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Abstract
During reading, students construct mental models of what they read. Summaries can be 
used to evaluate the latent knowledge structure of these mental models. We used indices 
from Student Mental Model Analyzer for Research and Teaching (SMART) to explore the 
potential of a global index, Graph Centrality (GC), as a measure to describe mental model 
structure and its relation to the quality of student summaries (e.g., the amount of content-
coverage). Students (n = 73) in an online graduate-level course wrote and revised summa-
ries of their course readings. Data preview left the total count of 32 cases to evaluate how 
students’ mental representations changed from initial to final version. These summaries 
were analyzed using indices derived from the 3S model (surface, structure, semantic) as 
well as a measure of GC. The results of this initial investigation are promising, demonstrat-
ing that Graph Centrality captures important differences in students’ summaries, including 
revision behaviors to the wholistic structure of mental models, modification trajectories 
toward a cohesive and solid mental representation that is semantically similar to the expert 
model.
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Introduction

Summarization is a common and effective classroom practice (Dunlosky et  al. 2013; 
Singer and Alexander 2017; Stevens et al. 2019). In order to write a summary, students 
must examine information throughout the text, separate important from less important 
ideas, synthesize these important or main ideas according to their propositional rela-
tionships, and create a new abstract knowledge of the whole text (Duke and Pearson 
2009). Writing a quality summary requires students to utilize higher-order thinking 
skills (e.g., analysis, synthesis, and evaluation) and helps develop deep comprehension 
of the reading materials (Duke and Pearson 2009; Kintsch 1988; Westby et  al. 2010). 
Thus, learning from text involves a collection of diverse cognitive processes (Singer 
and Alexander 2017). Researchers and educators have analyzed student summaries to 
examine students’ comprehension processes (Kim et al. 2019; He et al. 2009; Kim et al. 
2018; Li et al. 2018; Lin 2004; Santos Jr et al. 2004; Sung et al. 2016; Wade-Stein and 
Kintsch 2004). The purpose of the current study is to investigate how a computer-gen-
erated index, Graph Centrality, of a students’ written summary can be used to evaluate 
the quality of their mental model and, in turn, their understanding.

Theories of mental models assume that readers construct mental models of a text as 
they read (Helbig 2006; Johnson et al. 2011; Jonassen and Cho 2008; Pirnay-Dummer 
and Ifenthaler 2011). Readers connect important ideas from different parts of the text as 
well as integrates information from prior knowledge to construct a coherent and elab-
orated mental model (Graesser et  al. 1994; Johnson-Laird 2005). A written response, 
such as a summary, can be thought of as a re-representation of a students’ internal men-
tal model of the text (Jonassen et al. 1993; Kintsch 1988). One limitation in using sum-
maries as a means of learning and formative assessment is that the process of evaluating 
open-ended responses is time-intensive, complex, and thus demanding to instructors. 
Due to this challenge, timely formative assessment of students’ summaries hardly hap-
pens in classrooms (Graham et al. 2013; Li et al. 2018).

However, recent advancements in natural language processing (NLP) have made it 
feasible to automatically analyze students’ written work (Crossley and McNamara 2016; 
Passonneau et al. 2018; Ifenthaler 2014; Kim et al. 2018; McNamara et al. 2017; Strobl 
et  al. 2019). NLP tools use a variety of statistical techniques to analyze qualities of 
language at multiple dimensions. For example, the Tool for the Automatic Assessment 
of Lexical Sophistication (TAALES, Kyle et  al. 2018) calculates more than 400 indi-
ces that describe the simplicity (or conversely, the complexity) of the words used in 
the writing. Tools like Coh-Metrix (McNamara et al. 2014) and SEMILAR (Rus et al. 
2013) use latent semantic analysis (LSA, Landauer and Dumais 1997) to go beyond 
word-level metrics to calculate the relations or similarity between ideas in a text.

Of particular interest to the present work, this increase in NLP-driven tools has led 
to the development of automated summary evaluators (ASEs) that use NLP indices to 
determine the amount of content-coverage from the source text as well as the overall 
writing quality of student summaries (Strobl et al. 2019; Sung et al. 2016). These ASEs, 
such as Summary Street (Wade-Stein and Kintsch 2004), Online Summary Assessment 
and Feedback System (Sung et  al. 2016), crowd-source summary evaluation (Li et  al. 
2018), ROUGE (Lin 2004), and PryEval (Gao et al. 2019), provide actionable feedback 
that can help students to improve their summary writing skills. Notably, however, these 
ASE tools use a series of descriptive linguistic indices, and the focus of the tools is to 
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help develop their general summary writing skills, as opposed to an evaluation of the 
reader’s mental model and their deep comprehension of the source text content.

One means of providing a more comprehensive evaluation of the student’s summary 
is a model-based approach. A model-based approach elicits a concept map from a sum-
mary. A concept map is a network of interrelated concepts and is a re-representation of 
the students’ knowledge structure embedded in the summary (Allen et al. 2015; Axelrod 
1976; Ifenthaler 2014; Kim 2018; Koszalka and Epling 2010; Narayanan 2005; Schvan-
eveldt and Cohen 2010; Spector 2010). Model-based tools generate indices from elicited 
concept maps along multiple dimensions of mental models. Some scholars have proposed 
three dimensions (i.e., surface, structure, and semantic; Kim 2012; Ifenthaler 2014; Pirnay-
Dummer and Ifenthaler 2011; Spector and Koszalka 2004), while some have suggested two 
dimensions, including surface and deep structure (Bransford and Johnson 1972; Gentner 
and Medina 1998; Katz and Postal 1964; Kintsch and van Dijk 1978). Model-based ASEs 
includes AKOVIA (Ifenthaler 2014), GISK (Kim 2018), HIMATT (Pirnay-Dummer 
and Ifenthaler 2011), and SMART (Kim et al. 2019). Using these tools, previous studies 
have shown that these dimensions capture meaningful change in student’s summary revi-
sions (Kim 2015; Clariana 2010; Ifenthaler et  al. 2011; Kim 2018; Pirnay-Dummer and 
Ifenthaler 2011).

Despite the prominent findings, previous work tends to be limited to some indices and 
shows that there were inconsistent relationships and various non-linear patterns among 
indices in different dimensions (Ifenthaler et  al. 2014). For example, diverse patterns of 
mean scores of indices indicated a greater variation within and across measures (Ifenthaler 
et al. 2014). Also, a previous study (Kim and McCarthy 2020) demonstrated that a greater 
inconsistency existed in structure-related indices. The effect of revision was less pro-
nounced in the structural dimension. The literature calls for further investigation on mental 
model change in terms of structure in order to better evaluate students’ learning.

The purpose of the current study is to advance a model-based approach to summary 
evaluation. Thus, we deploy an additional index, Graph Centrality (GC), that indicates the 
extent of relations among concepts in a concept map (Clariana et al. 2011; Newman 2010). 
Specifically, we explore the potential of GC as a global index that can characterize overall 
changes in a student’s knowledge structure across individual indices in multiple dimen-
sions. We examine how GC changes across student revisions and how GC compares across 
student summaries and expert benchmark summaries.

Theoretical background

Mental models in reading comprehension

Mental models include the ideas and concepts explicit in the text as well as the connections 
between those ideas and concepts. Thus, assessing comprehension includes evaluating not 
only the amount of knowledge, but also the organization of that knowledge within the men-
tal model (Bransford et al. 2000; Kintsch 1998; Jonassen et al. 1993; Segers 1997).

