
RESEARCH ARTICLE

Accepted: 14 April 2022 / Published online: 6 July 2022
© Association for Educational Communications and Technology 2022

	
 Tian Luo
tluo@odu.edu

1	 Old Dominion University, Norfolk, Virginia, United States

Elementary Students Learning Computer Programming: an 
investigation of their knowledge Retention, Motivation, and 
perceptions

Tian Luo1  · Jilian Reynolds1 · Pauline Salim Muljana1

Educational technology research and development (2022) 70:783–806
https://doi.org/10.1007/s11423-022-10112-0

1 3

Abstract
Students need to learn and practice computational thinking and skills throughout PreK-12 
to be better prepared for entering college and future careers. We designed a math-infused 
computer science course for third to fifth graders to learn programming. This study aims 
to investigate the impact of the course on students’ knowledge acquisition of mathemati-
cal and computational concepts, motivation, and perceptions of the computing activities. 
Fifty-one students at a Boys and Girls Club participated in the study. Data collection 
procedures include pre- and post-tests, pre- and post-surveys, in-class observations, and 
one-on-one interviews. Results indicate that students have improved significantly on math-
ematical and computational concepts. They also tended to believe computer programming 
is fun, comprehensible, enjoyable, and were able to perceive the value of learning it. 
Implications and recommendations for future research are also discussed.

Keywords  Elementary education · Computational thinking · Computer science 
education · Coding · Programming

Introduction

Computer programming instruction incorporates mathematical, physical, and process simu-
lation combined, while also placing students in a programmer’s role to explore possible 
careers involving science and discovery, space exploration, drone operation, cybersecurity, 
and other invaluable possibilities. Researchers and educational practitioners, as well as 
policy makers, repeatedly urge that waiting until students are in a four-year college to learn 
computer programming is no longer a viable option (State of Computer Science Education, 
2021; Armoni 2012; Kumar, 2014; Prottsman, 2014). Students will need to learn and prac-

http://orcid.org/0000-0002-8138-3722
https://orcid.org/0000-0003-0668-9083
http://crossmark.crossref.org/dialog/?doi=10.1007/s11423-022-10112-0&domain=pdf&date_stamp=2022-7-4


T. Luo et al.

1 3

tice computational thinking and skills throughout PreK-12 to be better prepared when enter-
ing their college degree programs or careers related to computer science and technology.

A multitude of visual and block-based programming tools and applications, such as 
Scratch, have enabled the learning of programming to become more commonplace and 
friendlier for children (Armoni et al., 2015; Grover et al., 2015; Gutierrez et al., 2018; 
Lewis, 2010; Maloney et al., 2008; Maloney et al., 2010; Weintrop & Wilensky, 2017). The 
growing body of literature related to computer science education in a K-12 setting suggests 
that young children are capable of learning computational concepts and practices at an early 
age (Namukasa et al., 2015; Rich et al., 2019; Tran, 2019; Saez-Lopez et al., 2016). This 
puts early computing education at the forefront and creates an imperative need to develop 
an informed body of knowledge about learning and teaching computer science and com-
putational thinking in an elementary education setting. Although there are several connec-
tions among math and programming and highly correlated relationships between computer 
programming and success in mathematics (Bubnó & Takács, 2019; Razak & Ismail, 2018), 
this connection is uncommon in today’s educational curriculum (Neri, 2021; Wright et al., 
2013). Current literature highlights the needs for the interdisciplinary integration between 
computer science and mathematics education (Bubnó & Takács, 2019; Fisler et al., 2021), 
suggesting a knowledge gap on the integration of both disciplines (Powers & Azhar, 2020).

Benefits of programming and computer science instruction

The benefits of computer programming have been long documented in the United States 
since Seymour Papert incorporated Logo programming in elementary education in the 
1970s to the 1990s. When Logo programming tools were made accessible to young learners, 
they created a powerful learning experience for these elementary learners (Harel & Papert, 
1990; Papert, 1980; Papert et al., 1979). Later research consistently reported learning gains 
in the areas of improved geometric knowledge, logical reasoning, and spatial ability through 
the use of Logo (Clements, 2002; Clements et al., 2001; Subhi, 1999).

In the 21st century, teachers have increasingly been asked to teach computer science 
concepts and skills to younger children and integrate it into learning activities (Barr & Ste-
phenson, 2011; Fluck et al., 2016; Google Inc. & Gallup Inc., 2016; Powers & Azhar 2020). 
This call was rooted in a multitude of research demonstrating various areas of impact for 
universal computer science education in the society: (1) economic and workforce develop-
ment (2) equity and social justice, (3) competencies and literacies, (4) citizenship and civic 
life, (5) scientific, technological, and social innovation, (6) school improvement and reform, 
and (7) fun, fulfillment, and personal agency (Vogel et al., 2017). Vogel et al. (2017) under-
scored that computer science presents an interesting, innovative challenge, which evokes 
curiosity among K-12 students. As a pedagogical practice, it increases higher-order thinking 
skills and strengthens problem-solving capabilities and stamina (Atmatzidou & Demetria-
dis, 2016; Lee & Cho, 2019; Matere et al., 2021). These practice-based computer science 
lessons allow for hands-on, project-based learning.

Visual programming tools and environments such as Scratch, Scratch Jr., Snap!, and 
App Inventor are becoming increasingly popular in K-12 educational contexts (Grover 
& Pea 2013; Flannery et al., 2013; Morelli et al., 2011; Saritepeci, 2020; Scherer et al., 
2020). Saez-Lopez et al. (2016) performed a quasi-experimental study, which highlighted 

784



Elementary Students Learning Computer Programming: an investigation…

1 3

significant improvements regarding the learning of programming concepts, logic, and com-
putational practices among 5th- and 6th-grade students utilizing the visual programming 
language–Scratch. Middle schoolers often have progressed to more game-based and cre-
ation activities (Garneli, 2015). When encouraged to high-school students, learning the pro-
gramming concepts may support metacognition, further promoting problem-solving skills 
and creativity (Gim, 2021).

Computer Science Integration in Elementary Education

Despite the multiple benefits of computer science instruction, such incorporation into an 
existing K-12 curriculum is not without challenges. While computer science has been an 
increasingly common subject area in secondary education, this subject has mostly been 
taught in high school levels through advanced placement program (Rich et al., 2019), as 
computer science or programming as a skillset is not often deemed as age-appropriate for 
elementary learners. Therefore, a more inclusive and all-encompassing concept, computa-
tional thinking (CT), has progressively gained traction amongst researchers and practitio-
ners (Lye & Koh, 2014; Rich & Hodges, 2017; Rich et al., 2019; Shute et al., 2017).

Although there has been a slew of multiple definitions describing computational think-
ing (Shute et al., 2017), the majority of literature on CT falls back on Jeannette Wing’s 
definition emphasizing that CT being the way of thinking at multiple levels of abstraction 
involved in formulating problems and solutions applicable to all fields (Wing, 2006). Using 
the simplest terms, computational thinking is defined as thinking and solving problems like 
a computer, or to solving problems using a computational approach. Angeli et al., (2016) 
presented a computational thinking curriculum framework that incorporates indicators of 
competence for all given CT skills; namely: abstraction, generalization, decomposition, 
algorithmic thinking, and debugging. Teaching CT skills at a younger age denotes a way of 
teaching students to think about their day-to-day activities and solving problems algorithmi-
cally, which is a set of much broader fundamental skills than the specific skillset represented 
in the field of computer science. Researchers recommended that CT as a fundamental skill 
should be learned in early years of education so that application may continue throughout 
the student’s educational journey (Barr & Stephenson, 2011; Coşar & Özdemir, 2020; Lu & 
Fletcher, 2009; Mladenović et al., 2021; Qualls & Sherrell, 2010).

While research shows decades of work regarding how to make programming more 
accessible to high school students, it is still unclear how to bring this content into elemen-
tary school classrooms (Weintrop et al., 2017). Many teachers at the elementary education 
level often shy themselves away from anything related to CT due to their misconceptions 
equating CT with coding. This in part may have been caused by administrators not prefer-
ring more coursework being added to present curricula, in fear of risking test scores and 
teacher apprehension (Burke, 2016). The wide varieties of technologies associated with 
computer science and CT (i.e., drag-and-drop type of coding, script-based programming, 
robotics) often make teachers uneasy and intimidated (Sadik et al., 2017; Mouza et al., 
2018). Elementary teachers are reportedly facing exacerbating challenges, comprised of a 
lack of access to technology, inflexible curriculum, and inadequate planning time (Staples 
et al., 2005). Consequently, elementary teachers frequently struggle with seeing the CT and 

785



T. Luo et al.

1 3

computer science integration being connected to the subject areas that they teach in the 
classroom.

Although companies and organizations like ISTE, Code.org, and Google have produced 
numerous resources, most materials and resources are geared towards pull-out programs 
rather than integration; meanwhile, studies repeatedly call for integration into the exist-
ing curriculum as a more effective method of teaching CS as compared to teaching as a 
standalone subject course (Barr & Stephenson, 2011; Garneli et al., 2015). The multitude of 
coding modules and lessons available online may also seem overwhelming. This has caused 
confusion and frustration amongst educators about ways to create the best integration strate-
gies for already existing standards or subject areas in order to achieve the highest levels of 
success (Denning, 2017; Garneli et al., 2015).

