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Abstract The purpose of this study is to develop a better understanding of technologies

that use natural language as the basis for concept map construction. In particular, this study

focuses on the semantic relation (SR) approach to drawing rich and authentic concept maps

that reflect students’ internal representations of a problem situation. The following dis-

cussions are included: (a) elaborate classifications of concept map approaches that use

natural language responses (e.g., student essay); (b) the SR process of eliciting concept

maps, established using studies on domain ontology; and (c) a more effective way to

identify key concepts and relations from a concept map generated by the SR approach. By

comparing the SR approach to other promising concept map technologies that constrain the

analytical process in various ways, this study suggests that the SR approach is likely to

draw richer and more authentic concept maps. In addition, this study suggests that a certain

combination of graph-related metrics be used to filter key concepts from a SR concept map

drawn from a written text of 350–400 words. The methods suggested in the study could be

used to design an automated assessment technology for complex problem solving and to

develop adaptive learning systems.

Keywords Assessment technology � Concept map � Mental model �
Adaptive learning � Semantic relation

Introduction

Teachers need a precise but efficient way to assess student applications of understanding

and complex problem solving. A simple knowledge-based (e.g., multiple choice or short

answer) test is not sufficient to measure a learner’s ability to solve complex problems

(Champagne et al. 2000; Duschl 2003; Quellmalz and Haertel 2004); indeed, assessing
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cognitive models of complex problem-solving knowledge and skills, such as scientific

inquiry, can be challenging.

In educational research, the concept map technique has been employed as a way to

represent and analyze a student’s understanding of a complex problem situation (Clariana

2010; Novak and Cañas 2006; Spector and Koszalka 2004; Villalon and Calvo 2011;

Zouaq et al. 2010) and used for educational applications that transform traditional

instruction into student-centered adaptive learning (Azevedo 2011; Schwartz et al. 2009).

However, the use of concept maps for educational assessment is relatively new, and the

best approach for eliciting concept maps is still a matter of debate (Kim 2012a; Taricani

and Clariana 2006; Zouaq et al. 2011a). Failure to use an appropriate and reliable concept

map technique could disqualify a study or, more seriously, generate distorted information.

To address this issue, the primary goal of this study is to build a better understanding of the

nature of concept map technologies, particularly those that use natural language responses

(e.g., student essay) as their sources.

Studies have explored various types of concept map techniques, including traditional

and state-of-the-art technologies (Ifenthaler et al. 2009; Kim 2012a, b; Shute et al. 2009;

Taricani and Clariana 2006). These techniques have been classified according to two

criteria: graphical approach and natural language processing. The graphical approach (e.g.,

Cmaptools, Novak and Cañas 2006; Dynamic Evaluation of Enhanced Problem-Solving

(DEEP), Spector and Koszalka 2004) allows students to draw their concept maps directly,

adding link labels as annotated relations (e.g., ‘‘is associated’’ and ‘‘leads to’’) to complete

the representation. Natural language processing features various methods (word association

technique, Geeslin and Shavelson 1975; paired-comparison, Curti and Viator 2000;

ordered recall, Frederick 1991; structural formation technique, Scheele and Groeben 1984;

card sorting procedures, Frederick et al. 1994; and ordered tree technique, Naveh-Benja-

min et al. 1986) and various technologies (KU-Mapper, Clariana et al. 2009; ALA-Map-

per-Analysis of Lexical-Reader, Taricani and Clariana 2006; ALA-Reader, Clariana et al.

2009; and Text-Model Inspection Trace of Concepts and Relations (T-MITOCAR), Pirnay-

Dummer and Ifenthaler 2010). Most of these tools enable students to judge directly the

relation of a set of pre-defined concepts (e.g., KU-Mapper and ALA-Mapper) whereas

some (e.g., Analysis of Lexical Aggregates-Reader (ALA-Reader) and T-MITOCAR)

utilize written text, instead of pre-defined words, to create proximity data. The latter is

called the open-ended approach (Clariana et al. 2009).

Kim (2012b) focused on the open-ended approach, arguing that language plays a critical

role in building and mediating an individual’s understanding and, furthermore, that using

language as the basis for constructing a concept map is likely to represent more accurately the

meaning and structure of the targeted internal knowledge (Kim 2012a; Pirnay-Dummer et al.

2010). Kim (2012b) selected two prominent technologies (i.e., ALA-Reader and T-MITO-

CAR) and compared the technologies to an alternative semi-automated method devised to

distill the semantic relations that are the underlying relations between two concepts expressed

by words or phrases. The approach involved diverse types of relations of concepts beyond the

typical noun–verb–noun relation form, including genitives (e.g., teachers’ participation),

prepositional phrases attached to nouns (e.g., technology in school classrooms), or sentences

(e.g., Emerging new media have always led to instructional changes). However, the theo-

retical and methodological foundations underlying the two technologies and the alternative

were not clarified, and the alternative method was not described in enough detail to portray

how its attributes have the potential to create a better concept map technology.

The goals of this study were to extend attention to this alternative. First, this study

established elaborate classifications of the ‘‘open-ended approach,’’ detailing the
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underlying assumptions and technical characteristics of a particular technology. Previous

studies have rarely illustrated or compared the underlying linguistic assumptions and

analytical methods of ‘‘open-ended’’ tools; in fact, no such studies were found in our

literature review, but comparison of different tools facilitates progress in this area.

