
and girls have different rates of neurological brain function development, which can lead 
to differences in how boys and girls deal with reasoning problems and spatial problems. 
This gender difference usually becomes apparent with age. However, the younger age 
of the first graders in this study and the fact that their cognitive skills were not yet fully 
developed may be the reason why significant differences were not observed. As a matter of 
fact, breaking gender stereotypes in programming education is what we have been waiting 
for. In summary, these programming approaches can be considered as one of the ways to 
achieve equitable CT instruction.

In addition, it was found that the plugged-in and plugged-in-first approaches amplified 
the impact of students’ programming experience on CT skills, where students with pro-
gramming experience improved their CT skills more. Indeed, as Sun et al. (2021a) argued, 
there is a positive relationship between CT performance and programming experience, 
where students with programming experience are more likely to understand the abstract 
concepts involved in programming activities. Also, students with programming experience 
perform better on various cognitive tests (Liao & Bright, 1991). In contrast, the unplugged 
and unplugged-first approaches drove students with different programming experience to 
achieve the same CT improvement, weakening the effect of programming experience on 
CT skills. This could be caused by the implementation of different types of programming 
activities in the first stage of instruction. The implementation of unplugged activities first 
can provide the programming conceptual foundation required for the development of sub-
sequent plugged activities, which facilitates the mastery of complex CT concepts (Saxena 
et al., 2019). Meanwhile, unplugged programming activities can reduce the cognitive load 
of students using digital products and help to smooth the transition of children to complex 
digital programming environments (Sigayret et  al., 2022; Tsarava et  al., 2017). In other 
words, implementing unplugged programming activities first allows students to adapt to 
programming most familiarly, and can diminish the impact of prior experience as well as 
the psychological aspects.

Moreover, we found that programming interest and programming confidence signifi-
cantly affect CT skills. Specifically, students who were interested and confident in pro-
gramming had higher CT skills. This confirms the statement shown by Sun et al. (2022b) 
that besides cognitive factors such as programming experience, psychological dispositional 
factors such as interest and confidence also significantly affect students’ CT skills. This was 
probably attributed to the fact that, in the face of negative attitudes or negativity carried 
by programming learning difficulties, students with interest and confidence in program-
ming would actively adjust and work towards achieving the set learning goals (Gunbatar 
& Karalar, 2018). Kong (2016) even designed an interest-driven programming curriculum 
framework to better develop students’ CT skills. This showed that interest and confidence 
are important factors that should be considered in CT education and programming edu-
cation. However, this phenomenon was not observed in the plugged-in group. Plugged-in 
programming has a certain threshold of computer operation and requires sitting in front of 
the computer for periods, which is not conducive to a child’s instincts for a first-grade stu-
dent (Bray, 2018). This may diminish the positive impact of student programming interest 
and programming confidence on CT.

In addition, we found a chain mediation effect of programming experience and pro-
gramming interest between programming confidence and CT skills. Indeed, programming 
confidence is generally recognized as being closely related to academic achievement or 
specific skills (Tsai et  al., 2018). In this study, programming confidence demonstrated a 
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strong relationship with CT skills, which can serve as an important factor in influencing 
CT directly, or indirectly through programming experience and programming interest. Pia-
get and Cook (1952) also argued that children’s exploration of things or mastery of learn-
ing outcomes requires the stimulation of confidence-generating internal motivation. This 
is also consistent with some of the current results that programming confidence acts as a 
powerful internal driver of students’ programming interest (Kong et  al., 2018). In addi-
tion, when students have programming-related experience it increases their willingness and 
interest in learning programming, which is supported by the study of Usher and Pajares 
(2008). Mason and Rich’s (2020) Attitude Scale for Elementary School Students, devel-
oped based on Expectancy Theory, similarly showed that programming experience affects 
programming interest. This showed that increased attention should be paid to the psycho-
logical aspects of students’ confidence and interest in the programming learning process.

Implications for policy and practice

Generally, CT skill development relies on single plugged-in or unplugged program-
ming. This study demonstrated the effectiveness of the mixed approach of plugged-in and 
unplugged programming to help better develop CT skills in primary students. Meanwhile, 
we clarified that programming experience, programming interest, and programming con-
fidence are all important factors affecting students’ CT skills. We explored the influence 
of these factors on CT and the chain mediation mechanism. These findings can provide 
references for programming education researchers and front-line IT teachers in primary 
schools. Firstly, we found that the mixed programming approaches (plugged-in-first, 
unplugged-first) are more effective than the single programming approaches (plugged-in, 
unplugged) in developing CT skills in primary school students, enriching the research find-
ings in the fields of programming education and CT education. Secondly, it is more effec-
tive to use the mixed programming approach to develop students’ CT skills in the primary 
school IT curriculum than in the regular IT curriculum. Therefore, education authorities 
can appropriately integrate plugged-in and unplugged activities into primary school IT cur-
ricula. Thirdly, given that most primary school students have no programming experience 
and are unfamiliar with computer operations, teachers need to pay attention to the sequence 
in which programming activities are implemented. We advocate implementing unplugged 
activities first to help students understand programming concepts more intimately at the 
beginning. This reduces the cognitive load and unfamiliarity with the complex digital pro-
gramming environment when students are subsequently exposed to plugged-in program-
ming activities. Finally, the important role of students’ programming interest and program-
ming confidence was clarified when it comes to CT skill development. Therefore, teachers 
should use sensible ways to maintain students’ interest and confidence in programming and 
promote the strong development of CT skills.

Limitations and future research

This study also has some limitations. First, this study was conducted in the Chinese edu-
cational context with first-grade primary school students. Due to the different educational 
environments in different countries and the variation among individual students, careful 
thought is needed if the study findings are generalized. Second, this study only collected 
data on students’ CT skills before and after the experimental intervention, and only stud-
ied the short-term effects of the programming activities. In the next step of the study, it 
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is appropriate to consider whether there is a sustained impact and to track the changes in 
students’ CT skills sometime after the programming activity. Further, only binary variable 
type data were collected when exploring the effects of students’ interest and confidence on 
CT skills. Future research should use more accurate assessment scales to measure these 
characteristics of students while considering the possible effects of programming learning 
activities on these factors. Finally, this study focused only on students’ development of CT 
skills during programming activities, but not on specific programming concepts. Future 
research could use instruments to measure students’ mastery of specific programming con-
cepts and CT subskills.

Conclusion

Considering that CT skills have become an essential core skill for every student in K-12 
education, teachers and educators are constantly exploring ways to introduce CT into class-
room education. Therefore, this study conducted a quasi-experimental study to investi-
gate the effects of the single programming approach (plugged-in and unplugged) and the 
mixed programming approach (plugged-in-first and unplugged-first) on the CT skills of 
first-grade students. Also, students’ factors (including gender, programming experience, 
programming interest, and programming confidence) were considered in addition to the 
effects of the programming learning approach itself. Our study revealed the effectiveness 
of mixed plugged-in and unplugged programming approaches on CT skill enhancement for 
first-year students. We also found that implementing unplugged programming in the first 
phase would provide students with the same opportunities for CT development, attenuating 
the impact of the programming experience. Moreover, programming interest and program-
ming confidence will play an important role in the CT learning process. In addition, when 
exploring the relationship and mediation mechanisms between CT and the main factors 
influencing CT, it was found that programming experience and programming interest had a 
significant chain mediation between programming confidence and CT. This study enriches 
the research findings in the field of programming education and CT in primary schools. It 
also provides evidence for teachers and educators to teach programming.
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