Theories of mental models explain that people develop expertise through the manipula-
tion of their cognitive artifacts that represent certain aspects of a problem situation (e.g., a 
complex reading material) (Anzai and Yokoyama 1984; Collins and Gentner 1987; John-
son-Laird 2005; Seel 2004; Smith et al. 1993). This line of work is grounded in the mental 
model theories with three assumptions: (a) readers construct a mental representation, or 
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mental model, of the text as they read (Graesser et al. 1994; Johnson-Laird 2005; Kintsch 
1998); (b) people’s language, in terms of what people say or write as well as how they 
convey this information, is an external representation of the reader’s internal mental model 
(Garnham 1987, 2001; Greeno 1989); and (c) one can evaluate learner comprehension by 
examining multi-layered, multi-dimensional mental representations demonstrated in peo-
ple’s language (Kim et al. 2019; Clariana and Taricani 2010; Gijbels et al. 2005; Zimmer-
man et al. 2018). More simply put, in the context of reading and summary writing, these 
assumptions mean that researchers can analyze student summaries to understand what a 
reader understand about a text that they have read. Importantly, mental models are not 
static, but rather can change gradually or abruptly (Kim 2015; Gentner et al. 2001; Pirnay-
Dummer and Ifenthaler 2011; Spector 2010). Thus, a critical assumption of this work is 
that change in students’ mental models elicited from their summary revisions can indicate 
their evolving understanding of the text. In turn, drawing the reader’s attention to critical 
ideas and relations in an externally represented expert’s mental model can help reader to 
write cohesive and complete summary of the text (Kim and Clariana 2017; Mayer 1989).

For example, students may write an initial version of a summary that centers on only a 
few, minor concepts. Given the feedback information about their summary, students may 
modify their thoughts and rewrite summaries, adding more important ideas and making 
more connections between these ideas. In contrast, some students who lack pre-existing 
knowledge of the text may write a summary with as many concepts as possible due to their 
lack of focus, which may make their summary complex and less structured. Feedback on 
the main ideas of the text may help those students focus on more important concepts and 
revise their summary more concise and cohesive, dropping unnecessary ideas (Kim 2017, 
2018). We can take advantage of concept maps elicited from summaries to describe stu-
dents’ comprehension of the text in terms of the extent to which a student’s holistic mental 
structure covers the substantial parts of the text and the degree of which the structure of the 
model is as cohesive and solid as an expert model (Kim et al. 2019; Spector and Koszalka 
2004).

Model modification processes involve changes in the number of concepts and their 
propositional relations when students add or remove concepts from their summary during 
revisions (Norman 1983; Rumelhart and Norman 1978). Although, at its simplest, students 
are adding or deleting information, the interpretation of dynamic changes in a concept map 
is complex. For example, one student might revise their summary by haphazardly adding 
concepts, but not optimize them in terms of concept relationships. This results in a large 
concept map, but the overall network is not cohesive. A different student may add fewer, 
but more carefully selected concepts that have close connections with the existing concepts 
in the model. This concept map would be only slightly larger than the student’s original but 
would be a far more cohesive network. Thus, considering the structure of mental models 
may be better suited to describe these qualitative differences and changes more than merely 
calculating the increase or decrease in the numbers of concepts and relations. Although 
this approach is promising, there is a dearth of empirical evidence related to how these 
structural changes of mental models reflect the improvements in the quality of the reader’s 
comprehension (Kim et al. 2019; Westby et al. 2010).

Model‑based 3S dimensions

Scholars generally agree that knowledge structures are multifaceted or multidimensional 
(Clariana 2010; Ifenthaler and Pirnay-Dummer 2014; Spector and Koszalka 2004). In this 
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current study, we focus on 3S knowledge structure dimensions: (a) surface, (b) structural, 
and (c) semantic dimensions. Spector and Koszalka (2004) first introduced the 3S dimen-
sions that have provided a theoretical framework for mental model assessment (Kim 2015; 
Ifenthaler 2014; Pirnay-Dummer et al. 2010).

The surface dimension reflects overall number of words, concepts, and relations in con-
cept maps that build the basic information of mental models (Fodor et al. 1974; Holyoak 
and Koh 1987; Katz and Postal 1964). It provides the descriptive information of compo-
nents of a knowledge structure. From a linguistics perspective, the surface dimension in 
terms of concepts and their relations in text characterize the shape of the sentences (Katz 
and Postal 1964).

The structural dimension characterizes the whole network of mental models in terms 
of the degree to which information in the text is organized and connected (Bransford and 
Franks 1972; Bransford and Johnson 1972; Gentner and Medina 1998; Kintsch and van 
Dijk 1978). The focus of the structural dimension is on the “extent to which the student’s 
knowledge structure is organized around key concepts and principles that are linked to con-
ditions and procedures for application” (Gijbels et al. 2005, p. 35).

The semantic dimension focuses on the underlying ideas in the text and, specifically, 
relates to whether key concepts and relations that students must learn from the text are 
embedded in their mental models (Kim 2013; Bransford and Franks 1972; Bransford and 
Johnson 1972; Katz and Postal 1964; Kintsch and van Dijk 1978). Studies of linguistic 
comprehension explain that a substantial part of the meaning emerges from information 
integrated from the whole corpus (Bransford and Franks 1972; Bransford and Johnson 
1972; Kintsch and van Dijk 1978).

Previous studies demonstrated that the three dimensions explain different aspects of 
mental models (Kim 2012, 2015; Kim and McCarthy 2020; Clariana 2010; Ifenthaler 
2009; Kim 2018; Pirnay-Dummer and Ifenthaler 2011). For example, an empirical study 
(Kim and McCarthy 2020) showed that the surface and semantic dimensions tended to 
change in a similar direction, while the indices of the structural dimension appeared to 
exhibit different patterns within and across dimensions. The findings from this study were 
generally consistent with the existing theory suggesting that deep comprehension emerges 
from constructing an interconnected mental model (Kintsch 1998). However, the findings 
also revealed inconsistent patterns in structure-related indices. Thus, further investigation 
required an advanced structural index to detect and describe changes in the overall qual-
ity of a students’ knowledge structure consistent with changes in the surface and semantic 
dimensions.

A global index of a knowledge structure: graph centrality (GC)

Concept map morphology

Concept map morphology studies indicate that concept maps tend to follow three different 
types of structure: spoke, chain, and net structure (see Fig. 1). Simple addition of new con-
cepts may create new links and become disruptive to the existing structure. Thus, changes 
in mental model structure are reflected by how learners switch, change, and link among 
the three types of structure (Kinchin 2008). For example, Kinchin (2008) notes that the 
spoke structure often serves as an interim structure from which either chains or nets can 
arise as additional information is added. These model modification processes may cause 
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the gradual or abrupt emergence of different types of structure and increase complexity of 
the whole network (Hay and Kinchin 2006).

Chain structures on their own often reflect microstructures, indicative of a key idea, 
in one or two sentences (Hay and Kinchin 2006; van Dijk and Kintsch 1983). For exam-
ple, this concise and well-written definition, “E-learning is a mode of learning that inte-
grates pedagogies empowered by technologies,” shows a chain structure (i.e., [e-learning]-
[mode]-[learning]-[pedagogy]-[technology]). Individual chains can be connected into more 
elaborate structures they share concepts. Connected chain structures form an integrated net 
structure together, which is called a cohesive macrostructure (Kintsch 1998). Key concepts 
likely link more subgroups and thus tend to play an important role of the cohesion of a con-
cept map (Kim et al. 2016, 2019).

Graph centrality (GC)

Generally speaking, the concept maps that emerge from complex texts are likely to take 
on a net structure combining several substructures. However, even within this grouping, 
there are qualitatively different networks. For example, optimal concept maps include well-
defined chain structures connected by carefully selected key concepts that stand toward the 
center of the network (Kim et al. 2019). On the other hand, a net structure composed of ill-
defined chains (connecting many concepts that are not grouped in chunks of proper propo-
sitional relations) reflects a naïve epistemology (Hay and Kinchin 2006). A holistic evalu-
ation of the student knowledge structure can be a means to detect, describe, and interpret a 
dynamic transformation of knowledge structure beyond individual indices and dimensions.