Second, we framed the approach known as ‘‘Semantic Relation’’ (SR) to guide the

development of an automated concept map technology. This frame is based on the domain

ontology in which concept map technologies are used to extract relevant knowledge

structures from plain text documents (Concept Map Modeling (CMM), Villalon et al. 2010;

Villalon and Calvo 2011; TEXCOMON, Zouaq and Nkambou 2008, OntoCmap, Zou-

aqet al. 2011a).

Third, by comparing the SR approach to other promising concept map technologies that

constrain the analytical process in various ways, this study argues that deep semantic

structures (key concepts and relations) can be identified from naturalistic and rich knowl-

edge representations from corpora. Various ways to identify deep structure were explored.

This study can enhance the use of concept maps in adaptive learning environments, such

as technology-enhanced formative assessment and intelligent tutoring systems. Detecting

the qualities of learner understanding as precisely as possible is critical to providing

meaningful and productive instructional feedback suited to individual learning needs

(Phelan et al. 2009; Shute and Zapata-Rivera 2007; Yorke 2003).

Mental models, natural language representations, and concept maps

The theory of mental models explains that a person builds his/her understanding by men-

tally representing certain aspects of external situations that correspond to his/her precon-

ceptions (Johnson-Laird 2005a, b; Norman 1986; Seel 2001, 2003). In that sense, the

progress of mental models within an individual can be considered changes in knowledge

structure toward an expected or desired state (Anzai and Yokoyama 1984; Collins and

Gentner 1987; Seel 2001, 2003, 2004; Seel and Dinter 1995; Smith et al. 1993; Snow 1990).

Problem solving includes conceptualizing a problem space as a more structured under-

standing and integration of various ideas and concepts related to a problem (Dochy et al.

2003; Jonassen et al. 1993; Newell and Simon 1972; Spector and Koszalka 2004). Indeed,

conceptualization of a problem space is a kind of mental model of a problem situation.

As a structural knowledge representation that consists of concepts and relations (Cla-

riana 2010; Narayanan 2005; Novak and Cañas 2006; Spector and Koszalka 2004), a

concept map can effectively assess a student’s conceptualization of a problem space.

Concept maps have been used to elicit cognitive representations of an individual’s

knowledge of a domain in which concepts are interrelated (Funke 1985; Narayanan 2005;

Novak and Cañas 2006; Schvaneveldt 1990). The data used for concept maps are generally

collected from interviews or texts. Text-based data collection is economical in terms of

time and effort (Brown 1992) and is based on techniques that avoid recall bias and

potentially leading or misleading questions (Axelrod 1976; Pirnay-Dummer et al. 2010).

Language is a symbol system, and mental models result from both perceptual and

linguistic comprehension (Garnham 1987, 2001; Greeno 1989; Johnson-Laird 2005a, b;

Seel 1999, 2001). As Fig. 1 illustrates, a mental model (1. Conceptual structure) is

probably not the same as an internal linguistic semantic structure (2. Internal semantic

structure) but embeds the properties of semantic representations (Bierwisch and Schreuder

1992; Kamp 1981; Kintsch 1994; Kintsch and van Dijk 1978; Levelt 1989). Natural

language responses provide an individual’s verbalized descriptions about a problem
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situation and feasible solutions (3. Lexical representations). Concept maps are external

knowledge representations commonly elicited from natural language responses. The

internal semantic structure is assumed to provide the underlying structure embedded in a

visually rendered concept map.

Approaches to constructing concept maps can be characterized as ways of identifying

concepts and determining the relations among those concepts. Defined as the associated-

ness of concepts in a text, semantic relation is a general term that does not indicate the

specific nature of the relations that might be identified. However, this study operationalizes

the term semantic relation (SR) as a way to extract underlying relations from deeper

syntactic analysis. This study focuses on linguistic semantics, particularly Montague’s

(1974) semantics. His seminal work was to establish a systematic connection between

syntax and semantics. From his point of view, natural language is a formal language based

on predicate logic (Janssen 2012). The meanings in natural language expressions are

determined by ‘‘a function of the meanings of its parts and of the way they are syntactically

combined’’ (Partee 1984, p. 281).

Approaches to eliciting concept maps

The classification of concept map approaches in this study used the following procedure:

First, promising concept map technologies that use natural language expressions as inputs

were selected. The selection was based on three criteria: (a) technology invented within the

last 5 years (i.e., since 2008); (b) technology with an accessible publication depicting its

underlying mechanisms; and (c) technology eliciting a concept map on the basis of graph

theory (Wasserman and Faust 1994). Second, selected technologies, related publications,

Fig. 1 The relations of internal and external representations
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and technical documents were deeply analyzed. Last, upper-level characteristics that likely

explain and distinguish the technologies were identified. The selected concept map tech-

nologies were ALA-Reader, T-MITOCAR, CMM, and OntoCmap.

The following questions guided the classification of concept map approaches:

• How do they distill concepts from a written response?

• How do they identify key concepts from a list of concepts?

• How do they identify relations between concepts?