The aforementioned challenges may also be due to a perception that programming con-
cepts are found to be difficult and abstract (Akinola, 2015; Noh & Lee, 2020; Sáez-López 
et al., 2016). However, learning a complex subject can be facilitated effectively through a 
suitable instructional approach (e.g., scaffolding) (Caglar et al., 2018). For example, ele-
mentary students—who are typically 7 to 11 years old—may struggle from learning an 
abstract concept as they start to develop logic reasoning (Piaget, 1964). Therefore, selecting 
and sequencing suitable instructional tools and programming concepts are imperative and 
should align with the students’ context (e.g., age and grade level) (Mladenović et al., 2021).

Students can be introduced to the foundation of programming concepts through block-
based coding tools (e.g., Scratch and code.org) initially. Particularly, this type of coding 
tools can assist students in visualizing the concept, manipulating the elements, and compre-
hending the programming logic through the blocks, rather than memorizing and recalling 
the coding script (Lambić et al., 2020; Rodríguez-Martínez et al., 2020; Vasconcelos & 
Kim, 2020) that may cause cognitive load for early programming learners (Lye & Koh, 
2014; Vasconcelos & Kim, 2020). Essentially, these tools provide a visual representation 
of the programming concepts that students may otherwise perceive as difficult and abstract 
(Mladenović et al., 2021) and promote user engagement because they provide instant visual 
feedback after the code execution (Lye & Koh, 2014; Vasconcelos & Kim, 2020). As a 
result, learning programming can be interesting, enjoyable, and motivating, triggering stu-
dents’ desire to learn more (Coşar & Özdemir, 2020; Kumar, 2014; Lakanen & Kärkkäinen, 
2019; Lambić et al., 2020) and promoting a career aspiration in a related discipline (Lakanen 
& Kärkkäinen, 2019).

Once the students have the knowledge foundation, they can try a more complex program-
ming activity, such as by learning the programming language syntax or the textual program-
ming. As a start, teaching the programming language may utilize Python (Mladenović et al., 
2021). It is deemed appropriate to introduce the programming language to beginners such 
as K-12 students (Lee & Cho, 2019; Mladenović et al., 2021).

Bridging Computer Science and Mathematics Education

Prior research has suggested various correlations between students’ learning of mathemati-
cal concepts and abilities and their learning of computer programming (Bubnó & Takács, 
2019; Clements, 2002; Clements et al., 2001; Mladenović et al., 2021; Razak & Ismail, 
2018; Relkin et al., 2021; Rich et al., 2013; Tran, 2019), which motivated educators to 

786



Elementary Students Learning Computer Programming: an investigation…

1 3

use the Logo Programming Language and its connection to geometry (Burke, 2016) Burke 
(2016) and Gim (2021) contended that coding is in essence grounded in mathematics. Wright 
et al., (2013) described a full, in-school curriculum and software package called Bootstrap, 
which taught students how to program their own video games while making connections 
to algebra (Schanzer, 2015). This study suggested an increased students’ understanding of 
algebraic functions and variables, while also presenting evidence of using Racket program-
ming language to energize students’ math learning. Other studies similarly highlighted the 
effect of teaching programming using Scratch. Scratch can provide students a new per-
spective regarding math-related concepts and processes (Benton et al., 2017; Calder, 2010; 
Hughes et al., 2017), potentially because it promoted the skills needed to comprehend math 
such as critical thinking and metacognitive skills (Rodríguez-Martínez et al., 2020). It is 
not a surprise some teachers may perceive the connection between programming concepts 
and math and science instructions (Neri, 2021; Rich et al., 2019). Basawapatna et al. (2010) 
emphasized that the implementation of computer science concepts while participating in 
video game creation activities could be used as a springboard to advancing their computa-
tional thinking. Overall, both middle-school and high-school students can take advantage 
of learning programming to boost their computational thinking skills (Noh & Lee, 2020), 
in with mathematical abilities play an imperative role in learning programming (Soboleva 
et al., 2021).

Students were also reported to enjoy, remain motivated, and build confidence in the 
programming-infused learning environments (Coşar & Özdemir, 2020; Gim, 2021; Hsu et 
al., 2018; Lambić et al., 2020; Romero & Lepage, 2017; Scherer et al., 2020; Saritepeci, 
2020; Tran, 2019). In the Basawapatna et al. (2010) study, when asked if they enjoyed 
designing games on the computer, 100% of surveyed students chose the response, “Strongly 
agree.” Similarly, student participants, who were third-grade students, in Tran’s (2019) 
study enjoyed the computational thinking learning activities due to the unique learning 
opportunity that was not typically found in traditional lessons. Lambert & Guiffre (2009) 
indicated improved confidence and interest in Computer Science and Math seen in elemen-
tary school children after conducting a computer science outreach containing a series of 
“unplugged” computer science lessons that did not involve a physical computer. Meyer 
and Batzner (2016) conducted a study consisting of 450 9- to 10-year-old students from 22 
to 33 elementary schoolers. The results concluded that all of the participants enjoyed the 
course and would like to participate again. Belanger et al., (2018) reported a study showing 
an increase in student confidence in categories related to the ability to do math, the ability 
to give directions and the ability to someday build a computer after teaching three common 
lessons of computational thinking. Saez-Lopez et al. (2016) also reported students’ per-
ceived enjoyment of Scratch-supported computer science activities and enhanced motiva-
tion, in addition to their improved understanding of computational concepts and practices. 
Although programming lessons may be initially perceived challenging, elementary students 
can potentially change their misconceptions about the programming concepts and thereby 
enjoying learning it, feeling accomplished by the end of a lesson, and desiring to continue 
their learning path (Gim, 2021).

Since programming is related to mathematical concepts (Bubnó & Takács, 2019; Cle-
ments, 2002; Clements et al., 2001; Mladenović et al., 2021; Niemelä & Helevirta, 2017; 
Razak & Ismail, 2018; Relkin et al., 2021; Rich et al., 2013; Tran, 2019), it is imperative 
to help students recognize the transferable skills they gain from learning programming to 

787



T. Luo et al.

1 3

learning math. Transfer of learning is deemed essential as it can transform students’ under-
standing of the concept to realizing the connection with other contexts, promoting their 
metacognition and meaningful learning (Niemelä & Helevirta, 2017). As a result, students 
will potentially be able to grasp the common fundamental concepts of different domains 
and apply them in various contexts (Niemelä & Helevirta, 2017). Racket can be utilized to 
teach programming and simultaneously assist students to focus on transferring knowledge 
between math and programming and vice versa (Niemelä et al., 2017). Racket, a math-
friendly functional programming language, offers image representation allowing students 
to visualize and manipulate algebraic expressions, and can pique the interests of elementary 
students (Felleisen & Krishnamurthi, 2009; Niemelä et al., 2017). However, some teach-
ers may find it too complex to be used for teaching programming to elementary students 
(Niemelä & Helevirta, 2017). Therefore, the suggested learning path, if multiple coding 
tools are used, is to utilize Scratch, Phyton, and then Racket, which would be appropriate for 
early programming learners like the elementary students under study (Niemelä & Helevirta, 
2017).

Purpose of the study

Extant literature has painted a mixed picture documenting both the successes and challenges 
of teaching CT and integrating computer science and programming in elementary education 
contexts (Fisler et al., 2021; Franklin et al., 2017; Manches & Plowman 2017; Seiter, 2015). 
Despite that computer science increases motivation, attitudes, and content retention among 
K-12 students, little research examines such an effect on elementary learners (Lambić et al., 
2020). Despite the natural link between CT and mathematics and the needs for the interdis-
ciplinary integration (Bubnó & Takács, 2019; Fisler et al., 2021), such an integration is still 
rarely practiced in educational curriculum (Neri, 2021) which suggests a significant knowl-
edge gap (Powers & Azhar, 2020). In this study, we incorporated computer science instruc-
tion to strengthen math content connections among elementary school students. This study 
will offer insight as to what connections among the learning of basic computer science and 
programming tasks may affect the retention of mainstream curricula in math in addition to 
possibly increasing student motivation. The study was guided by three research questions:

	● RQ1: To what extent did students’ knowledge acquisition of mathematical and compu-
tational concepts improve after the computing activities?

Ho: Students’ knowledge acquisition scores of mathematical and computational con-
cepts did not improve after the computing activities.

	● RQ2: To what extent did students’ motivation change after the computing activities?

Ho: Students’ motivation scores did not increase after the computing activities.

	● RQ3: How did elementary students perceive these computing activities?

788



Elementary Students Learning Computer Programming: an investigation…

1 3

Methods

A mixed methods approach was conducted to glean insight into the impact of the cod-
ing activities and participants’ overall experiences. The sequential explanatory strategy 
emerged as the qualitative data built upon the results of the quantitative data (Creswell & 
Clark, 2017).