Thus, in the current work, we examine a more holistic measure of a concept map analy-
sis: graph centrality. Graph centrality (GC) as a global index that considers the 3S dimen-
sions in tandem. GC is calculated based on the degree centrality that describes the number 
of relations connected to a concept in a concept map (Newman 2010). For example, in 
a sentence of the summary (“Some says motivation is a cognitive domain in terms of a 

Fig. 1  Morphological variation 
in concept maps. A = Spoke, 
B = Chain, C = Network (Kinchin 
2008, p. 2)
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person’s belief about the current achievement, while some describe motivation as part of 
affective domains.”), the concept (“motivation”) can be connected to “cognitive domain” 
and “affective domain,” which makes the degree centrality of the concept (“motivation”) 
two. GC is the degree centrality of a whole concept map that is computed by incorporating 
individual concepts’ degree centrality values into the entire network level (Clariana et al. 
2011; Kim 2017).

Our assumption is that GC can serve as a means to characterize the chain and net struc-
tures of a student’s concept map. Also, we predict that GC values of ideal knowledge struc-
tures of the texts would be dependent on the way to write a reference summary and to elicit 
concept maps by the technology.

The current study

The current study explores Graph Centrality (GC) as a measure of student mental model 
construction and revision. Specifically, we examined how changes in the GC (i.e., the cen-
trality of information in a concept map based on a student summary) captured changes 
in students’ summaries of texts from initial draft to final version. The following research 
questions guided the current study:

RQ1. To what extent do GC values of student summaries change from initial to final 
version?
RQ2. To what extent do GC measures relate to changes of 3S indices?

To generate GC along with 3S (surface, structure, semantic) indices, we used the Stu-
dent Mental Model Analyzer for Research and Teaching (SMART) tool (further described 
in the following section). A descriptive case study approach was used to examine how GC 
captured structural change of students’ mental models. We combined two case studies, 
both of which used a different group of students and different reading material. Two cases 
served for the cross-validation of the findings. For each case, we inspected overall shifts in 
the global index as indicative of knowledge structure change, examined the relationships 
of the global index with the 3S indices and similarity measures from the SMART tool, and 
also conducted visual inspections of selected students’ mental representations.

Method

Participants

Participants were 73 students enrolled in multiple sections of the same graduate-level 
online course. Group 1 included 38 students enrolled in two sections during a fall semester. 
Group 2 consisted of 35 students enrolled in two sections in the following spring semes-
ter. Demographic information appears in Table 1. The sample was predominantly female 
and was composed of mostly students coming from the corporate sector, but participants’ 
professional backgrounds varied, including PK12, higher education, and non-governmental 
organization (NGO).

The students wrote and revised summaries of their course readings. Data preview 
showed that 14 students (36%) in Group 1 and 22 students (63%) in Group 2 submitted 
multiple summary revisions. Four students in Group 1 made submissions with no edits in 
their summaries. These four students were omitted, leaving 10 cases for this exploratory 
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analysis. All 22 students in Group 2 submitted edited versions and thus were retained for 
the study. We examined the total count of 32 cases to evaluate how students’ mental repre-
sentations changed from initial to final version.

Context

SMART technology

In this study, we used SMART technology due to its three advantages: First, SMART gen-
erates the highest number of indices and similarity measures in the 3S dimensions of men-
tal models. Second, SMART provides students with personalized feedback that is delivered 
in various modalities, including an expert’s reference summary, a visualized compari-
son between the expert and student concept maps, and feedback messages, which, taken 
together, prompts students to develop a more cohesive summary focused on the key ideas 
and relations in the text. Lastly, SMART supports file download that includes raw data for 
each student response so that one may compute new indices.

SMART relies on the study of semantics to obtain text variables (e.g., concepts) and 
elicit structural information (e.g., an array of the relations between concepts) from a text 
(Kim et al. 2019). Students read a text and then enter a summary into SMART. SMART 
then analyzes the summary by comparing it to an expert summary. Students are presented 
with a concept map of the expert summary as well as a concept map of their summary with 
colored nodes and line indicating missing concepts and relations. Students also see written 
feedback about what information they can add or remove from their summary to improve 
it.

In order to evaluate student learning and provide feedback, SMART models the stu-
dent’s current knowledge (learner model) and compares it to an ideal or expert model 
(Clariana et al. 2009; Ifenthaler 2014; Kim 2018). This approach starts with the analysis of 
a text input (i.e., student summary) to identify concepts and concept-to-concept relations 
in the syntactic structure of the text afforded by natural language processing (NLP) tech-
niques. An array of concept relations builds up a concept map (Axelrod 1976). Analytic 
algorithms based on graph theory (Rupp et al. 2010; Schvaneveldt et al. 1985; Wasserman 
and Faust 1994) generate various indices of the student model along the 3S dimensions: 
surface, structure, semantic. The comparison between a student model and an expert model 
reveals quantified similarity values and also provides qualitative information about which 

Table 1  Participants Participants

Group 1 
(n = 38)

Group 2 
(n = 35)

Gender Male 9 8
Female 29 27

Professional background PK12 9 7
Corporate 20 13
NGO 1 3
Higher education 7 6
Unknown 1 6
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concepts and relations are overlapping or missing. This comparison drives formative feed-
back for individual students.

Figure 2 shows a summary of the text about human vision collected in previous studies 
(Hinze et al. 2013) and the concept map that SMART produces based on this summary. 
From the first two lines (“This passage describes how the eyes take in light, and send sig-
nals to the brain, which allows us to see. Before light can reach the eye, it must pass the 
eyelid, which protects the eye.”), SMART can detect six unique concepts underlined in 
the example (i.e., passage, eye, light, signal, brain, and eyelid). These concepts build up 4 
unique pairwise relations ([passage, eye], [eye, light], [light, signal], [signal, brain], [eye, 
eyelid]). SMART leverages the NLP dependency analysis to identify the semantic rela-
tions (i.e., concept-to-concept) according to the way parts of a sentence are syntactically 
combined. Theses relations are based on the premise that connected concepts are placed 
closer to each other with contextual information of the relations (Kim et al. 2019; Baroni 
et al. 2014; Clariana et al. 2009; Turney and Pantel 2010). The adjacent relation approach 
is regarded as beneficial because its easiest way to determine concept relations in a text 
(Clariana 2010).

The number of concepts and relations are basic text variables that constitute the infor-
mation of the surface dimension. Then, an array of six concepts are transformed to a con-
cept map from which SMART extracts structure-related indices. The concepts and prop-
ositional relations used by a student provide the semantic information of the summary. 

Fig. 2  Sample summary of human vision and its network structure
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SMART compares individual concepts and relations from the student model to those from 
the expert model to generate feedback on what key concepts and propositions should be 
considered for revision.

Summary writing assignments

Students in both groups read an assigned chapter of the text and wrote summaries in the 
ASE, SMART. They were instructed to write 250–300 words summaries that thoroughly 
covered the key concepts of the reading. The students were allowed to make multiple revi-
sions to their summaries based on the SMART feedback.

For the cross-validation of the findings, we examined the two groups of students (from 
different semesters) and had them complete different SMART assignments. Each was a 
chapter of the textbook, which was 10 pages long (7000–8000 words). Group 1 read a text 
about constructivism for active, authentic learning. Group 2 was assigned a text about eval-
uation models in instructional design.

To create the expert model summary, two doctoral students independently wrote an 
ideal summary of each reading assignment, discussed their drafts together, and then pro-
posed an ideal version of the summaries. SMART analytics automatically generated a list 
of key concepts from each summary. Two doctoral students also independently evaluated 
the SMART-generated key concepts and suggested a corrected list of key concepts for each 
summary. The two lists demonstrated good reliability (Kappa scores; constructivism text: 
0.82; evaluation models text: 0.91). These summaries and key concepts were reviewed and 
approved by the course instructor.

Measures

Standard SMART measures: 3S indices and similarity measures

Leveraging network analysis methods (Kim 2015; Coronges et al. 2007; Wasserman and 
Faust 1994), SMART computes six concept map indices and similarity indices. These indi-
ces maps to the 3S dimensions (Kim 2015; see Table 2). The first three indices, (1) number 
of concepts, (2) number of relations, and (3) density, relate to the surface dimension. For 
example, “density” denotes the proportion of possible relations which exist among the con-
cepts of a concept map, indicating the extent of cohesion of a concept map. The density of 
a concept map is computed by dividing the number of relations actualized in a network by 
the number of all possible relations, ranging from 0 to 1.