This study grouped concept-mapping approaches into three classifications based on how

propositional relations are treated: adjacent relation (AR), proximity relation (PR), and

semantic relation (SR). In particular, the SR approach was determined to be an advanced

way to create more authentic and complex concept maps when natural language is used for

learner input.

Adjacent relation (AR)

AR is a spatial model because it assumes that closely connected concepts (words) tend to

be physically closer to each other within a text (see Table 1). According to this model, verbs

and other annotating words do not matter in a knowledge structure. When there is no anno-

tated account between nouns, their relations are ‘‘implicit.’’ Certainly, identifying concept–

concept within a text is far easier than counting concept-annotation (e.g., verb-concept)

structures. The AR method is simple; any two adjacent concepts in a text are considered

strongly associated with each other, while concepts farther from each other are considered

less directly associated. The former relationship has a strength value of 1, and the latter is

coded as 0 (Clariana et al. 2009). For example, in the sentence ‘‘The success of active

learning is determined by individuals’ active engagement and contribution,’’ there are

maximum four identified relations: (a) success and leaning; (b) learning and individual;

(c) individual and engagement; and (d) engagement and contribution.

ALA-Reader (Clariana and Koul 2008) is a tool designed to capture relations according

to the adjacent relations of concepts (nouns) in a text. However, for parsimonious results,

this technology only identifies a predefined set of concepts (up to a total of 30 nouns) in a

student’s text response. In an AR analysis, the two concepts need not be located in the

same sentence. Consequently, the whole text is treated as one space, without any separation

between sentences. AR cannot capture directional information about the relations because

it is not concerned with annotating words (i.e., linking words such as verbs).

Table 1 Classification of concept-mapping approaches

Adjacent relation (AR) Proximity relation (PR) Semantic relation (SR)

Approach Implicit Implicit Explicit

Origin of relation Spatial model Spatial model Syntactic model

Relation judgment Adjacency Distance Syntactic/semantic

Direction of relation Non-directional only Non-directional only Directional/non-directional

Exemplary tool ALA-reader T-MITOCAR
CMM

OntoCmapa

ALA-Reader analysis of Lexical-Reader, T-MITOCAR text-model inspection trace of concepts and relations,
CMM concept map mining, and OntoCmap
a OntoCmap is not open to the public
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Proximity relation (PR)

Although proximity is commonly used as a general term to denote similarity, relatedness,

and distance between concepts (Schvaneveldt 1990), PR is an approach to measuring the

strength of relations according to the distance between concepts in a text (see Table 1).

Because the relations are weighted according to the geometric distance between a pair of

concepts, the PR approach is a spatial model (Schvanevldt et al. 1989) that assumes that the

more two concepts are associated with each other, the closer they will be within or across

sentences (Pirnay-Dummer and Ifenthaler 2010). The spatial model assumes that all

concepts in a written artifact are basically associated with one another but have different

degrees of distance. Due to the relations determined by spatial distance rather than

semantic relation, PR does not capture logical information about relations. In the sentence

used above (‘‘The success of active learning is determined by individuals’ active

engagement and contribution’’), PR could possibly extract ten pairs from five concepts

(i.e., success, learning, individual, engagement, and contribution).

The PR approach must include a procedure for reducing the information in the network in

order to identify meaningful relationships, for all possible pairs of all concepts can occur in a

network. T-MITOCAR (Pirnay-Dummer and Ifenthaler 2010) is the technology used for the

PR approach. The algorithms of T-MITOCAR generate distance data directly from a text

using the number of words between two concepts. Detailed information about T-MITOCAR

can be found in Pirnary-Dummer and Ifenthaler (2010). Like the ALA-Reader, the current

version of T-MITOCAR limits the number of concepts to a total of 30 most frequent nouns.

Another tool is CMM (Villalon et al. 2010; Villalon and Calvo 2011). Unlike T-MI-

TOCAR, this tool determines related words based on their locations in a hypothetical space

modeled by a statistical method. Notably, the relations are not directly interpretable, so this

approach is characterized as implicit. A distinguishable feature of the tool is its concept

reduction algorithm, latent semantic analysis (LSA), which is a statistical dimensionality

reduction technique (see Deerwester et al. 1990; Landauer et al. 1998). Briefly speaking,

LSA locates extracted words in a multi-dimensional space using a method similar to factor

analysis. LSA is usually based on a large corpus, but Villalon and Calvo (2009) used the

technique to analyze a single text to generate a concept map.

Semantic relation (SR)

This study emphasizes the SR approach as a way to obtain richer, more authentic concept

models, for the atomic units of meaning are clearly indicated by assigning a logical sense

to the associated elements of a sentence (Zouaq et al. 2011b). Semantic relations are the

underlying relations between two concepts expressed by words or phrases (Beamer et al.

2008; Girju et al. 2009). SR is similar to the general meaning of a proposition, in terms of

the meaning of words, but SR involves diverse types of concept relations beyond the

typical noun–verb–noun relation form (Adriana et al. 2004; Cañas 2009; Girju et al. 2009).