Fig. 1   A screenshot showing the 
Scratch interface
 

789



T. Luo et al.

1 3

Participants

A total of 51 students who were elementary learners belonging to two different sites of a 
Boys and Girls Club located in the southeastern U.S. participated in this study. The par-
ticipants were drawn from a convenience sampling as one of the authors was an in-service 
teacher in the same school district. These participants attended the two local elementary 
schools, which repeatedly reported low standardized assessment scores in math. Amongst 
the 51 participants, 37.3% were third graders, 33.3% were in the fourth grade, and 29.4% 
were fifth graders. Approximately 98% of all students were considered low-income and 
received free or reduced lunch. In terms of racial makeup, the majority of the student sample 
population (90%) were Black, 2% Caucasian, 4% Hispanic, and 4% multiracial. Approxi-
mately 51% of students were females and 10% of students were classified as learning dis-
abled and/or autistic.

Materials

In this study, students were exposed to three programming languages: Scratch, Python, and 
Racket. Scratch bridges the gap between block-based programming and more advanced 
text-based programming languages and provides students with no programming experience 
an innovative and interactive environment, allowing them to create programs, stories, and 
games using drag-and-drop blocks (See Fig. 1). Python is a suitable language for teaching 
beginners. One of the programs taught in this study is shown in Fig. 2 where students cre-
ated a function, which drew an angle of choice. Students had to figure out that in order to 
produce the correct angle, they had to write the code to subtract their chosen angle from 
180, which represents a straight line. Racket is a math-friendly functional programming 
language, which allows students to visualize algebraic expressions and therefore helps them 
easily transition from visual block programming languages to more sophisticated program-
ming languages. In this study, Racket was extremely beneficial when students were asked 
to create algebraic expressions using a scale factor. Additionally, when students utilized 
the Wescheme web-based program using Racket, any errors or “bugs” in their code are 
explicitly identified and the student is then able to easily make corrections (See Fig. 3). The 

Fig. 2   A screenshot showing the Python interface

 

790



Elementary Students Learning Computer Programming: an investigation…

1 3

design of the instruction was partly guided by the Bootstrap curriculum (Schanzer, 2015) 
while continuing the ideas of transfer to specifically address math concept retention and 
connections.

The nine, one-hour session lesson was designed to promote transfer as shown in Table 1. 
Video tutorials were used for three out of the nine instructional lessons to facilitate and rein-
force students’ continuous content retention. During these lessons, students were taught how 
to write different examples of code to make math connections and how to create their own 
working computer programs. Table 1 demonstrates the learning objectives and the activities 
students were engaged in during the lessons.

Instrumentation

Knowledge retention. The knowledge retention test instrument was strategically crafted 
to mimic the 4th - and 5th -grade district-pacing guide content in addition to the Common 
Core State Standards for math. The 22-item test instrument included multiple choices and 
short answers questions targeting the following math and computer science content areas: 
the coordinate plane, variables, data types, syntax, algebraic expressions, word problems, 
angles, binary conversions, algorithms, loops, and debugging (See Table 2). The reliability 
coefficient of the knowledge retention test was calculated at 0.654.

Motivation. A 9-item Likert-scale survey instrument was used to measure students’ 
motivation. Two items adapted from Papastergiou (2009) was used to measure any dif-
ference in student study motivation and feelings toward school in general. One item spe-
cifically addressed students’ motivation in math. The remaining six items were adapted 
from Belanger et al., (2018), which addressed students’ perceived usefulness of computer 
science and their confidence level with coding. To make the survey content more readable 
to elementary students, emoji images were used in combination with the text options. For 
example, a smiley face emoji was used for the agreeable options and a sad face was used for 
the disagreeable options. The reliability coefficient in the motivation survey was calculated 
at 0.736.

Procedures

The researchers first recruited participants from the local Boys and Girls Club based on the 
following criteria: (a) students who were daily Boys and Girls Club members, (b) students 
who attended the two local public elementary schools, (c) students recently completing the 
3rd, 4th, or 5th grade. One researcher then attended a parent meeting to personally invite the 
students to participate in the computer science course. A pre-test of knowledge retention and 
pre-survey of motivation were distributed to all 51 students before the course commenced. 
In the next three weeks, two instructors taught a total of nine face-to-face classes and con-
ducted activities to achieve the objectives listed in Table 1. After the course concluded, all 
51 students participated in a post-test and post-survey. All students were also invited to 
participate in the one-on-one interviews to obtain richer information about student’s percep-

Fig. 3   A screenshot showing the Wescheme web-based program

 

791



T. Luo et al.

1 3

Lesson Learning Objectives Activities Concepts 
Learned

1 To “understand that the first number in an 
ordered pair indicates how far to travel from 
the origin in the direction of one axis and the 
second number indicates how far to travel in 
the direction of the second axis” (CCSS.Math.
Content.5.G.A.1) by using Scratch to show a 
video game character moving on a screen

Students learned how to login 
to the Scratch web-based 
program via scratch.mit.edu. 
Students were taught basic 
character movement on x 
and y axis. Students learn 
to visualize their own video 
game existing on an imaginary 
coordinate plane.

Coor-
dinate 
plane

2 To simulate a “live video game” by moving 
around the room on “imaginary x and y axes.”

Students completed the basic 
video game and discuss code 
meaning. Students took steps 
to the right to show moving 
in a “positive direction” on 
the x axis, left to represent a 
“negative direction” on the x 
axis, reached up in the air to 
represent “positive y” and bent 
down to the floor to represent 
“negative y.” Students added 
a background screen to their 
games in addition to writing 
the code for the antagonist 
character and the “prize 
character.”

Code 
syntax

3 To create overlapping shapes with loops in Py-
thon while typing text-based code and trouble-
shooting error messages

Students were introduced 
to Python turtle drawings. 
Students were then taught, 
through discussion, what 
would happen if this code 
repeated, but the second and 
third time, it changed the start-
ing position or angle? Students 
were given a loop code to add 
to their original code. Students 
learned to debug erroneous 
codes in Python.

Loops, 
debug-
ging

4 To understand variables and continue to analyze 
error messages while creating a program in 
Python where the computer acknowledges user 
input and displays it in the response

The concept of a variable was 
reviewed. Students were given 
the option to chance the letter 
“n” to any letter to represent “a 
number.” Students were given 
more opportunities to enter 
and debug codes. Student were 
presented with the concept 
“input.”

Data 
types 
and 
variables

5 To create a program in Python, which simulates 
the drawings of right, acute, and obtuse angles 
(CCSS.Math.Content.4.G.A.1)

Students were taught the code 
that draws an angle. Students 
were presented with the chal-
lenge to figure out why the 
turtle drew a 135 degree angle 
when the program showed the 
turtle turning 45 degrees.

Angles

Table 1  Math and Programming lesson objectives

792



Elementary Students Learning Computer Programming: an investigation…

1 3

tions. The interviews were conducted after the post-test and post-survey were administered. 
A total of 46 students were interviewed, each of which lasted approximately 4–10 min.

Data Analysis

To investigate the effect of the computer science instruction on content retention and moti-
vation (RQ1 and RQ2), we first used descriptive statistical analyses in SPSS to compare 
means and standard deviations of the test and survey items and then conducted a series of 

Lesson Learning Objectives Activities Concepts 
Learned

6 To “convert among different-sized standard 
measurement units within a given measure-
ment system (binary to decimal and decimal to 
binary), and use these conversions in solving 
multi-step, real world problems” (CCSS.Math.
Content.5.MD.A.1)

Students viewed a short video 
explaining binary numbers and 
then presented with numerous 
examples. They were then 
given opportunities to practice 
and complete converting bi-
nary numbers to their decimal 
representations.

Binary 
Conver-
sion

7 To describe how to create a type of sandwich and 
analyze how this relates to computer algorithms.

The students were asked to sit 
in a circle while the instructor 
stated the first step involved 
in making a peanut butter 
and jelly sandwich in order 
to illustrate the concept of 
algorithms. Each student was 
then responsible for stating 
the next step in the process 
and engage in discussions to 
understand loops (repeated) 
and conditionals (if/else).

Algo-
rithms, 
loops

8 To use the Racket Programming Language to 
“understand that shapes in different categories 
may share attributes. To recognize rhombuses, 
rectangles, and squares as examples of quadrilat-
erals” (CCSS.Math.Content.3.G.A.1)

Students were taught the 
concept of a string in computer 
science and experimented 
with the Racket programming 
language and the Wescheme 
environment. Students learned 
the code for a circle, and then 
experimented with figuring out 
the codes for other shapes such 
as rectangle and triangle and 
creating a national flag that has 
a circle.

Algo-
rithms
Debug-
ging

9 To “write simple expressions that record calcula-
tions with numbers, and interpret numerical 
expressions without evaluating them. (CCSS.
Math.Content.5.OA.A.2)
To “compare the size of a product to the size of 
one factor on the basis of the size of the other 
factor, without performing the indicated multipli-
cation” (CCSS.Math.Content.5.NF.B.5.A)

Before each math problem 
was completed, the students 
tested out the Racket code in 
the Wescheme environment to 
represent the math problems. 
They completed several math 
problems such as to write an 
algebraic expression to deter-
mine the size of the circle.