The following three indices (4) average degree, (5) mean distance, and (6) diameter, 
correspond to the structure dimension. For example, “average degree of a concept map” 
indicates the average number of edges (relations) that are incident to the concepts in a con-
cept map. In a concept map with n concepts (n is the number of concepts in the concept 
map), the maximum degree of a concept is (n − 1), and the minimum degree is 0. As the 
number of incoming and outgoing relations grows, the complexity of the cognitive struc-
ture is considered higher. The semantic dimension is assessed using similarity values based 
on particular concepts and their pair-wise relations used in a concept map.

The structure of an optimal concept map is guided by the content of the source text. 
Thus, it was important not only to understand the changes in a students’ concept map on its 
own, but also the degree to which the structure of the student concept map compared to an 
expert concept map elicited from an exemplary summary.
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We do not argue that the expert summary in SMART is the only correct way that infor-
mation from the source text can be represented, but rather reflects a more optimal struc-
ture than what is typically produced by a novice. It is true that experts’ concept maps can 
vary when experts build on their epistemological preference to make inferences connecting 
preferred information from the text to their prior knowledge. However, when writing sum-
mary focuses on identifying the information the author structures in a text, expert readers 
can build a similar knowledge structure as intended by the writer, connecting key ideas 
from different parts of the text (Graesser et  al. 1994; Kintsch 1988). Experts represent 
information in qualitatively different ways than their novice counterparts (e.g., Alexander 
2003, 2004; Chi 2006). Thus, there may be some variability from expert to expert, but they 
are likely to have “clearly recognizable patterns in the problem conceptualization” (Spector 
2008 p. 31).

In this regard, SMART evaluate the quality of a student summary by comparing the 
student concept map to a reference model (expert model). This generates similarity meas-
ures, ranging 0 (completely dissimilar) to 1 (completely similar). SMART uses two types 
of similarity formulas: numerical and conceptual similarity (Kim et al. 2016, 2019). The 
numerical similarity formula which compares two numerical measures from a student and 
an expert model is used for all the 3S indices.

where v1 is the index value of a student model, and v2 is the value of an expert model. 
In contrast, the conceptual similarity that indicates the extent to which a student model 
embeds the same elements found in the expert model relates to the semantic dimension, 
including concept matching and propositional matching. The conceptual similarity draws 
on Tversky’s (1977) similarity formula:

where ‘A’ is a student model, and ‘B’ is a reference model. The weighting functions, α and 
β, were set as 0.7 and 0.3, according to the suggestion that α should be weighted higher 
than β in an asymmetric relation wherein a student model resembles a reference model 
(Kim 2015).

In addition, SMART provides two semantic-related similarity measures, Recall-C and 
Recall-P, which indicate the proportion of fully identical key concepts (i.e., the central 
ideas of the text) and the relations of key concepts. To calculate these, SMART uses a 
simple formula: Recall measure = the number of key elements in a student model/the total 
number of key elements in an expert model.

Additional SMART measure: graph centrality

Central to this study is GC—the degree centrality of a whole concept map computed by 
extending individual concepts’ degree centrality values into the entire network level (Clari-
ana et al. 2011; Kim 2017). A value of GC is calculated as follows:

s = 1 −
|
|v1 − v2

|
|

max
(
v1, v2

)

s =
f (A ∩ B)

f (A ∩ B) + � ⋅ f (A − B) + � ⋅ f (B − A)

(1)Degree centrality of a concept ∶ DC(v) = degree(v)∕(n − 1)
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where v is a concept in a network graph, n indicates the total number of concepts in a net-
work graph, DC (v*) indicates the highest degree centrality of a concept, and DC (vi) is the 
degree centrality of the ith concept. Thus, GC yields a value between 0 and 1. Lower scores 
(i.e., DC(G) below 0.1) are assumed to reflect a goal-orientation structure that optimally 
integrates concepts and propositions essential for the meaning of the text, whereas higher 
scores (i.e., DC(G) greater than 0.6) reflect naïve epistemology that indicates the lack of 
focused, organized understanding of the text (Hay and Kinchin 2006; Yin et  al. 2005). 
We hypothesized that GC could serve as a global index that indicates students’ learning 
progress in building a solid understanding of the text. Specifically, in the context of the 
SMART analytics, we presumed that a cohesive and integrated mental model could include 
many chain structures (thoughtful sentences in a summary) connected to a net shape of a 
concept map, which resulted in a GC index value closer to the goal-orientation threshold 
value of 0.1.

Analysis procedure

SMART produces concept map information that includes basic network data (i.e., an array 
of the concepts in a concept map) and the 3S indices and similarity measures of a student’s 
concept map. We used the network data to compute GC values of the concept maps by 
means of a social network analysis application (NodeXL; Hansen et al. 2010). We identi-
fied those students who demonstrated the greatest GC changes from initial summary to 
final submission and then examined these students’ summaries for changes in the 3S indi-
ces and similarity measures. Finally, we performed paired samples t-tests to examine the 
significant change between the initial and final summaries in GC, 3S indices, and similarity 
measures.

Results

GC change from initial to final version

GC values

We inspected students’ revision trajectories by examining the GC values of the stu-
dent models from the initial to the final models. We categorized each student as either 
positive or negative GC change and then further identified those students who dem-
onstrated the largest change in each direction. Applying the 75th percentile value 
(i.e., highest change > 75th percentile value) resulted in four classifications: high-
positive, low-medium positive, low-medium negative, and high-negative change. For 
each group, we examined GC values of the initial and the final summaries of each 
case (Table 3). Group 1 had only two positive GC changes and thus we did not divide 
them, resulting in three categories. In contrast, Group 2 showed the high-positive 
cases against the low-medium positive, forming four categories: high positive (over 
the 75th percentile value of the positive cases, GCI = 0.148 and GCF = 0.265), low-
medium positive (below the 75th percentile value of the positive cases, GCI = 0.131 

(2)
Degree centrality of a graph ∶ DC(G) =

∑
(i = 1 tov) [DC(v ∗) − DC(vi)]∕(n − 2)
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and GCF = 0.149), low-medium negative (below the 75th percentile value of the nega-
tive cases, GCI = 0.144 and GCF = 0.125), and high negative (over the 75th percentile 
value of the negative cases, GCI = 0.193 and GCF = 0.110).

Figure  3 shows each students’ change in GC. The two figures are separated by 
semester and text group (i.e., Groups 1 and 2, respectively). The dotted line indi-
cates the GC score of the expert model. Negative trends are indicated with downward 
arrows, and positive trends are indicated in upward arrows. There are two important 
things to note in this analysis. The first is that most students demonstrate a negative 
trend toward an expert line, while positive trends tend to depart from an expert’s GC 
value (e.g., S10 and S16 in Group 1; and S62 and S71 in Group 2). The second is that 
the majority of GC trends tend to move toward the expert line. That is, most students 
revised their summaries in a way that made their new concept map look more like the 
expert concept map through reduced graph centrality score.

GC similarity

We used an expert model for each text to compute similarity values of GC measures 
for both initial and final models (Table 4). Intriguingly, students who demonstrated a 
negative GC trend showed a stronger increase in GC similarity to the expert model 
than those who had demonstrated positive GC trend.

These data, in consideration with Fig.  3, indicate that students tend to generate 
more diffuse concept maps (i.e., higher GC) than the experts, whose concept maps 
tend to be at or below the .10 GC threshold indicative of a mental model connecting 
well-reasoned chain-type substructures. Thus, students who were better able to reduce 
and centralize their ideas yielded more expert-like concept maps, while those who 
increased their graph centrality (i.e., positive GC trend) tended to move away from or 
“overshoot” the idea graph structure.