Types of SR include complex noun compounds (e.g., ‘‘knowledge analysis’’), genitives

(e.g., ‘‘teachers’ participation’’), prepositional phrases attached to nouns (e.g., ‘‘community

of practice’’), or sentences (e.g., ‘‘Emerging new media have always led to instructional

changes’’). The example sentence (‘‘The success of active learning is determined by

individuals’ active engagement and contribution’’) is deconstructed into the following units

of meaning, each of which is assigned a semantic relation in parentheses (Adriana et al.

2004; Girju et al. 2009): (a) success of a active learning (Attribute-Holder); (b) individual’s

active engagement (Agent); (c) individual’s active contribution (Agent); (d) engagement
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and contributions (Associated With); (e) success is determined by active engagement

(Cause-Effect); and (f) success is determined by active contributions (Cause-Effect).

As Table 1 summarizes, semantic relations are explicit in the sense that the meanings in

a sentence are determined by the syntactic combination of its parts (syntactic models)

(Montague 1974; Partee 1984; Zouaq et al. 2011b). In addition, the meaning of the rela-

tions is a core feature in the SR approach, helping define the direction of each relation. For

example, in the phrase ‘‘learning progression toward expert level,’’ the first concept (i.e.,

learning progression) is going in the direction of the second concept (i.e., expert level).

We assume that mental models are effectively depicted in integrated semantic networks

and that core meanings (i.e., deep structures) can be filtered through the analysis of the

semantic relations (i.e., surface structures). More recently, linguists have come to recognize

that a sentence includes both a surface and an underlying deep structure, and that denotation

and connation are relevant to semantic analysis. According to Katz and Postal (1964), the

surface structure (i.e., syntax) characterizes the shape of the sentence, while the semantic

information of the deep structure accounts for a substantial part of the meaning (Bransford

and Franks 1972; Bransford et al. 1972; Bransford and Johnson 1972; Fodor et al. 1974).

To the best of our knowledge, the state-of-the-art technology that best employs the SR

approach is the OntoCmap (Zouaq et al. 2010, 2011a, b). The purpose of the tool is not to

elicit or assess student models but to obtain the domain ontology by filtering key elements

from the concept maps elicited from plain text documents in a given domain. In spite of its

distinct goal, the embedded ideas and mechanisms needed to build concept maps are very

similar to those envisioned in the study. Thus, the current study developed the SR approach

based on the OntoCmap research while the goals and mechanism details focused on

formative assessment and instructional support. Unfortunately, because the OntoCmap is

not accessible to the public, its analysis was not included. Note that the SR approach in this

study is neither semi nor fully automated technology. This study first defined a sequence of

phases and associated mechanisms for building concept maps; then the semantic relations

were obtained manually (except for the concept map metrics). The following sections

briefly introduce the process depicted in Fig. 2.

Phase 1: identify concepts

The first step is to analyze the syntax of sentences and distill concepts from a written

response based on a set of rules:

• Rule 1: A concept can take one of several noun forms (Girju 2011; Girju et al. 2009,

2010; Moldovan and Girju 2001; Murphy 2003; Rijkhoff 2002): (a) one-word noun,

(b) noun compounds, and (c) noun and adjective pre-modifier.

• Rule 2: Distilled concepts (nouns) are primarily stored as singular.

• Rule 3: Pronouns are not replaced with the nouns they represent (Kim 2012b).

The distilled concepts include three types of nouns (Girju 2008): one-word nouns (e.g.,

practice, technology, and classroom); noun compounds that consist of the head noun and

noun modifier(s) (e.g., ‘‘bus station’’ and ‘‘technology implementation’’); and noun and

adjective pre-modifiers (e.g., ‘‘technological intervention’’).

Phase 2: build concept library

Once concepts are distilled from the text, the concepts are stored for the individual

response and then all concepts from all responses are grouped based on synonym sets. This
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study argues that an assessment for a certain problem situation requires a situation-specific

set of synonyms. The sets can be built based on two sources: general synonym library and

situation-specific terms to address polysemy. Although each concept is basically regarded

as having a unique meaning, concepts sharing the same meaning or very similar meaning

in the domain should belong to a single category (Moldovan and Girju 2001). For example,

‘‘chalkboard’’ could be contextually synonymous with ‘‘blackboard’’ and ‘‘whiteboard.’’

Phase 3: identify semantic relations

Identifying semantic relations is the most important step because it provides information

used for creating concept maps. This step is to select pairs of concepts, Ci and Cj, linked by

a particular semantic relation. The principles determining the pairs of concepts are

established according to linguistics studies (Downing 1977; Girju 2008; Hearst 1992; Levi

1978; Moldovan and Girju 2001). The semantic relations are determined by syntactic

patterns classified as phrase-level patterns and sentence-level patterns (Girju 2008; Hearst

1992). Zouaq et al. (2011b) divided the patterns into modifiers and core syntax.

First, phrase-level patterns (modifier patterns) include prepositional phrases attached to

nouns (noun phrases) or s-genitives. For example, ‘‘the library of the school’’ is interpreted

as having a semantic relation of ‘‘part-whole.’’ A list of eight prepositions (of, for, in, at,

on, from, with, and about), as compiled by Lauer (1995), plays a critical role in deter-

mining the semantic relations based on algorithmic patterns. Second, the semantic relation

is determined by the sentence (core patterns). For example, in the sentence ‘‘the school has

a new technology,’’ the relation of ‘‘school’’ and ‘‘technology’’ is categorized as posses-

sive. Moldovan and Girju (2001) defined twenty-two types of semantic relations. However,

a natural language expression is not always a simple sentence, and multiple patterns can

exist in a single sentence. Thus, this study added fourteen rules for determining semantic

relations at the sentence level (see Appendix A).