Alge-
braic 
expres-
sion, 
Debug-
ging

Note. The corresponding Common Core State Standards are noted in parenthesis. A more detailed lesson 
description can be found at https://tinyurl.com/yr8r3f77

Table 1  (continued) 

793

https://tinyurl.com/yr8r3f77


T. Luo et al.

1 3

paired t-tests to examine to identify any statistical differences from students’ test scores 
and survey ratings between the pre- and post-conditions. Several assumptions needed to be 
met prior to running the t-test for repeated measures. The assumption that the differences 
between the pre- and post-tests have no outliers was tested by a visual inspection of a box 
plot, and no outliers were detected. The Shapiro-Wilk Test of Normality was significant 
(p = .039). Kolmogorov-Smirnov test of normality was not significant (p = .085) and the 
repeated measures t-test is reasonably robust against violations of normality (Wiedermann 
& von Eye, 2013). The nonparametric equivalent of the repeated measures t-test (Wilcoxon 
Signed Ranks Test) was also performed on each category based on the content areas due to 
violations of normality.

To better understand participants’ perceptions of the computer science instruction, stu-
dent interviews were recorded, transcribed, and analyzed using an open-coding approach 
(Patton, 2002). Two researchers independently extracted patterns and themes from inter-
view transcripts and further organized the data into meaningful categories. Quotations from 
the interviews were extracted to provide further insight into students’ perceptions of the 
computer science instructions. The two researchers then met and discussed about the dis-
agreements and made decisions on the final themes to be included in the paper.

Ten interview questions were initially organized in the following categories: learning, 
content, and motivation. The learning category referred to students’ general perceptions of 
their experience in the computing lessons and activities, including what they liked or dis-
liked about the class. It also inquired students’ learning preferences, what they learned, how 
well they learned, and whether they prefer typing the code or using the block-code method. 
If students stated they preferred typing the code, they were asked what they remembered 
creating after they had typed their code. The content category referred to several questions 
where students were assessed on certain content areas, such as describing an algorithm, 
providing a specific example of an algorithm and state what specific problem their algorithm 
solved, as well as explaining the relevance between coding and math. The motivation cat-
egory asked students’ motivation to code, how confident they perceived themselves in cod-

Category Test Items Topics Short code
1 Question # 4, 5, 6 Coordinate plane CP
2 Question # 7, 8, 

9, 20
Python Data types and 
variables

Python

3 Question # 10,18,19 Code syntax Code
4 Question # 11 Word Problems (Alge-

braic Expressions)
WP _AE

5 Question # 12, 17 Word Problems (Py-
thon turtle)

WP_PT

6 Question # 13,14, 
24

Angles Angles

7 Question #15 Binary Conversion BC
8 Question #16 Algorithms Algorithms
9 Question # 21, 25 Loops Loops
10 Question #22 Debugging Debugging
11 Question #23 Creating Algorithm in 

block code
CA

Table 2  Structure of the Knowl-
edge Retention Test Instrument

Note. The first three items on 
the test were demographic 
questions

 
794



Elementary Students Learning Computer Programming: an investigation…

1 3

ing, and their perceived usefulness of programming in the future. The last question elicited 
ideas for change and encouraged personal suggestions.

A stage-by-stage analysis approach (Burnard, 1991) was used to create coding themes 
for qualitative data analysis. In the initial coding stage, notes and memos were created to 
accompany the interviews. Themes started to become identified throughout the notes and 
memos. Open coding where actual categories started to form occurred. Final lists of catego-
ries were produced and to guard against researcher bias, and the category lists were shared 
to assist with determining three specific emerging themes. Interviews were again compared 
to the three finalized themes that were modified from the initial categories, including: (a) 
experience: overall experience in the computing activities, (b) learning: how well partici-

Table 3  A Matrix displaying conceptual categories, interview questions, and excerpts
Category Opening 

Question
Probing Questions Excerpts

Experience How 
was your 
experience 
during the 
coding 
classes?

Were you excited to 
attend the classes each 
day?
What do you like 
about the coding/pro-
grammer classes?
What do you dislike 
about the coding/pro-
grammer classes?

“I like it. It was fun. I learn how to make game like 
create one that I want to create.”
“Well, it was actually very interesting because I 
already knew about coding. I already figured it out 
using Khan Academy. But, this was different. Because 
I learned a lot more about new stuff that I didn’t know 
about coding. Like python. Never heard of it.”
“I like it. Because I made game and made the shapes.”
“Great. Coding angry bird.”
“It was fun. Oh, I like making the video game. I chose 
a unicorn [character to make].”

Learning How 
well did 
you learn 
during the 
classes?

Did you prefer the 
drag and drop method 
of coding or did you 
prefer typing the 
code?
How would you de-
scribe an algorithm?
How do you think 
coding relates to 
math?”

“I really enjoyed typing and making rectangles.”
“I like typing in Python because I feel like a real 
coder.”
“It was really fun when we created shapes in Wesh-
ceme. I loved making them different colors.”
“The Siri program was my favorite. I had trouble with 
getting the code right, but I loved doing that stuff.”
“An algorithm is like the steps to make a peanut but-
ter and jelly sandwich because you are hungry. First 
you…then…”
“To make the character go right, the number had to be 
positive and when he went left, it had to be negative.”
“When we had to subtract the angle we wanted from 
180 to get the correct code.”

Motivation How 
excited, 
motivated, 
or eager 
were you 
during the 
computing 
classes?
How may 
the coding/
program-
mer classes 
help you in 
the future?

Did you surprise your-
self by how much you 
learned throughout 
this course?
Did you believe you 
could ever learn how 
to code in this way 
after taking the first 
assessment?
Do you feel smarter 
now that you have 
learned how to write 
computer programs?

“I wanted to come to class every day! I was so excited 
about it!”
“It was different, so it was interesting.”
“It made me feel like a real coder.”
“I didn’t think I could ever do something like that!”
“I impressed myself.”
“Some days I didn’t want to come because it was 
tough.”

795



T. Luo et al.

1 3

pants learned during the computing classes and (c) motivation: to what extent they were 
motivated by the computing activities (See Table 3).

Trustworthiness

Patterns, themes, and categories emerged rather than being imposed to allow for inductive 
analysis (Patton, 2002). The researchers used triangulation of multiple data sources and 
multiple methods to increase trustworthiness, validity and credibility (Patton, 2002). In this 
study, we used data from pre- and post-assessments, semi-structured individual face-to-
face interviews, and instructor in-class observations. The in-class observations were per-
formed in a semi-structured manner where the instructor documented students’ progress 
and their perceptions through all the coding activities. The observation checklist contains 
notes in each day’s lesson, organized by activity, progress made, and challenges. Addition-
ally, constant comparative analysis (Glasser, 1965) and a thick, rich description utilizing 
multiple forms of data within this study was provided with the intention of assisting readers 
to develop their own conclusions of the results (Lincoln & Guba, 1985).

Results

RQ1. To What Extent Did the Computing Activities Impact Students’ Knowledge 
Acquisition of Mathematical and Computational Concepts?

Table 4 shows the means and standard deviations of student scores on the knowledge reten-
tion test. Overall, students’ test scores have improved in all content areas according to the 
descriptive statistics. The post-test results had a statistically significant increase from the 
pre-test results, M= -58.61, 95% CI [-63.38, -53.84], t(50) = -24.687, p < .001. The effect size 
was measured using Cohen’s d = 4.057. This effect size is considered medium (Sawilowsky, 
2009).

Content area Pre-test Post-test
M SD M SD

CP 19.61 32.821 67.98 32.036
Python 5.88 11.820 71.08 23.115
Code 13.06 23.216 61.49 34.310
WP_AE 0.00 0.000 15.69 36.729
WP_PT 39.22 49.309 92.16 27.152
Angles 30.06 30.829 76.65 21.329
BC 0.00 0.000 90.20 30.033
Algorithms 13.73 34.754 56.86 50.020
Loops 17.65 31.343 86.27 26.605
Debugging 5.88 23.76 80.39 40.10
CA 1.96 14.00 64.71 48.26
Mean 15.14 13.61 73.75 15.24
Sum 147.04 141.28 763.47 169.30

Table 4  Pre and Post Scores of 
Students’ Knowledge Retention

 

796



Elementary Students Learning Computer Programming: an investigation…

1 3

Table 5 includes the content areas where the results of the Wilcoxon Signed Ranked test 
were significant, showing a significant improvement in test scores among those categories. 
The remaining content area data were not appropriate for significance testing given a lack 
of symmetry in the differences.

RQ2. To what extent did the Computing Activities Impact Students’ motivation?

Table 6 shows the means and standard deviations of student ratings on the motivation sur-
vey. Descriptive statistics reveals that students perceived motivation of learning in general 
and their interest in computer science more favorably after the experiment. According to 
the survey items that showed a significant difference, more students tended to believe com-
puter science was fun, useful, and comprehensible even at their level being an elementary 
schooler.

RQ3. How did Young Learners Perceive the Computing Activities?

Overall experience in the computing activities. All but two students demonstrated a posi-
tive view toward their learning experience in the computing activities. They described their 
experience as “great,” “fun,” “interesting,” “exciting,” “awesome,” and “surprising.” When 
asked if they were excited to come to class each day, 80% (n = 37) of students stated that 
they enjoyed attending class. When asked to elaborate, four students added that they only 
wanted to not attend if they were in the middle of a sports game or fun outdoor activity.