Table 3  Trends in graph centrality change

GCI graph centrality in initial models, GCF graph centrality in final models

Group Change direction GCI GCF GCF-GCI

Group 1 Positive Positive total (n = 2) 0.11 0.13 0.02
Subtotal (n = 2) 0.11 0.13 0.02

Negative Low–medium (n = 6) 0.14 0.12 − 0.02
High (n = 2) 0.20 0.09 − 0.11
Subtotal (n = 8) 0.17 0.10 − 0.07

Total (n = 10) 0.15 0.12 − 0.03
Group 2 Positive High (n = 2) 0.148 0.265 0.117

Low–medium (n = 7) 0.131 0.149 0.017
Subtotal (n = 9) 0.135 0.175 0.039

Negative Low–medium (n = 10) 0.144 0.125 − 0.019
High (n = 3) 0.193 0.110 − 0.083
Subtotal (n = 13) 0.155 0.121 − 0.034

Total (n = 22) 0.147 0.143 − 0.004
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Relationships between GC and 3S indices

3S indices by GC trends

We then examined how the changes in GC, as a reflection of overall changes of the men-
tal models, related to changes in the 3S indices. To foreshadow our findings, analyses 

Fig. 3  Trends in graph centrality values. In Group 1 (Positive [S10, S16], Low-Medium Negative [S2, S5, 
S8, S19, S21, S22], and High Negative [S11, S17]). In Group 2 (High Positive [S62, S71], Low-Medium 
Positive [S44, S54, S73, S69, S59, S43, S66], Low-Medium Negative [S40, S46, S47, S48, S51, S52, S55, 
S56, S58, S61], and High Negative [S41, S64, S53])
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revealed that changes in GC were driven by complex combinations of the 3S dimensions 
(see Table 5).

Analysis indicated no uniform pattern of change in indices that reflected the surface 
dimension (i.e., number of concepts, number of relations, density). In general, students 
increased the number of words, concepts, and concept relations in their final versions, 
which resulted in a slight decrease in the density values. However, there was variability in 
this across the four GC trend groups. A uniform change (addition behavior) occurred in the 
low-medium directions, but not in the extreme GC trend (i.e., the high positive and nega-
tive). For example, the high negative trend in Group 1 included more words in their revi-
sions, whereas that trend in Group 2 reduced the words. These findings imply that GC may 
not be directly associated with surface-level changes.

The structure-related indices of Average Degree and Mean Distance tended to slightly 
decrease or remain at a similar level across two groups. In contrast, Diameter remained at 
a similar network size or demonstrated modest increase. This suggests that students’ sum-
mary revisions led to concept maps that had a slightly larger (Diameter), but more closely 
connected (Average Degree, Mean Distance) network. The results of these indices indi-
cated that their potential relationships with GC values. However, individual indices might 
not be enough to explain goal-oriented changes toward an expert-like model.

The semantic-related indices are not directly measured from a concept map but com-
puted by the comparison to the expert concept map. Since the semantic features of a stu-
dent concept map are inherently similarity measures, the semantic changes are discussed in 
the following section.

3S similarity measures by GC trends

Similar to the way we compared student GC to expert GC, we wanted to explore how if 
changes in these 3S indices moved students toward more expert-like values. Thus, we cal-
culated 3S similarity measures for each GC group (Table 6). In general, students’ concept 

Table 4  Trends in graph centrality similarity

SGCI similarity of the graph centrality in initial models, SGCF similarity of the graph centrality in final 
models

Group Change direction SGCI SGCF SGCF-SGCI

Group 1 Positive Positive total (n = 2) 0.494 0.425 − 0.069
Subtotal (n = 2) 0.494 0.425 − 0.069

Negative Low–medium (n = 6) 0.459 0.560 0.101
High (n = 2) 0.297 0.685 0.388
Subtotal (n = 8) 0.419 0.591 0.172

Total (n = 10) 0.434 0.558 0.124
Group 2 Positive High (n = 2) 0.687 0.433 − 0.255

Low–medium (n = 7) 0.722 0.787 0.065
Subtotal (n = 9) 0.714 0.708 − 0.006

Negative Low–medium (n = 10) 0.739 0.813 0.074
High (n = 3) 0.622 0.819 0.197
Subtotal (n = 13) 0.712 0.814 0.103

Total (n = 22) 0.713 0.771 0.058
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Table 5  3S indices by GC trends

Number of Words (NW), Number of Concepts (NC), Number of Relations (NR), Density (DE), Average 
Degree (AD), Mean Distance (MD), Diameter (DIA), High Negative Trend (N-H), Low-Medium Negative 

Group 3S index Attempt GC trend

N-H N-LM P-LM P-H Total

Group 1 Surface NW I 243.500 250.333 – 393.500 277.600
F 259.000 318.000 – 330.500 308.700
F–I 15.500 67.667 – − 63.000 31.100

NC I 56.500 57.500 – 81.000 62.000
F 63.500 74.167 – 74.500 72.100
F–I 7.000 16.667 – − 6.500 10.100

NR I 75.000 69.667 – 111.500 79.100
F 79.000 90.333 – 97.000 89.400
F–I 4.000 20.667 – − 14.500 10.300

DE I 0.046 0.045 – 0.033 0.043
F 0.039 0.037 – 0.036 0.037
F–I − 0.007 − 0.008 – 0.003 − 0.005

Structure AD I 2.522 2.397 – 2.614 2.465
F 2.403 2.425 – 2.551 2.446
F–I − 0.119 0.029 – − 0.063 − 0.019

MD I 4.058 4.881 – 4.410 4.622
F 4.037 4.272 – 4.451 4.261
F–I − 0.020 − 0.609 – 0.04 − 0.361

DIA I 11.500 14.500 – 13.000 13.600
F 13.500 17.167 – 13.000 15.600
F–I 2.000 2.667 – 0.000 2.000

Group 2 Surface NW I 242.333 291.500 274.857 270.500 277.591
F 239.000 304.800 297.286 339.500 296.591
F–I − 3.333 13.300 22.429 69.000 19.000

NC I 60.000 72.900 69.429 61.500 69.000
F 60.000 76.900 75.143 85.500 74.818
F–I 0.000 4.000 5.714 24.000 5.818

NR I 79.667 97.000 88.429 75.000 89.909
F 75.667 101.000 94.714 117.500 97.045
F–I − 4.000 4.000 6.286 42.500 7.136

DE I 0.043 0.037 0.038 0.040 0.039
F 0.042 0.035 0.035 0.032 0.036
F–I − 0.002 − 0.003 − 0.003 − 0.008 − 0.003

Structure AD I 2.449 2.549 2.464 2.422 2.497
F 2.411 2.528 2.463 2.603 2.498
F–I − 0.038 − 0.021 − 0.001 0.181 0.001

MD I 4.110 3.941 3.818 3.811 3.913
F 4.027 3.935 3.702 3.775 3.859
F–I − 0.083 − 0.006 − 0.116 − 0.035 − 0.054

DIA I 12.333 12.700 13.714 13.500 13.045
F 12.333 13.300 13.714 12.000 13.182
F–I 0.000 0.600 0.000 − 1.500 0.136
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maps became more similar to the experts’ in each of the three dimensions. Although some 
structure-related similarity measures showed some slight decreases.

In surface-related similarity measures, students with a high negative GC trend showed 
relatively strong similarity values and an increase from initial to final models in Similarity 
of the Number of Concepts (SNC) and Similarity of Density (SDE), while the positive GC 
trends yielded a high increase in Similarity of the Number of Relations (SNR). Overall, 
students who demonstrated a negative GC trend built a cohesive network (high SDE) due 
to the inclusion of appropriate number of concepts.

Structure-related similarity measures produced complex trends. For Group 1, Simi-
larity of Average Degree (SAD), Similarity of Mean Distance (SMD), and Similarity of 
Diameter (SDI) tended to have a high value in the negative GC trends, but some showed a 
decrease in values from initial to final models (i.e., SAD in the high negative trend and SDI 
in the low-medium negative trend). Group 2 showed more diverse patterns. SAD, SMD, 
and SDI levels were similar across the GC trends. The highest value of SAD was found 
in the high positive trend, SMD value was dropped in the high-negative trend, and similar 
to Group 1, SDI in the high-negative trend remained at an appropriate level from initial to 
final models, which meant that the high-negative trend tended to form a cohesive concept 
map with a size similar to an expert model.