Phase 4: determine the direction of relations

This phase is to determine the directional relations between two paired concepts, if nec-

essary. The relation in which the path begins with the first concept and ends with the

second concept is classified as follows: subject to object; source to target; from A to B;

cause to effect; mutual relation (the first to the second); A belongs to B or B includes A;

superior to inferior; A exists for B; A serves for B; tool to object; person to object; nouns

linked with eight prepositional modifiers (the first to the second).

Fig. 2 The process of the Semantic Relation (SR) approach
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Phase 5: compute concept map metrics

Finally, in order to construct a concept map, all concepts distilled from a text response are

listed and paired with one another in a matrix. The paired concepts that are semantically

related are given a vector value of 1 in an n-by-n concept array, where n is the number of

concepts; otherwise, the vector value is 0. In addition, to include directional information,

the first concept (Ci) is considered the source, and the second concept (Cj) becomes the

target. A semantic analysis technique, such as social network analysis based on graph

theory, can generate a variety of concept map metrics that characterize an individual

concept map—an individual’s knowledge representation (Wasserman and Faust 1994).

Some metrics could be indicators used to find the deep structure (i.e., key concepts and

relations) emerging from the whole semantic structure.

Methods

This study is grounded on two assumptions similar to the ideas of Zouaq et al. (2011a, b): (a) the

SR approach is one way to elicit an authentic and rich concept map from a text response, and

(b) the core meaning (key variables and propositions) can be filtered from an authentic concept

map based on semantic relations. In order to test the assumptions, this study compared concept

maps constructed using the SR approach with those from CMM, T-MITOCAR, and ALA-

Reader, exemplary technologies for the PR and AR approaches. For the second assumption,

drawing on various concept map matrix measures, different sets of key concepts were filtered

and compared with the set of concepts identified by human experts (i.e., standards) in order to

develop a matrix measure that could reliably and accurately filter core meanings. Notably, the

interpretation of comparison results should be limited to the selected technologies and carefully

generalized to the associated approaches because each technology has particular pros and cons.

Participants

Participants included seven professors teaching at six major universities in the United

States. As panel members, the professors were asked to complete Delphi surveys to

establish a reference model for a complex problem related to technology implementation in

K-12 schools. The professors were selected based on several pre-set criteria: (a) professor

in Instructional Technology or related fields; (b) professor teaching a course titled

Instructional Design or Technology Integration in Learning; (c) professor researching

technology-integration in classroom learning; and (d) professor whose doctorate was

received at least 3 years earlier. An invitation letter was sent out to prospective professors,

and seven of the professors agreed to participate.

The problem-solving task

The panel was asked to respond to a complex problem situation using natural language.

The task simulated participation in an evaluation project, the purpose of which was to

investigate an unsuccessful project that had as its goal to adapt a technology (i.e., a tablet

PC) for classroom teaching. In order to elicit the professors’ knowledge in detail, the

questions asked them to describe in detail the concepts, issues, factors, and variables likely

to have contributed to the result, that the introduction of tablet PCs had very little effect on

the instructional practices employed in the classes (see Appendix A).
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Reference model

The reference model, in the form of a written response, was created according to the Delphi

survey procedures (Goodman 1987; Hsu et al. 2007; Okoli and Pawlowski 2004), and the

panel selected 23 key concepts—gold standards—from all of the concepts in the reference

response. The Delphi survey included three rounds to refine the reference response (see

Table 2). In the first round, the participating experts created their own responses to the

problem. All responses from the panel were consolidated. In the second round, a document

including all statements and a list of identified concepts was sent back to the panel. The

experts were asked to add their comments to the listed statements and concepts and to rank

them. After the second survey, the researcher created a final list of ranked statements and

concepts. Based on the summary, a draft of the reference model was created. In the final

round, the results of the second survey were sent to the panel and revised according to their

comments.

Analysis procedure

Constructing concept maps

A total of eight responses, including (a) the initial responses of seven professors and (b) the

reference model, were used for the study. Concepts and relations in the SR approach were

manually distilled according to the procedure described earlier. Competitive data were

created using the CMM, T-MITOCAR, and ALA-Reader. The ALA-Reader tool required a

predefined list of concepts in order to distill the relations of the concepts from the text. The

23 terms (concepts) defined by the expert panel were used for the ALA-Reader. The data

took the form of a matrix and were transformed into concept maps processed by NodeXL

version 1.0 software (http://nodexl.codeplex.com/).