When asked what they liked the most about the class, the vast majority of students 
(n = 44) stated that they enjoyed being able to code and create their own games. They also 

Table 5  The results of wilcoxon signed ranked test
Content area Number of pairs Increases Decreases Ties Z p-value
CP 48 41 1 6 5.50 0.000*
Python 51 51 -- -- 6.31 0.000*
Code 48 38 4 6 5.34 0.000*
Angles 51 40 2 9 5.62 0.000*
Note. *Significant at the 0.05 level

Table 6  Pre and post scores of students’ motivation
Item Pre-survey Post-survey t p

M SD M SD
I believe I am a very smart kid. 3.69 1.06 4.39 0.65 5.01 0.001
I am excited to come to school every day. 2.70 1.75 3.84 1.20 5.15 0.001
I am good at solving word problems in math. 3.78 1.15 4.12 0.97 1.82 0.074
Computer science with coding is fun. 3.94 1.19 4.57 0.83 3.46 0.001
Computer science with coding is used in the real world. 4.25 1.04 4.57 0.81 1.88 0.066
I feel confident in my ability to create a computer program. 4.08 0.96 4.37 0.99 1.58 0.121
Computer science with coding is not too difficult for me to learn. 3.80 1.00 4.16 0.97 1.82 0.074
Computer science will be useful to me in the future. 3.86 1.13 4.35 0.80 2.57 0.013
I understand stuff about computer science. 3.73 1.13 4.41 0.83 3.67 0.001
Note. 1 = No, never, 2 = Usually no, 3 = Neutral, 4 = Yes, sometimes 5 = Yes, always

797



T. Luo et al.

1 3

liked the characters in Scratch, the different activities such as the moving angry bird, creat-
ing their own “Siri-like” experiences, and coding in a text-based environment. A student 
who favored the text-based programming said that “I might like to be into programming. 
I’d like to make my own game.” Another student expressed, “I like the Phyton because I’d 
like to learn a little bit more. I like how you learn how to program.” When asked what they 
disliked about the class, all students stated that there is nothing that they did not like. A few 
(n = 4) expressed their desire to learn more. As one student said, “I just wanted it to be longer 
so we can learn more, even about designing a video game.” Two students even asked the 
class to be offered again in the future because they would like to attend again.

Learning in the computing activities. When asked how well they learned during the 
class, 13 students (28%) stated that they learned very easily, 39% (n = 18) expressed it was 
just right, and eight students (17%) stated that they learned with some difficulties. Learn-
ing was evident in this study as the majority of students preferred the actual typing pro-
cess of the text-based programming languages—Python and Racket—over the block-based, 
drag-and-drop programming activities like Scratch. When asked if the drag-and-drop block 
coding or the typing of text-based coding was preferred, 33 students (72%) preferred the 
text-based coding even though it was considered the more difficult method. Five students 
(11%) favored the Scratch Lessons because they were able to “choose their own game char-
acters.” The remaining students (n = 5) favored creating loops with Python. Overall, there 
were only two students (out of 46) who disliked using text-based programming.

When asked how they would describe an algorithm, twenty-five students (54%) success-
fully demonstrated a “real-world example” of an algorithm such as the steps to making a 
sandwich and 18 students (39%) gave a coding-process example, such as the Python code 
for creating a rectangle or the direction where a character should move. One student gave 
an example, “Algorithm is a code. Algorithm is a loop. Algorithm is like steps. It’s like the 
peanut butter and cereal things. You have to take cereals out. You have to pour the cereals 
into bowl. You have to put in spoon. You’re making it so you aren’t hungry.” Another stu-
dent gave a different example, “An algorithm is when you make the character do what you 
want to do. When your character goes up, down, and side, and side. You make the character 
go around so that [the] thing doesn’t catch it.” Only two students were unable to answer the 
question. Although the question on algorithms was answered poorly in the post-test, most 
students were able to answer it correctly it in the interviews.

When asked about the connection between coding and math, all students stated that they 
were closely related. Thirty-two students (69%) were able to accurately state relationships 
including connections to: coordinate plane, coordinates, x and y values, variables, algebra, 
numbers, addition, subtraction, multiplication, division, and angles. For example, one stu-
dent said, “I saw the X- and Y-axis. And, that’s math. My character was a robot. He was 
moving up, down, and right [using hand gestures to additionally articulate the connection 
with X- and Y-axis].” Another student stated, “I think coding [is] related to math because 
you have to solve problems.”

Observations occurred during each session with the instructor keeping tallies as docu-
mentation while students progressed through the coding activities. It was evident that verbal 
frustrations most frequently occurred during the following lessons: Python (variables, data 
types) and Python loops and debugging. Students expressed frustration as they were asked 
to type the code using the computer keyboard. Verbal celebrations such as, “Yes!” “I got 

798



Elementary Students Learning Computer Programming: an investigation…

1 3

it!” and positive cheering occurred more frequently during the following lessons: Scratch 
block-based coding and Racket (strings, shapes, and coordinate position).

Motivation. The vast majority of students (n = 37) appeared to be very motivated by 
what they learned in the computing class. When asked if students surprised themselves and 
ever thought they would be able to learn how to code in this way, 61% of students (n = 28) 
stated that they surprised themselves and they never thought they could code in this way. 
The remaining students stated that they always knew they could complete this task. Four-
teen students commented on various tasks that they did not know they could do, such as the 
ability to be able to debug. One student commented, “I like to debug problem. I felt good 
[after being able to debug].” Another student commented, “Yeah, when we were doing the 
Python, I got one [bug.] […] I know I can do it because I had to learn it well.” There was 
also another comment: “Yup, I didn’t give up [debugging]. It’s like I was fighting the bad 
guy and won.”

When asked if students felt smarter now that they have learned how to write computer 
programs, 16 students (35%) stated “Yes.” When asked how the coding classes may help 
them in the future, 20 students stated that they could help them “make video games,” and 
“do more with computer science.” One student commented, “It helped me a lot because it’s 
like I want to make game.” Another student commented, “When I get older, I actually want 
to have experience to know how to actually make a game and probably teach how to make 
a game.” Other students (n = 8) noted that coding skills could help them “find a job” and 
“make money” because such skills would be needed in their future job market.

Discussion

As there has been rising hype about incorporating CT, computer science and coding sur-
rounding the K-12 community with regard to both research and practice (State of Computer 
Science Education, 2021; Manches & Plowman 2017; Rich & Hodges, 2017; Rich et al., 
2019; Shute et al., 2017; Vogel et al., 2017), we developed this study aiming to provide more 
empirical evidence showing the impact of computing activities primarily amongst younger-
aged learners. The statistical findings provided insights into students’ learning achievement 
and conveyed significant increases in computer science and mathematical content retention, 
as well as motivation. The qualitative findings echoed the quantitative findings, presenting 
a variety of means through which students expressed a positive learning experience. These 
positive findings concur with previous studies where engagement, motivation and learning 
were seen amongst K-12 students involved in programing (Coşar & Özdemir, 2020; Gim, 
2021; Hsu et al., 2018; Lambić et al., 2020; Meyer & Batzner, 2016; Lambert & Guiffre 
2009; Saez-Lopez et al., 2016; Saritepeci 2020; Scherer et al., 2020).

Our study suggested evidence for the successful integration of CT and coding into math 
curriculum. The computing lessons and assessments were designed according to Common 
Core State Standards on math. By linking math content to hands-on, project-based coding 
activities, it enabled students to explore math content in a more meaningful and relevant 
way. Although in previous studies where students demonstrated difficulties in the compre-
hension of loops and algorithms (Belanger et al., 2018), our findings suggested that the 
learning potential of elementary school students should not be underestimated. With the 
visual stimuli and hands-on activities, the majority of students in the interviews were able 

799



T. Luo et al.

1 3

to verbalize an abstract concept (i.e., algorithms) and some provided concrete examples. 
Their knowledge retention of math increased significantly, and they were able to perceive 
the relevance between math and coding that further deepened their understanding of said 
math concepts while helping them realize the value of math in problem solving. This finding 
reconfirmed the potential of CT integration to invigorate math instruction, as evidenced in 
prior literature (Hickmott et al., 2018; Niemelä & Helevirta, 2017; Rodríguez-Martínez et 
al., 2020; Weintrop et al., 2016; Wright et al., 2013).

It is equally worth noting that the coding activities were not only fun and enjoyable, but 
they were also challenging to the students. Although students expressed the most difficul-
ties generating the text-based code instead of dragging and dropping block-based code, 
most admitted that they enjoyed the text-based code. This may contradict previous litera-
ture suggesting visual-based programming environments were more age-appropriate for 
young learners (Bers & Horn, 2010; Lambić et al., 2020; Mioduser et al., 2009; Noh & 
Lee, 2020; Rodríguez-Martínez et al., 2020; Strawhacker & Bers, 2019; Tran, 2019; Vas-
concelos & Kim, 2020). As students in this study were presented with three programming 
environments, they experienced both block-based and text-based coding. This may have 
been a representation of students voluntarily seeking a greater challenge, which resulted in 
deeper learning and further accomplishments. Therefore, students were motivated to learn 
not because they were fun, but they were also engaged in an adequate amount of challenge 
prompting them to pursue even more.