Notably, GC is calculated based on a structural measure (degree centrality). Intrigu-
ingly, GC appeared to be strongly associated with the semantic-related similarity meas-
ures. In both groups, the high-negative GC trend students demonstrated a higher value 
and a greater increase in Conceptual Matching (CM) and Propositional Matching (PM), 
while the high-positive trend showed a highest similarity value and a greater increase in 
the Recall-C and Recall-P. The results indicated that the negative GC trends, especially the 
high-negative, related to students’ effort in revisions to include concepts and relations used 
in an expert model. It made sense that a higher Recall-C and Recall-P value was found in 
the high-positive GC trend since during revisions students in that trend tended to include 
more words (Table 5), likely including key concepts and key relations as directly suggested 
by the SMART feedback. However, overall concepts and propositions used in their summa-
ries tended to be less similar than students who demonstrated negative trends, which indi-
cating that they might simply adopt the suggested key words without much deliberation.

Validation of the descriptive findings

Statistical analysis

In order to examine these changes quantitatively, we conducted a series of paired samples 
t-tests. Given the small sample size of Group 1, we conducted these statistical analyses 
on only the Group 2 data. We computed two data sets: One used all cases (n = 22) and the 
other had 20 cases, dropping two high-positive cases as outliers. Post-hoc power analyses 
with effect size = 0.5, � = .05, and power = 0.7 and 0.8 suggested samples sizes of 21 and 
27, respectively. Thus, our sample of 22 is acceptable, but may be too small to detect more 
nuanced effects. Thus, caution is advised when interpreting the results.

Trend (N-LM), Low-Medium Positive Trend (P-LM), High Positive Trend (P-H)
Table 5  (continued)
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Table 6  Similarity measures by GC trends

Group 3S index similarity Attempt GC Trend

N-H N-LM P-LM P-H Total

Group 1 Surface SNC I 0.843 0.770 – 0.835 0.798
F 0.918 0.761 – 0.884 0.817
F–I 0.075 − 0.009 – 0.049 0.020

SNR I 0.915 0.783 – 0.779 0.809
F 0.837 0.794 – 0.845 0.813
F–I − 0.077 0.011 – 0.066 0.004

SDE I 0.794 0.759 – 0.909 0.796
F 0.937 0.720 – 0.802 0.780
F–I 0.143 − 0.039 – − 0.107 − 0.016

Structure SAD I 0.941 0.935 – 0.900 0.929
F 0.935 0.943 – 0.920 0.937
F–I − 0.006 0.008 – 0.020 0.008

SMD I 0.889 0.767 – 0.921 0.822
F 0.936 0.874 – 0.930 0.898
F–I 0.046 0.107 – 0.009 0.075

SDI I 0.885 0.761 – 0.791 0.792
F 0.964 0.627 – 0.791 0.727
F–I 0.080 − 0.135 – 0.000 − 0.065

Semantic CM I 0.227 0.180 – 0.145 0.182
F 0.523 0.229 – 0.227 0.287
F–I 0.296 0.049 – 0.082 0.105

PM I 0.059 0.016 – 0.012 0.024
F 0.368 0.065 – 0.044 0.122
F–I 0.310 0.049 – 0.032 0.098

RC I 0.450 0.267 – 0.350 0.320
F 0.700 0.617 – 0.750 0.660
F–I 0.250 0.350 – 0.400 0.340

RP I 0.117 0.056 – 0.100 0.077
F 0.500 0.461 – 0.617 0.500
F–I 0.383 0.406 – 0.517 0.423
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Similarity of the Number of Concepts (SNC), Similarity of the Number of Relations (SNR), Similarity of 
the Density (SDE), Similarity of the Average Degree (SAD), Similarity of the Mean Distance (SMD), Simi-
larity of the Diameter (SDI), Concept Matching (CM), Propositional Matching (PM), Recall-C (RC), and 
Recall-P (RP), High Negative Trend (N-H), Low-Medium Negative Trend (N-LM), Low-Medium Positive 
Trend (P-LM), High Positive Trend (P-H)

Table 6  (continued)

Group 3S index similarity Attempt GC Trend

N-H N-LM P-LM P-H Total

Group 2 Surface SNC I 0.832 0.844 0.843 0.891 0.846

F 0.870 0.850 0.859 0.831 0.854

F–I 0.038 0.005 0.016 − 0.060 0.007

SNR I 0.842 0.807 0.840 0.806 0.822

F 0.814 0.831 0.852 0.812 0.834

F–I − 0.029 0.025 0.012 0.005 0.012

SDE I 0.824 0.859 0.829 0.937 0.851

F 0.909 0.858 0.830 0.852 0.856

F–I 0.086 0.000 0.001 − 0.085 0.004

Structure SAD I 0.944 0.952 0.948 0.955 0.950

F 0.951 0.964 0.962 0.974 0.963

F–I 0.006 0.012 0.014 0.019 0.013

SMD I 0.967 0.933 0.919 0.875 0.928

F 0.918 0.936 0.913 0.931 0.926

F–I − 0.049 0.002 − 0.006 0.056 − 0.002

SDI I 0.853 0.816 0.817 0.964 0.835

F 0.853 0.821 0.838 0.849 0.833

F–I 0.000 0.004 0.021 − 0.115 − 0.002

Semantic CM I 0.533 0.452 0.384 0.402 0.334

F 0.306 0.377 0.330 0.174 0.437

F–I − 0.227 − 0.075 − 0.054 − 0.228 0.103

PM I 0.084 0.075 0.091 0.063 0.080

F 0.248 0.137 0.121 0.181 0.151

F–I 0.165 0.062 0.030 0.119 0.071

RC I 0.256 0.523 0.473 0.269 0.448

F 0.667 0.754 0.659 0.808 0.717

F–I 0.410 0.231 0.187 0.538 0.269

RP I 0.111 0.367 0.321 0.167 0.299

F 0.597 0.683 0.565 0.729 0.638

F–I 0.486 0.317 0.244 0.563 0.339
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Table 7 summarizes the paired sample t-tests. We used one-tailed t test since we hypoth-
esized one directional change in those measures. Graph Centrality (GC) showed significant 
change when two extreme cases were removed with t(19) = 1.881, p = .038. As to model 
indices, the Number of Concepts (NW) was only significant with a larger sample (n = 22). 
However, Density (DE) demonstrated a significance in both n = 22 and n = 20. DE may be 
an indicator of change that combines changes in NW and NR together. None of the struc-
ture indices yielded a significant change, implying various, multi-direction shifts happened 
in knowledge structure while students revised.

From the perspective of assessment, similarity measures are more important than model 
indices. GC similarity was improved from initial to final models, t(19) = 2.412, p = .013, 
indicating students built a knowledge structure similar to the expert structure. No surface 
similarity measure was significant in change. Out of the structural similarity measures, 
Average Degree (AD) similarity was only significant in change with the sample size of 22. 
As observed in the descriptive statistics (Table 6), similarity measures in the surface and 
structure dimensions did not show a significant pattern due to nonuniform changes in their 
indices. Conversely, a strong positive change in the similarities of the semantic-related 
measures was found. All semantic similarity changes were significant, including Concept 
Matching (CM), Propositional Matching (PM), Recall-C, and Recall-P in both n = 22 and 
n = 20, with p = .000. These results suggest that when the students revise their summaries, 
they wrote a summary with more semantically similar information to the expert’s summary.

Table 7  Paired samples tests for group 2

N = 22. p < .05. One-tailed t-test

Measure t-value df Sig. Excluding S62 and 
S71 (df = 19)

t-value Sig.