Identifying key concepts

This study suggests that the core elements of a concept map can be filtered from an

authentic concept map elicited using the SR approach. Some metrics calculated from

graph theory can be used to weigh individual concepts and then select more important

elements. For example, Zouaq et al. (2011b) used metrics such as Degree, Betweenness

Centrality, and PageRank (see Wasserman and Faust 1994), which yield values between 0

Table 2 Delphi procedure

Round Activity

R1.
Brainstorming

• Collect and consolidate all responses from experts

R2.
Narrowing down/
ranking

• Send refined final version of consolidated lists, including statements and used
concepts

• Ask experts to add comments if they disagree with or have different opinions
about a statement

• Ask experts to rank key statements and concepts

R3.
Refinement

• Send each panelist ranked statements and concepts summarized by the investigators
• Ask for revision of judgments or specification of reasons for remaining outside

the consensus

960 M. Kim

123

http://nodexl.codeplex.com/


and 1. This study used NodeXL to calculate those metrics. According to the current study,

Betweenness Centrality is the most meaningful measure, given its theoretical definition.

The centrality measure is based on the assertion that a concept can exert control over the

interaction between other pairs of concepts in a network (Anthonisse 1971; Freeman

1977).

Zouaq et al. (2011b) proposed a combination of the metrics Degree, Betweenness, and

Page Rank to rank concepts, according to the following scheme:

TVoted ¼ TDegree\TBetweenness \TPage Rank

In this scheme, all metrics are considered equally important, and a term is only a

candidate when its value is greater than or equal to the mean value of the metrics. They

suggested that any candidate term is important when the term belongs to all three metrics.

However, as they admitted, the mean value as the threshold might be too restrictive and

lack empirical evidence.

The current study validated the competitive measures that might indicate which terms

are more important using a sample text response, the reference model. For the TVoted

terms, we set two thresholds: 25 and 50 % quartile. The 25 % quartile means that a term is

considered a candidate if its value is greater than or equal to the value of 25 % quartile of

the metrics, a more generous criteria for term selection. Terms that had a Betweenness

Centrality value of no less than zero were included as well. In addition, the terms from

CMM and T-MITOCAR were used for comparison. However, the ALA-Reader tool was

not included because it used a predefined set of 23 terms that human experts determined to

be key concepts. The 23 terms that human experts selected worked as gold standards for

the comparison.

Data comparison

Comparisons between the different technologies (SR, CMM, T-MITOCAR, and ALA-

Reader) followed two paths: (a) general features of concept maps elicited from different

technologies were reviewed using a quantitative and qualitative method, and (b) the sets of

key concepts identified by the technologies or filtering methods were compared against the

gold standards set by experts.

To compare these sets of key concepts, two types of similarity measures were applied:

(a) numerical similarity and (b) conceptual similarity. The comparisons of the number of

key concepts were derived from

s ¼ 1� f1 � f2j j
maxðf1; f2Þ

where f1 and f2 denote the numerical frequency of each method compared. Conceptual

similarity, indicating the extent to which the paired models shares the same concepts and

relations, was calculated using Tversky’s (1977) formula:

s ¼ f A\Bð Þ
f A\Bð Þ þ a � f A� Bð Þ þ b � f B� Að Þ

where a and b are weights for differentiating the quantities of A and B. This study assumes

that there is no difference in the weights. Thus, a and b were both set to 0.5 (a = b = 0.5).

As for the qualitative review, we visually inspected the elicited concept maps.
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Comparisons of concept maps

Concepts and relations

The numbers of concepts and relations obtained from the different technologies were

investigated (see Table 3). The values were higher for the SR approach than the others. For

example, the number of concepts obtained using T-MITOCAR ranged from 26 to 40 % the

number obtained using SR; the ALA-Reader identified only 13 to 43 %. The number of

relations identified using T-MITOCAR ranged from 34 to 75 % the number identified by

SR; the ARA-Reader managed only 11 to 55 %. CMM reached 48 to 90 % the number of

concepts obtained by SR and 38 to 70 % the number of relations. However, the numbers

for expert 7 exceeded those achieved by SR: 116 % for concepts and 111 % for relations.

Overall, the SR approach generated the richest concepts, regardless of the relations,

followed by CMM, T-MITOCAR, and ALA-Reader. This finding was in part affected by

the fact that, unlike SR, the other technologies contain data reduction mechanisms that

restrict the amount of concept map information. The number of concepts in CMM sharply

increased at a certain corpus size (between 500 and 750 words). This finding implies that

the reduction of dimensionality in LSA is too restrictive given a smaller set of words;

indeed, LSA was originally used to analyze large corpora with multiple texts.

As Fig. 3 illustrates, measuring the association of response word count and the number

of identified concepts or relations revealed high variation among the approaches. Admit-

tedly, a sample size of 8 is not enough to produce generalizable trends. Nonetheless, this

exploratory review provides some useful findings: SR showed a moderately positive line

with word count. In contrast, the other three technologies showed little relation to word

count. These results imply that the latter tend to be abstractive in the way they describe

knowledge structures and are likely missing the semantic information of the entire struc-

ture. Some sharp drops were observed in AR, even in responses with higher word counts;

in CMM, there was a steep increase.

Key concepts

This study assumes that a substantial part of the meaning of a text can be derived from the

complex concept map composed of semantic relations (Fodor et al. 1974; Katz and Postal

1964). This assumption was tested by comparing various filtering methods using the ref-

erence response. As Table 4 demonstrates, human experts selected a total of 23 key

concepts (Standards). Three filtering methods used in SR rendered three different sets of

key concepts: Betweenness (24), 50 % quartile threshold (10), and 25 % quartile threshold

(24). T-MITOCAR filtered 14 key concepts based on their frequency, while CMM ren-

dered 26 key concepts. The metrics used for SR seem to be helpful in identifying key

concepts (matched % C 70).