Implications for practitioners

We offered the following suggestions for educators interested in incorporating computing 
activities into their existing curriculum. First, what differentiates these lessons utilized in 
this study with others is that it provided teachers with a manageable amount of materials 
they may feel confident in implementing. These lessons were intended to supplant bits and 
pieces of existing curricula instead of supplement full lessons, which often cause more work 
for the teacher. In order to provide additional scaffolding and lessen the workload of the 
classroom teachers who taught these lessons, in this study video tutorials were also made 
available to the students as supplemental materials. This suggestion can address some of the 
challenges that teachers have expressed regarding time limitation, workload, and inadequate 
resources (Rich et al., 2019; Tran, 2019).

When considering the integration of computing activities, we recommend teachers to 
attend to content alignment within their existing curriculum. While extant literature sug-
gests that CT can be integrated in a wide variety of content areas (i.e., math, science, social 
studies, language arts) (Barr & Stephenson, 2011; Berland & Wilensky, 2015; Jenkins, 
2015; Shute et al., 2017), it may be more feasible to begin the integration with a subject 
area where the relevancy is more easily perceived by both teachers and students, such as 
math. Our findings also suggested that computing activities may be applicable to a wide 
array of mathematical concepts that can carry over across multiple grade levels (Gim, 2021; 
Niemelä et al., 2017; Niemelä & Helevirta, 2017).

We also recommend that it might be worthy of introducing a variety of programming 
environments simultaneously, including purely text-based environments that may be pre-
conceived as intimidating by teachers. As our findings suggested, the majority of partici-

800



Elementary Students Learning Computer Programming: an investigation…

1 3

pants in this study were open and excited about the opportunity to code in a text-based 
environment. Despite the challenges imposed by the programming script, working in the 
text-based programming environment made learners feel like actual programmers, which 
largely enhanced their motivation to learn and practice in such environment. As most 
programming courses are limited to one language, by utilizing a combination of Scratch, 
Python, and Racket Programming Languages, students will be exposed to multiple pro-
gramming environments and syntax (Niemelä & Helevirta, 2017), which may help them to 
view computer science in a less daunting way. Additionally, Racket, in combination with the 
Wescheme Environment, offers a math-friendly experience for both students and teachers 
(Schanzer, 2015).

Limitations and Future Research Recommendations

Several limitations exist within this research. This research study utilized a pre- and post-
design as splitting students into two groups was not an option at the time of the study. 
Having both control and experimental groups would have been more effective when deter-
mining the effect of this coding-integrated instruction. One threat to internal validity is that 
some of the changes among student motivation may have been due to the novelty effect 
(Leedy & Ormrod, 2016) involving their excitement towards a new educational technology 
and not necessarily the coding instruction. We are aware that while the pre-post test design 
sheds light on the impact of the CT instruction, it did not directly measure the impact of 
the instruction and therefore failed to speak to the magnitude of the outcome as well as 
whether the outcomes are due to the instruction or alternative factors. Other factors such 
as prior knowledge or experiences of computer knowledge may have an influence on the 
increase of mathematical and computational knowledge acquisition and motivation that 
were not accounted for in the study. The responses from the participants may be subject 
to social-desirability bias, especially since the instructor also undertook the researcher role 
conducting the interviews. Inter-rater reliability could have been calculated to improve the 
reliability of qualitative data analysis. The sample size was small, as only 51 students from 
a Boys and Girls Club participated in this study. Additionally, the duration of the study was 
relatively brief with only nine one-hour sessions; greater insights would have been gained 
if the course were longer.

Given these limitations, we recommend the following future research directions. First, 
future researchers could employ a true or quasi-experimental design to directly examine 
the impact of these computing activities. Additional variables, such as differences in grade-
level, prior knowledge of coding as well as computer science concepts, and gender can be 
further factored in to determine how these variables may influence student learning and 
motivation. Future studies using a larger sample drawn from a traditional classroom setting 
will improve the generalizability of the study. Future researchers may also specifically delve 
into the differences of the three programming languages to provide further insights into the 
unique attributes of each. Additionally, to evaluate how may the coding instruction influence 
student learning of math, further research is needed to examine the relationship between stu-
dents’ standardized exam results in math and the coding-infused instruction. Future research 
would be advantageous to further shed light on the role of computer programming in the 
directions specified.

801



T. Luo et al.

1 3

Funding  This study was not funded by any agency.

Declarations

Conflict of interest  The authors declare that they have no conflict of interest.

Compliance with Ethical Standards  This research project has received IRB approval from Old Dominion 
University.

References

State of Computer Science Education (2021). Retrieved from https://advocacy.code.org/
Akinola, S. O. (2015). Computer programming skill and gender difference: An empirical study. American 

Journal of Scientific and Industrial Research, 7(1), 1–9. https://doi.org/10.5251/ajsir.2016.7.1.1.9 
Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 compu-

tational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational 
Technology & Society, 19(3), 47–57

Armoni, M. (2012). Teaching CS in kindergarten: How early can the pipeline begin? ACM Inroads, 3(4), 
18–19. https://doi.org/10.1145/2381083.2381091

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educa-
tional robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 
661–670. https://doi.org/10.1016/j.robot.2015.10.008

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what 
is the role of the computer science education community? ACM Inroads, 2, 48–54. https://doi.
org/10.1145/1929887.1929905

Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010, June). Using scalable game design to teach com-
puter science from middle school to graduate school. In Proceedings of the fifteenth annual confer-
ence on Innovation and technology in computer science education (pp. 224–228). ACM. https://doi.
org/10.1145/1822090.1822154

Belanger, C., Christenson, H., & Lopac, K. (2018). Confidence and common challenges: The effects of teach-
ing computational thinking to students ages 10–16 [Master’s thesis, St. Catherine University]. SOPHIA 
Repository. https://sophia.stkate.edu/maed/267

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging primary programming and mathematics: Some 
findings of design research in England. Digital Experiences in Mathematics Education, 3(2), 115–138. 
https://doi.org/10.1007/s40751-017-0028-x

Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting 
complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 
628–647. https://doi.org/10.1007/s10956-015-9552-x

Bers, M., & Horn, M. (2010). Tangible programming in early childhood: Revisiting developmental assump-
tions through new technologies. In I. Berson, & M. Berson (Eds.), High-tech tots: Childhood in a digital 
world (pp. 49–70). Information Age Publishing

Bubnó, K., & Takács, V. L. (2019). Cognitive aspects of mathematics-aided computer science teaching. Acta 
Polytechnica Hungarica, 16(6), 73–93. http://acta.uni-obuda.hu/Bubno_Takacs_93.pdf

Burke, Q. (2016). Mind the metaphor: Charting the rhetoric about introductory programming in K-12 schools. 
On the Horizon, 24(3), 210–220. https://doi.org/10.1108/OTH-03-2016-0010

Burnard, P. (1991). A method of analysing interview transcripts in qualitative research. Nurse Education 
Today, 11(6), 461–466. https://doi.org/10.1016/0260-6917(91)90009-Y

Caglar, F., Shekhar, S., Gokhale, A., Basu, S., Rafi, T., Kinnebrew, J., & Biswas, G. (2018). Simulation model-
ling practice and theory cloudhosted simulation-as-a-service for high school STEM education. Simula-
tion Modelling Practice and Theory, 58(2015), 255–273. https://doi.org/10.1016/j.simpat.2015.06.006

Calder, N. (2010). Using Scratch: An integrated problem-solving approach to mathematical thinking. Austra-
lian Primary Mathematics Classroom, 15(4), 9–14. https://doi.org/10.1007/s10857-012-9226-z

Clements, D. H. (2002). Computers in early childhood mathematics. Contemporary Issues in Early Child-
hood, 3(2), 160–181

Clements, D. H., Battista, M. T., & Sarama, J. (2001). Logo and geometry. National Council of Teachers of 
Mathematics. https://doi.org/10.2307/749924

802

https://advocacy.code.org/
http://dx.doi.org/10.1016/j.robot.2015.10.008
http://dx.doi.org/10.1145/1929887.1929905
http://dx.doi.org/10.1145/1929887.1929905
http://dx.doi.org/10.1145/1822090.1822154
http://dx.doi.org/10.1145/1822090.1822154
https://sophia.stkate.edu/maed/267
http://dx.doi.org/10.1007/s40751-017-0028-x
http://acta.uni-obuda.hu/Bubno_Takacs_93.pdf
http://dx.doi.org/10.1016/j.simpat.2015.06.006
http://dx.doi.org/10.1007/s10857-012-9226-z
http://dx.doi.org/10.2307/749924


Elementary Students Learning Computer Programming: an investigation…

1 3

Coşar, M., & Özdemir, S. (2020). The effects of computer programming on elementary school students’ aca-
demic achievement and attitudes towards computer. Elementary Education Online, 19(3), 1509–1522. 
https://doi.org/10.17051/ilkonline.2020.732794

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research. Sage 
publications.