Model index Graph centrality (GC) 0.340 21 0.369 1.881 0.038
Number of words (NW) 1.397 21 0.088 0.996 0.166
Number of concepts (NC) 2.084 21 0.025 1.549 0.069
Number of relations (NR) 1.518 21 0.072 0.840 0.206
Density (DE) 2.972 21 0.004 2.534 0.010
Average degree (AD) 0.041 21 0.484 0.512 0.307
Mean distance (MD) 0.865 21 0.198 0.853 0.202
Diameter (DIA) 0.191 21 0.425 0.391 0.350

Similarity measure Similarity-GC 1.444 21 0.082 2.412 0.013
Similarity-NC 0.357 21 0.362 0.765 0.227
Similarity-NR 0.534 21 0.300 0.585 0.283
Similarity-DE 0.189 21 0.426 0.646 0.263
Similarity-AD 1.975 21 0.031 1.707 0.052
Similarity-MD 0.209 21 0.418 0.678 0.253
Similarity-DIA 0.069 21 0.473 0.347 0.366
Concept matching 5.385 21 0.000 4.936 0.000
Propositional matching 4.710 21 0.000 4.097 0.000
Recall C 6.882 21 0.000 6.453 0.000
Recall P 6.794 21 0.000 6.054 0.000



992 M. K. Kim, K. S. McCarthy 

1 3

Lastly, we tested the correlations between GC similarity change and semantic simi-
larity change, using the Group 2 data (n = 20). As depicted in Table 8, no correlation 
was found in the whole data (n = 20) or in the positive trend (n = 7). However, GC sim-
ilarity change in the negative trend (n = 13) demonstrated a positive correlation with 
the change in Concept Matching (CM) and Propositional Matching (PM), r = 0.622 and 
0.609, with p < .05, respectively. Given the effect size, a minimum of expected samples 
ranged from 13 (with power = 0.7) to 15 (with power = 0.8). Accordingly, the sample 
size of 13 was acceptable. A negative trend in GC values indicated an increase in GC 
similarity (meaning that student models become similar to an expert model in terms 
of GC) and in the overall quality of the models in regard to the used concepts and 
propositions.

Qualitative review: visual inspections

To further examine, we conducted qualitative analyses for three cases: the reference 
model (expert model), student 71 (who demonstrated the highest positive change in GC 
values), and student 41 (who uniquely showed great negative changes in GC values).

As Fig. 4 shows, the expert concept map forms a cohesive macrostructure in which 
many key concepts (the squares) weaved sub-chain structures together (Kintsch 1998). 
The local structures of the summary (i.e., a sentence or a paragraph) appear linear and 
goal-directed (Hay and Kinchin 2006; van Dijk and Kintsch 1983). In contrast, Student 
71 starts with a model that embeds no single key concept and unconnected line shapes. 
The student’s final summary create a complex net structure with few sub-chains and a 
unconnected tail, indicative of naïve epistemology (Hay and Kinchin 2006). Although 
this model embeds several key concepts, the key concepts do not serve as cohesion cues 
(van Dijk and Kintsch 1983) mapping local and distal constituents in the text (i.e., rela-
tionships between linear subgroups–sentences). While the student reduces the size of 
the model, the key concepts are located off to the side of the model.

Conversely, Student 41 draws a cohesive model that includes some key concepts 
standing toward the center of the network. The final model of student 41 demonstrates a 
goal-directed structure with most key concepts mapping sub-chain components similar 
to the expert model. This case shows that the higher degree of negative GC change in a 
model structure perhaps relates to the mental model change toward a proper knowledge 
structure of the text.

Table 8  Correlations between 
GC similarity change and 
semantic similarity changes

Concept matching difference (CMD) = concept matching value of the 
final model—concept matching value of the initial model. Similar for-
mula was applied to propositional matching, Recall-C and Recall-P as 
well. *p < .05, **p < .01

CMD PMD RCD RPD

Total (n = 20) 0.392 0.361 − 0.172 − 0.168
 Negative Direction (n = 13) 0.622* 0.609* − 0.043 − 0.003
 Positive direction (n = 7) − 0.128 − 0.196 − 0.430 − 0.481
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Discussion

In this current study, we investigated the potential of Graph Centrality (GC) as a global 
index that describes the overall quality of students’ knowledge structure elicited from 
their summary of a complex reading material. This initial exploratory review of the 
global index yielded that GC could serve as an indicator of students’ progression in 
writing a quality summary of the text.

Referring to changes in GC and the 3S indices, GC measures showed an interest-
ing trend that many students started with a larger GC value and shifted to a smaller 
GC value similar to the expert’s GC value. The negative GC pattern indicated that stu-
dents revised their summaries to embed a mental structure similar to the expert’s model. 
Although the 3S indices (i.e., the surface and structure indices) showed that the stu-
dents tended to include more concepts and relations and thus created a larger and more 
cohesive concept map than their initial version, there was no uniform change in those 
indices.

The following similarity measures confirmed that students in the negative trend con-
structed a mental representation toward the expert model, while their counterparts in the 
positive trend (an increase in the GC value) created a naïve model structure dissimilar 
to the reference when they revised their summaries. The extent of the changes in GC 
values in both directions indicated the strength of medication in the students’ mental 
representations. Overall, the negative trend in GC values meant an improved similarity 
of Density, meaning that the students’ model models became more cohesive.

A significant similarity increase was found in the semantic-related similarity along 
with the GC similarity. Especially, GC similarity change in the negative trend showed 

Fig. 4  Graphical representations of knowledge structure
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a positive correlation with changes in Concept Matching and Propositional Matching 
similarity, indicating that structural similarity change described by GC measures also 
explained the quality of the students’ mental models in terms of the inclusion of con-
cepts and propositions used by the expert model.

Implications

We discuss the implications of this study in theory, methodology, and pedagogy. Table 9 
recapitulates the model-based approach and graph centrality in comparison to the typical 
text-based approach that use lexical components to compute hundreds of indices (Crossley 
et al. 2016; Kyle et al. 2018).

Theoretically, the findings of the study espouse the assumptions of knowledge represen-
tations. Compared to the text-based approach, the model-based approach takes advantage 
of a concept map–externally re-represented learner mental model. Graph theory suggests 
that human mind reflected in a written summary of a text can be modeled in the form of a 
graphical representation (i.e., concept map) that in turn explains the quality of comprehen-
sion (Rupp et al. 2010; Schvaneveldt et al. 1985; Wasserman and Faust 1994). GC as an 
index of mental models is only available for model-based ASE tools. GC measures are able 
to indicate the overall quality of individuals’ mental representations, and the changes in 
GC measures denotes whether students develop appropriate understanding of the text when 
reconfiguring their mental structure.

Methodologically, the model-based approach provides more elaborated mental model 
dimensionality than the text-based approach (i.e., three vs. two dimensions). The 3S 
dimensions have been significantly explained by corresponding indices in previous vali-
dation studies (Kim 2015; Ifenthaler 2009). Upon such an empirically tested framework, 
we can compute Graph Centrality (GC), using the degree of individual concepts that are 
derived from the network analysis. In spite of its computational simplicity, GC can serve 
as a global index that describes a holistic structure of a mental model. Specifically, GC 
measures explains the extent to which students develop a mental structure that takes an 
appropriately complex net structure (macrostructure) connecting well-defined chain-type 
structures (microstructure). Also, GC as a global index shows high correlations with trends 
in the surface and semantic indices. Li et al. (2017) warn that many studies have shown no 
effect of ASEs due to the use of a wide variety of measures. The validated 3S structure of 
the model-based approach can provide a reliable assessment framework, and GC can serve 
as a cross-reference to diagnose students’ growth in their understanding of the texts.