Numerical and conceptual similarities were calculated according to the formulas

introduced in the Methods section. The metrics obtained by graph theory—SR (BT) and

SR (25)—outperformed the metrics from the competitive technologies (see Tables 5 and

6). The similarities achieved using SR were reasonable. The concepts identified using the

Betweenness and 25 % quartile filters for TVoted in SR were identical (i.e., similarity of

1). The numerical similarity with Standards was 0.96, and the conceptual similarity was

0.72, whereas the numerical and conceptual similarity between the 50 % quartile for

TVoted and Standards were 0.43 and 0.42, respectively. Overall, these results prove that

SR can create a rich and authentic concept map embedding key concepts that are filtered by
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graph theory-related metrics. For analyzing a single student’s written response to a

problem in a learning situation, simple Betweenness or 25 % quartile threshold could be

the most effective and accurate measure.

Visual inspection

A visual inspection of the concept maps drawn from the different approaches revealed a

clear distinction among the selected technologies. First of all, as Fig. 4 depicts, the concept

maps of SR were much richer and more complex for all samples, in both the number of

concepts and the number of relations, than the other technologies. The concept maps of the

reference response were highly coherent and connected, regardless of the approach,

because the reference response was written very carefully to connect key concepts.

Substantial differences were found in the concept maps for Expert 6. The concept map

drawn from SR contains two subsets that share no connection with the rest of the

network. This study argues that the distinction made by SR between independent subsets

reflects an actual knowledge structure and helps accurately describe the current under-

standing of a student. However, the possibility that all concepts, without exception, will

Fig. 3 Association of response word counts with the number of concepts or relations. The left associations
between the number of concepts and word count, and the right represents associations between the number
of relations and word count

Table 4 The number of key concepts in the reference model

N Matched Na Matched (%)b

Standards 23 – –

T-MITOCAR 14 9 64

CMM 26 11 42

SR (BT) 24 17 71

SR (50) 10 7 70

SR (25) 24 17 71

SR (BT) denotes the key concepts filtered by the Betweenness measures. SR (50) indicates the key concepts
filtered by the 50 % quartile threshold for TVoted. SR (25) indicates the key concepts filtered by the 25 %
quartile threshold for TVoted
a The number of concepts out of N that matched concepts in Standards
b The percentage of N that matched Standards
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always be represented as connected is remote. For example, in the technology imple-

mentation problem case, there might be a list of influential subsets that are all believed to

be the major cause of the failure but have no direct connection to one another. A novice

student with insufficient abstract knowledge might identify low teacher motivation as a

key factor but fail to elaborate or connect it to other factors, such as organizational

support and professional development. In that case, the subset (i.e., a group of concepts

centering on low teacher motivation) will necessarily be isolated from the main body of

concepts. Any concept map technology needs to detect that subset so that the concept

map can be used for identifying problematic understanding and supporting personalized

instructional support.

In contrast, the reference model drawn from CMM was less integrated than the concept

map for Expert 6 (see Fig. 5). This result implies that concept selection from LSA in CMM

might fail to detect some meaningful information about concepts and relations. As seen in

Figs. 6 and 7, T-MITOCAR and ALA-Reader allowed all elements of the concept maps to

connect, suggesting that all the concepts are actually linked in the mind of the writer. Thus,

the concept maps for Expert 6 drawn from T-MITOCAR and ALA-Reader still look

completely connected, but they were deemed to be, in some cases, insufficient for obtaining

appropriate information about the writer’s cognitive status. Drawn from T-MITOCAR, the

concept map for Expert 6 was more complex than the reference model (see Fig. 6), while the

same from ALA-Reader was too abstract compared to the other approaches (see Fig. 7).

Table 5 The number of key
concepts similar or dissimilar
among the approaches in the
reference model

ST is the ‘Standards’ human
experts judged

Pair (A with B) f (A - B) f (B - A) f (A \ B)

ST with TM 14 5 9

ST with CMM 12 15 11

ST with SR (BT) 6 7 17

ST with SR (50) 16 3 7

ST with SR (25) 6 7 17

TM with CMM 8 20 6

TM with SR (BT) 5 15 9

TM with SR (50) 9 5 5

TM with SR (25) 5 15 9

CMM with SR (BT) 14 12 12

CMM with SR (50) 19 3 7

CMM with SR (25) 14 12 12

SR (BT) with SR (50) 14 0 10

SR (BT) with SR (25) 0 0 24

SR (50) with SR (25) 0 14 10

Table 6 Similarities of key
concepts in the reference model

Numerical similarities are in the
upper diagonal, and conceptual
similarities are located in the
lower diagonal

1 2 3 4 5 6

1. Standards – 0.61 0.88 0.96 0.43 0.96

2. T-MITOCAR 0.49 – 0.54 0.58 0.71 0.58

3. CMM 0.45 0.30 – 0.92 0.38 0.92

4. SR (BT) 0.72 0.47 0.48 – 0.42 1.00

5. SR (50) 0.42 0.42 0.39 0.59 – 0.42

6. SR (25) 0.72 0.47 0.48 1.00 0.59
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Discussion

Findings

This study proposed the SR approach for drawing rich and authentic concept maps of

written responses that reflect students’ internal representations of a problem situation. On

the basis of underlying theoretical connections between cognitive and linguistic repre-

sentation, this study argues that internal semantic structure can be inferred from external

linguistic semantic structure. Semantic structure was assumed to be a better basis for

representing an individual’s mind in the visual form of a concept map. The results dem-

onstrated that semantic relations distilled from a corpus constitute a concept map that is

closer to linguistic representation than technologies that use PR or AR approaches.