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 
60(6), 33–39. https://doi.org/10.1145/2998438

Felleisen, M., & Krishnamurthi, S. (2009). Viewpoint: Why computer science doesn’t matter. Communica-
tion of the ACM, 52(7), 37–40. https://doi.org/10.1145/1538788.1538803

Fisler, K., Schanzer, E., Weimar, S., Fetter, A., Renninger, K. A., Krishnamurthi, S. … Koerner, C. (2021, 
March). Evolving a K-12 curriculum for integrating computer science into mathematics. In Proceedings 
of the 52nd ACM Technical Symposium on Computer Science Education (pp. 59–65). Association for 
Computing Machinery. https://doi.org/10.1145/3408877.3432546

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013). Designing 
ScratchJr: Support for early childhood learning through computer programming. In Proceedings of 
the 12th International Conference on Interaction Design and Children (pp. 1–10). ACM. https://doi.
org/10.1145/2485760.2485785

Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J. (2016). Arguing for com-
puter science in the school curriculum. Educational Technology and Society, 19(3), 38–46

Garneli, V., & Giannakos, M. N. (2015). Computing education in K-12 schools: A review of the literature. In 
Proceedings of 2015 IEEE Global Engineering Education Conference (EDUCON), p. 543–551. https://
doi.org/10.1109/EDUCON.2015.7096023

Gim, N. G. (2021). Development of life skills program for primary school students: Focus on entry program-
ming. Computers, 10(5), 1–17. https://doi.org/10.3390/computers10050056

Google Inc. & Gallup Inc (2016). Trends in the state of computer science in U.S. K-12 schools.http://goo.
gl/j291E0

Grover, S., & Pea, R. (2013). Using a discourse-intensive pedagogy and android’s app inventor for introduc-
ing computational concepts to middle school students. In Proceeding of the 44th ACM Technical Sympo-
sium on Computer Science Education (pp. 723–728). ACM. https://doi.org/10.1145/2445196.2445404

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course 
for middle school students. Computer Science Education, 25(2), 199–237. https://doi.org/10.1080/089
93408.2015.1033142

Gutierrez, F. J., Simmonds, J., Hitschfeld, N., Casanova, C., Sotomayor, C., & Peña-Araya, V. (2018). 
Assessing software development skills among K-6 learners in a project-based workshop with Scratch. 
Proceedings of the 40th International Conference on Software Engineering: Software Engineering Edu-
cation and Training (pp. 98–107). IEEE Xplore

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning Environ-
ments, 1(1), 1–32. https://doi.org/10.1080/1049482900010102

Hickmott, D., Prieto-Rodriguez, E., & Holmes, K. (2018). A scoping review of studies on computational 
thinking in K–12 mathematics classrooms. Digital Experiences in Mathematics Education, 4(1), 
48–69. https://doi.org/10.1007/s40751-017-0038-8

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: 
Suggestions based on a review of the literature. Computers & Education, 126, 296–310. https://doi.
org/10.1016/j.compedu.2018.07.004

Hughes, J., Gadanidis, G., & Yiu, C. (2017). Digital making in elementary mathematics education. Digital 
Experiences in Mathematics Education, 3(2), 139–153. https://doi.org/10.1007/s40751-016-0020-x

Jenkins, C. (2015). A work in progress paper: Evaluating a microworlds-based learning approach 
for developing literacy and computational thinking in cross-curricular contexts. Proceedings of 
the Workshop in Primary and Secondary Computing Education (pp.  61–64).ACM. https://doi.
org/10.1145/2818314.2818316

Kumar, D. (2014). Digital playgrounds for early computing education. ACM Inroads, 5(1), 20–21. https://doi.
org/10.1145/2568195.2568200

Lakanen, A. J., & Kärkkäinen, T. (2019). Identifying pathways to computer science: The long-term impact 
of short-term game programming outreach interventions. ACM Transactions on Computing Education 
(TOCE), 19(3), 1–30. https://doi.org/10.1145/3283070

Lambert, L., & Guiffre, H. (2009). Computer science outreach in an elementary school. Journal of Comput-
ing Sciences in Colleges, 24(3), 118–124

Lambić, D., Đorić, B., & Ivakić, S. (2020). Investigating the effect of the use of code.org on younger elemen-
tary school students’ attitudes towards programming. Behaviour and Information Technology. Advance 
online publication. https://doi.org/10.1080/0144929X.2020.1781931

803

http://dx.doi.org/10.17051/ilkonline.2020.732794
http://dx.doi.org/10.1145/1538788.1538803
http://dx.doi.org/10.1145/3408877.3432546
http://dx.doi.org/10.1109/EDUCON.2015.7096023
http://dx.doi.org/10.1109/EDUCON.2015.7096023
http://dx.doi.org/10.3390/computers10050056
http://goo.gl/j291E0
http://goo.gl/j291E0
http://dx.doi.org/10.1145/2445196.2445404
http://dx.doi.org/10.1016/j.compedu.2018.07.004
http://dx.doi.org/10.1016/j.compedu.2018.07.004
http://dx.doi.org/10.1007/s40751-016-0020-x
http://dx.doi.org/10.1145/2818314.2818316
http://dx.doi.org/10.1145/2818314.2818316
http://dx.doi.org/10.1145/3283070
http://dx.doi.org/10.1080/0144929X.2020.1781931


T. Luo et al.

1 3

Lee, Y., & Cho, J. (2019). Quantifying the effects of programming education on students’ knowledge repre-
sentation and perception in computational thinking. International Journal of Innovation, Creativity and 
Change, 9(4), 27–38

Leedy, P. D., & Ormrod, J. E. (2016). Practical research: Planning and design. Pearson
Lewis, C. M. (2010). How programming environment shapes perception, learning and goals: Logo vs. 

Scratch. Proceedings of the 41st ACM Technical Symposium on Computer Science Education (pp. 346–
350). ACM. https://doi.org/10.1145/1734263.1734383

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage Publications.
Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. Proceedings of Proceedings of 

the 40th ACM Technical Symposium on Computer Science Education (pp. 260–264). ACM. https://doi.
org/10.1145/1508865.1508959

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through pro-
gramming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.
chb.2014.09.012

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice: Urban youth 
learning programming with Scratch. Proceedings of the 39th SIGCSE Technical Symposium on Com-
puter Science Education (pp. 367– 371). ACM. https://doi.org/10.1145/1352135.1352260

Maloney, J. H., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch program-
ming language and environment. ACM Transactions on Computing Education, 10(4), 16. https://doi.
org/10.1145/1868358.1868363

Manches, A., & Plowman, L. (2017). Computing education in children’s early years: A call for debate. British 
Journal of Educational Technology, 48(1), 191–201. https://doi.org/10.1111/bjet.12355

Matere, I. M., Weng, C., Astatke, M., Hsia, C. H., & Fan, C. G. (2021). Effect of design-based learning on 
elementary students computational thinking skills in visual programming maker course. Interactive 
Learning Environments. Advance online publication. https://doi.org/10.1080/10494820.2021.1938612

Meyer, D., & Batzner, A. (2016, November). Engaging computer science non-majors by teaching K-12 
pupils programming: first experiences with a large-scale voluntary program. Proceedings of the 16th 
Koli Calling International Conference on Computing Education Research (pp. 174–175). ACM. https://
doi.org/10.1145/2999541.2999563

Mioduser, D., Levy, S., & Talis, V. (2009). Episodes to scripts to rules: Concrete abstractions in kindergarten 
children’s explanations of a robot’s behaviors. International Journal of Technology and Design Educa-
tion, 19(1), 15–36. https://doi.org/10.1007/s10798-007-9040-6

Mladenović, M., Žanko, Ž., & Aglić Čuvić, M. (2021). The impact of using program visualization techniques 
on learning basic programming concepts at the K–12 level. Computer Applications in Engineering 
Education, 29(1), 145–159. https://doi.org/10.1002/cae.22315

Morelli, R., De Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E., & Uche, C. (2011). Can android app inven-
tor bring computational thinking to K-12. Proceedings. 42nd ACM Technical Symposium on Computer 
Science Education (SIGCSE’11) (pp. 1–6). ACM

Mouza, C., Yadav, A., & Ottenbreit-Leftwich, A. (2018). Developing computationally literate teachers: Cur-
rent perspectives and future directions for teacher preparation in computing education. Journal of Tech-
nology and Teacher Education, 26(3), 333–352

Namukasa, I. K., Kotsopoulos, D., Floyd, L., Weber, J., Kafai, Y. B., Khan, S., et al. (2015). From computa-
tional thinking to computational participation: Towards achieving excellence through coding in elemen-
tary schools. In G. Gadanidis (Ed.), Math + coding symposium. Western University

Neri, F. (2021). Teaching mathematics to computer scientists: Reflections and a case study. SN Computer 
Science, 2(2), https://doi.org/10.1007/s42979-021-00461-7

Niemelä, P. S., & Helevirta, M. (2017). K-12 curriculum research: The chicken and the egg of math-aided 
ICT teaching. International Journal of Modern Education and Computer Science, 9(1), 1–14. https://
doi.org/10.5815/ijmecs.2017.01.01

Niemelä, P., Partanen, T., Harsu, M., Leppänen, L., & Ihantola, P. (2017). Computational thinking as an 
emergent learning trajectory of mathematics. ACM International Conference Proceeding Series, 70–79. 
https://doi.org/10.1145/3141880.3141885

Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity 
of elementary school students. Educational Technology Research and Development, 68(1), 463–
484. https://doi.org/10.1007/s11423-019-09708-w