Pedagogically, GC computing formula can be easily added to model-based automated 
summary evaluation (ASE) tools such as SMART. GC can serve a feedback index that 
inform students of their learning progression in writing an expert-like summary on top of 
the existing feedback information–learning progression feedback (Fonger et al. 2018; Nad-
olski and Hummel 2017). Given the trends explained by GC values, one can use the 3S 
indices and similarity measures to further detail the characteristics of individual students’ 
mental representations while they revise summaries. In other words, we can create two-
step formative feedback. At the first step, GC enables us to provide students with the infor-
mation of their general progression toward an expert-like summary. This feedback informa-
tion is an overall judgement similar to latent semantic analysis (LSA) and the percentage 
of n-gram co-occurrences. LSA determines related words based on their locations in a 
hypothetical space and thus is not able to specify exact concepts and relations in the text 
(Deerwester et al. 1990). N-gram stands for a contiguous sequence of n items from a given 



995Using graph centrality as a global index to assess students’…

1 3

Ta
bl

e 
9 

 C
om

pa
ris

on
 o

f m
od

el
-b

as
ed

 a
nd

 te
xt

-b
as

ed
 a

pp
ro

ac
he

s t
o 

su
m

m
ar

y 
an

al
ys

is

M
od

el
-b

as
ed

Te
xt

-b
as

ed

LS
A

M
ac

hi
ne

-tr
an

sl
at

ed

To
ol

A
K

O
V

IA
 (I

fe
nt

ha
le

r 2
01

4)
; G

IS
K

 
(K

im
 2

01
8)

; H
IM

A
TT

 (P
irn

ay
-

D
um

m
er

 a
nd

 If
en

th
al

er
 2

01
1)

; 
SM

A
RT

 (K
im

 e
t a

l. 
20

19
)

C
oh

-M
et

rix
 (M

cN
am

ar
a 

et
 a

l. 
20

14
); 

SE
M

IL
A

R
 (R

us
 e

t a
l. 

20
13

); 
Su

m
m

ar
y 

St
re

et
 (W

ad
e-

St
ei

n 
an

d 
K

in
ts

ch
 2

00
4)

; O
nl

in
e 

Su
m

m
ar

y 
A

ss
es

sm
en

t a
nd

 
Fe

ed
ba

ck
 S

ys
te

m
 (S

un
g 

et
 a

l. 
20

16
);

cr
ow

d-
so

ur
ce

 su
m

m
ar

y 
ev

al
ua

tio
n 

(L
i e

t a
l. 

20
18

)

RO
U

G
E 

(L
in

 2
00

4)
; P

ry
Ev

al
 (G

ao
 

et
 a

l. 
20

19
); 

TA
A

LE
S 

(K
yl

e 
et

 a
l. 

20
18

)

A
ss

es
sm

en
t t

ar
ge

t
C

on
ce

pt
 m

ap
Te

xt
-b

as
e 

(w
or

d,
 se

nt
en

ce
, a

nd
 d

is
co

ur
se

 le
ve

ls
)

D
im

en
si

on
Su

rfa
ce

Su
rfa

ce
St

ru
ct

ur
e

D
ee

p 
(s

itu
at

io
na

l m
od

el
)

Se
m

an
tic

G
ra

ph
 c

en
tra

lit
y

A
pp

lic
ab

le
N

/A
K

ey
 m

ea
su

re
3S

 in
di

ce
s

LS
A

 c
os

in
e

N
-g

ra
m

 c
o-

oc
cu

rr
en

ce
K

ey
 a

dv
an

ta
ge

C
on

ce
pt

 m
ap

s a
s f

ee
db

ac
k 

in
fo

r-
m

at
io

n;
 d

ee
p 

co
m

pr
eh

en
si

on
 

fo
cu

se
d;

 m
ul

ti-
le

ve
l f

ee
db

ac
k 

(e
.g

., 
tw

o-
ste

p 
fe

ed
ba

ck
)

Fe
ed

ba
ck

 o
n 

w
rit

in
g 

sty
le

s (
e.

g.
, c

on
te

nt
 w

or
d 

ov
er

la
p,

 le
xi

ca
l d

iv
er

si
ty

, a
nd

 c
oh

es
iv

e 
te

xt
 st

ru
ct

ur
e;

 o
ve

r a
 h

un
dr

ed
 

lin
gu

ist
ic

 a
nd

 d
is

co
ur

se
 m

ea
su

re
s.



996 M. K. Kim, K. S. McCarthy 

1 3

text (He et al. 2009; Lin 2004). Together with a generic feedback on GC, a more elabo-
rated feedback information can be created, referring to the 3S indices in terms of what con-
cepts and relations are missing and how to organize the summary cohesively. Thus, model-
based metrics and GC may be a powerful tool for automatic writing evaluation (AWE) and 
learning analytics more generally. Automated writing evaluation and feedback has largely 
focused on improving the writing itself. While this is an important endeavor, it makes these 
tools less suitable for content courses. Writing and revising summaries with GC-driven 
feedback supports students in identifying key concepts and relations prior to class so that 
they can be prepared to engage in more meaningful activities. In addition, instructors can 
refer to GC values for student summaries to evaluate the class-level and the student-level 
progressions in real-time, which will be much simpler than looking a combination of the 
3S indices together. That is, concept maps with a GC value could serve as a useful at-a-
glance dashboard feature so that instructors could more easily spot outliers or patterns that 
need to be addressed. For example, initial GC values can serve for the early detection of 
students who lack pre-existing understanding of the text, and the changing direction of GC 
values (i.e., positive trend over the expert’s value) can signify a naïve epistemology of stu-
dents who may need further assistance of instructors.

Limitations and suggestions

Despite promising findings of this initial work, more studies are required to fully validate 
the value of GC index for ASE. One limitation is the small number of cases. The current 
study used 32 cases to examine the potential of GC as a global index. Admittedly, a single 
case study with small sample size is insufficient to justify the index’s validity. The utility 
value of the GC index needs to be calibrated by means of repeated tests with different types 
of texts, various expert models, and larger samples of student summaries. Future studies 
using a large sample size can allow us to break down the cases according to the GC trends 
and test a significance of the changes in the 3S indices and the similarity measures per each 
GC trend with sufficient power.

Another limitation is the research context. This study used summaries of the texts in 
the areas of learning science from a graduate-level course. A knowledge structure could be 
positioned in summary in different ways according to the contexts, including disciplines, 
the genre of the texts, sizes of the corpus, and student levels. For example, K-12 students 
in science classrooms could write a summary in different styles, depending on the genre of 
reading materials. Students might summarize sequencing events in cause-effect relation-
ships or scientific definitions and informational reports. The former could take more linear 
and chain structures, while the latter became more net structures. Both what information 
should be foregrounded in the mental model and how that information is conveyed in writ-
ing are dependent upon the conventions and demands of different genres and disciplines 
(e.g., Goldman et al. 2016; León et al. 2006). Writing styles in various genres and topics 
of texts could engender different forms of knowledge structures embedded in summaries.

In addition to theoretical differences across disciplines, there are also methodologi-
cal considerations. In the present experiment, students were asked to write summaries of 
approximately 250–300 words. Longer summaries are likely to contain a greater number of 
concepts and relations and thus create a bigger and more complex concept map. Accord-
ingly, we need to test and validate GC across a greater variety of summary lengths and 
explore how properties of the concept map might change across length constraints.
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Lastly, GC values may depend on writing styles and ASE tools’ modeling algorithms. 
The experts’ models used in this study generated GC values less than 0.1, which met the 
goal-orientation threshold suggested by the literature (Hay and Kinchin 2006; Yin et  al. 
2005). However, depending on the functions to extract concepts and relations from texts 
and techniques to form a concept map, ASE tools may create different mental representa-
tions, using the same written summary. Accordingly, future studies need to explore GC 
values calculated from data derived from other model-based ASE tools so as to see if GC 
trends are similar across ASE platforms as suggested by the theory.

Conclusion

The present case study explored the use of Graph Centrality (GC) as a global index of 
students’ mental model quality and, in particular, students’ mental model change as they 
wrote and revised summaries in SMART. Analyses revealed that GC change (i.e., nega-
tive vs. positive change) related to how the students modified the wholistic structure of 
their mental models. The graph centrality index may serve as a way to better character-
ize these important qualitative shifts in mental model structure that may not be immedi-
ately apparent in the 3S indices. Methodologically, this study suggests that the GC index 
could be beneficial to describe the overall change of a student mental model along with the 
3S indices (e.g., surface, structure, semantic). Pedagogically, the GC index available in a 
formative assessment and feedback technology like SMART could track the overall mental 
model trajectories in real-time and inform students of the quality of their understanding of 
the text and help instructors to deliver targeted feedback and support.
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