Papastergiou, M. (2009). Digital game-based learning in high-school computer science education: Impact on 
educational effectiveness and student motivation. Computers and Education, 52(1), 1–12. https://doi.
org/10.1016/j.compedu.2008.06.004

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage Publications
Papert, S., Watt, D., diSessa, A., & Weir, S. (1979). Final report of the Brookline Logo Project: Project sum-

mary and data analysis (Logo Memo 53). MIT Logo Group

804

http://dx.doi.org/10.1145/1734263.1734383
http://dx.doi.org/10.1145/1508865.1508959
http://dx.doi.org/10.1145/1508865.1508959
http://dx.doi.org/10.1145/1352135.1352260
http://dx.doi.org/10.1145/1868358.1868363
http://dx.doi.org/10.1145/1868358.1868363
http://dx.doi.org/10.1080/10494820.2021.1938612
http://dx.doi.org/10.1145/2999541.2999563
http://dx.doi.org/10.1145/2999541.2999563
http://dx.doi.org/10.1002/cae.22315
http://dx.doi.org/10.1007/s42979-021-00461-7
http://dx.doi.org/10.5815/ijmecs.2017.01.01
http://dx.doi.org/10.5815/ijmecs.2017.01.01
http://dx.doi.org/10.1145/3141880.3141885


Elementary Students Learning Computer Programming: an investigation…

1 3

Powers, J., & Azhar, M. (2020). Preparing teachers to engage students in computational thinking through an 
introductory robot design activity. Journal of Computers in Mathematics and Science Teaching, 39(1), 
49–70

Prottsman, K. (2014). Computer science for the elementary classroom. ACM Inroads, 5(4), 60–63
Qualls, J. A., & Sherrell, L. B. (2010). Why computational thinking should be integrated into the curriculum. 

Journal of Computing Sciences in Colleges, 25(5), 66–71
Razak, M. R. B., & Ismail, N. Z. B. (2018). Influence of mathematics in programming subjects. In American 

Institute Physics Conference Proceedings, 1974, Article 050011. https://doi.org/10.1063/1.5041711
Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the acquisition of computational 

thinking by young children. Computers and Education, 169, 104222. https://doi.org/10.1016/j.
compedu.2021.104222

Rich, P. J., Browning, S. F., Perkins, M., et al. (2019). Coding in K-8: International trends in teaching elemen-
tary/primary computing. TechTrends, 63, 311–329. https://doi.org/10.1007/s11528-018-0295-4

Rich, P. J., & Hodges, C. (2017). Emerging research, practice, and policy on Computational Thinking. 
Springer. https://doi.org/10.1007/978-3-319-52691-1

Rich, P. J., Leatham, K. R., & Wright, G. A. (2013). Convergent cognition. Instructional Science, 41(2), 
431–453. https://doi.org/10.1007/s11251-012-9240-7

Rich, K. M., Yadav, A., & Schwarz, C. V. (2019). Computational thinking, Mathematics, and Science: Ele-
mentary teachers’ perspectives on integration. Journal of Technology and Teacher Education, 27(2), 
165–205

Rodríguez-Martínez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2020). Computational thinking and 
mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environ-
ments, 28(3), 316–327. https://doi.org/10.1080/10494820.2019.1612448

Schanzer, E. T. (2015). Algebraic functions, computer programming, and the challenge of transfer (Doctoral 
dissertation). Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:16461037

Sadik, O., Ottenbreit-Leftwich, A., & Nadiruzzaman, H. (2017). Computational thinking conceptions and 
misconceptions: Progression of preservice teacher thinking during computer science lesson planning. 
In P. J. Rich, & C. Hodges (Eds.), Computational Thinking: Research and Practice (pp. 221–238). 
Springer. https://doi.org/10.1007/978-3-319-52691-1_14

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages 
integrated across the curriculum in elementary school: A two year case study using “Scratch” in five 
schools. Computers & Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003

Saritepeci, M. (2020). Developing Computational Thinking Skills of High School Students: Design-Based 
Learning Activities and Programming Tasks. The Asia-Pacific Education Researcher, 29(1), 35–54. 
https://doi.org/10.1007/s40299-019-00480-2

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2020). A meta-analysis of teaching and learning computer 
programming: Effective instructional approaches and conditions. Computers in Human Behavior, 109, 
1–18. https://doi.org/10.1016/j.chb.2020.106349

Seiter, L. (2015). Using solo to classify the programming responses of primary grade students. In Proceed-
ings of the 46th ACM Technical Symposium on Computer Science Education (pp. 540–545). New York, 
NY, USA: ACM. https://doi.org/10.1145/2676723.2677244

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research 
Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Soboleva, E. V., Sabirova, E. G., Babieva, N. S., Sergeeva, M. G., & Torkunova, J. V. (2021). Formation 
of computational thinking skills using computer games in teaching mathematics. Eurasia Journal of 
Mathematics, Science and Technology Education, 17(10), Article em2012. https://doi.org/10.29333/
ejmste/11177

Staples, A., Pugach, M. C., & Himes, D. J. (2005). Rethinking the technology integration challenge: Cases 
from three urban elementary schools. Journal of Research on Technology in Education, 37(3), 285–
311. https://doi.org/10.1080/15391523.2005.10782438

Strawhacker, A., & Bers, M. A. (2019). What they learn when they learn coding: Investigating cognitive 
domains and computer programming knowledge in young children. Educational Technology Research 
and Development, 67, 541–575. https://doi.org/10.1007/s11423-018-9622-x

Subhi, T. (1999). The impact of LOGO on gifted children’s achievement and creativity. Journal of Computer 
Assisted Learning, 15(2), 98–108. https://doi.org/10.1046/j.1365-2729.1999.152082.x

Tran, Y. (2019). Computational thinking equity in elementary classrooms: What third-grade stu-
dents know and can do. Journal of Educational Computing Research, 57(1), 3–31.  https://doi.
org/10.1177/0735633117743918

Vasconcelos, L., & Kim, C. (2020). Coding in scientific modeling lessons (CS-Model). Educational Technol-
ogy Research and Development, 68, 1247–1273. https://doi.org/10.1007/s11423-019-09724-w

805

http://dx.doi.org/10.1063/1.5041711
http://dx.doi.org/10.1016/j.compedu.2021.104222
http://dx.doi.org/10.1016/j.compedu.2021.104222
http://dx.doi.org/10.1007/978-3-319-52691-1
http://dx.doi.org/10.1080/10494820.2019.1612448
http://nrs.harvard.edu/urn-3:HUL.InstRepos:16461037
http://dx.doi.org/10.1007/978-3-319-52691-1_14
http://dx.doi.org/10.1007/s40299-019-00480-2
http://dx.doi.org/10.1016/j.chb.2020.106349
http://dx.doi.org/10.1145/2676723.2677244
http://dx.doi.org/10.1016/j.edurev.2017.09.003
http://dx.doi.org/10.29333/ejmste/11177
http://dx.doi.org/10.29333/ejmste/11177


T. Luo et al.

1 3

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high school 
computer science classrooms. ACM Transactions on Computing Education, 18(1), 1–25. https://doi.
org/10.1145/3089799

Wiedermann, W., & von Eye, A. (2013). Robustness and power of the parametric t test and the nonparametric 
Wilcoxon test under non-independence of observations. Psychological Test and Assessment Modeling, 
55(1), 39–61

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35
Wright, G., Rich, P., & Lee, R. (2013). The influence of teaching programming on learning mathematics. 

Proceedings of Society for Information Technology & Teacher Education International Conference (pp. 
4612–4615). New Orleans, Louisiana, United States: Association for the Advancement of Computing 
in Education. https://www.learntechlib.org/primary/p/48851/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Tian Luo  is an Associate Professor of Instructional Design and Technology at Old Dominion University. She 
currently serves as an associate Editor-in-Chief for Journal of Information Technology Education: Research.

Jilian Reynolds  is a doctoral student from Old Dominion University. She is a former K-12 teacher.

Pauline S. Muljana  is a PhD candidate in Instructional Design and Technology at Old Dominion University. 
She is a former instructional designer.

806

http://dx.doi.org/10.1145/3089799
http://dx.doi.org/10.1145/3089799
https://www.learntechlib.org/primary/p/48851/

	﻿Elementary Students Learning Computer Programming: an investigation of their knowledge Retention, Motivation, and perceptions
	﻿Abstract
	﻿Introduction
	﻿Benefits of programming and computer science instruction
	﻿Computer Science Integration in Elementary Education
	﻿Bridging Computer Science and Mathematics Education
	﻿Purpose of the study
	﻿Methods
	﻿Participants
	﻿Materials
	﻿Instrumentation
	﻿Procedures
	﻿Data Analysis
	﻿Trustworthiness

	﻿Results
	﻿RQ1. To What Extent Did the Computing Activities Impact Students’ Knowledge Acquisition of Mathematical and Computational Concepts?
	﻿RQ2. To what extent did the Computing Activities Impact Students’ motivation?
	﻿RQ3. How did Young Learners Perceive the Computing Activities?

	﻿Discussion
	﻿Implications for practitioners
	﻿Limitations and Future Research Recommendations
	﻿References