In accordance with the belief that deep structure is constituted by surface structure

(Bransford et al. 1972; Katz and Postal 1964; Spector and Koszalka 2004), using graph-

related metrics to filter key concepts as elements of deep structure proved that SR elicited

key concepts from the composition of semantic relations (i.e., microstructure). The com-

bination of metrics with the mean threshold (50 % quartile TVoted), as Zouaq et al.

(2011b) suggested, was too restrictive. Rather, the 25 % quartile threshold and Between-

ness measures produced a set of key concepts closely similar to the set human experts

selected (i.e., Standards). Assuming that a single written document with 350–400 words is

a common student response in an educational assessment, the thresholds set for the ‘‘25 %

quartile TVoted’’ and ‘‘Betweenness’’ could be an effective and efficient way mathemat-

ically to identify key meanings in a written response.

Visual inspection of the concept maps revealed the sensitivity of each approach to the

assessment context and the writing style. SR was more robust and capable of distinguishing

a better response from less qualified responses than the PR and AR tools, but some

situations might favor the other approaches. For example, when key concepts are explicitly

defined in conjunction with learning goals and the goal of instruction is to help students

correctly internalize them along with their prior knowledge, ALA-Reader (AR) might yield

more consistent and accurate concept maps on the condition that the concepts are intro-

duced and sufficiently explained.

The SR approach is likely to be an effective approach when the goal of the concept map is to

obtain more meaningful (and thus formative) information about students’ cognitive changes.

However, this study does not intend to argue that the proposed SR approach is always superior

to other methods and technologies. PR and AR approaches, represented by CMM (PR),

T-MITOCAR (PR), and ALA-Reader (AR), could be useful in providing information about

cognitive status, succinctly and economically focusing on key concepts and relations.

Enhancing the design of an adaptive learning environment

Learning Analytics, an emergent field of research, is defined as the mining of student-

related data to improve pedagogy (Horizon Report 2013). A potential benefit of this

approach is to inform the design of an adaptive learning environment in terms of automatic

and simultaneous understanding of student progress in problem solving and adapting

instruction to individual learning needs. In this respect, this study provides a set of

mechanisms to assess student cognition in problem solving. The following examples depict

potential applications.

The proposed mechanisms for eliciting a concept map and filtering out key concepts can

work for automatic formative assessment. Given a problem related to global warming in an
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eighth-grade science class, a student could compose his/her initial written response

(350–400 words) in a computer-based learning system. The system could then analyze the

student’s text and transform it into a concept map, which an SR-based assessment tech-

nology could use to identify the student’s key ideas. The student could then review his/her

own cognition in the form of a concept map and could ask the system whether there are key

concepts that are missing or wrong. The student could keep rebuilding his/her own

understanding supported by the system, as the teaching agent system stores changes in the

concept maps to monitor the student’s progress.

The same techniques can be employed to model expert responses and domain knowledge

structure by which learning materials are indexed. Building domain knowledge is critical for

intelligent tutoring systems (ITSs) but demands time-consuming and high costs (Zouaq and

Nkambou 2008, 2009, 2010). The approaches in this study could address these issues. For

example, in a computer-based problem-solving learning environment, a group of experts

could first create a set of problems and then submit their own written responses that describe

the causes of the problems and associated factors. The ITSs could automatically process

those inputs as expert models from which considerable variables are extracted and estab-

lished as a domain knowledge structure. Associated learning resources such as documents,

cases, media files, web sites, and teaching materials could be organized using a distilled

knowledge structure so that a student is guided to appropriate learning resources based on

his/her diagnostic results, obtained by comparing the student response to expert models. An

agent in a system would work as a virtual facilitator to guide and help learners evolve

toward the expert level, linking learner models, expert models, and the tutor model.

Improving the scientific accuracy of an educational research

Although the SR approach needs further elaboration and development as an automatic

assessment technology, it opens new opportunities in educational research. First, applying

SR to the measurement of problem-solving performance can boost the reliability of an

experimental study. For example, as performance measures, concept map technologies

have often been used to investigate the impact of a treatment in complex problem solving

(Kim 2008; McKeown 2009; Schlomske and Pirnay-Dummer 2008). McKeown (2009)

asked participants to draw their concept map directly, while T-MITOCAR was used in two

other studies to elicit concept maps. Drawing concept maps has limitations because the

activity leads to cognitive overload in the working memory, requiring high levels of

knowledge abstraction to identify certain concepts and relations (Brown 1992). The

effective use of the PR and AR tools is typically dependent on the research context. In

contrast, a tool based on SR can provide an alternative way to enhance the scientific

accuracy of a comparison study. Another implication is that the SR approach embedded in

automated technologies has the potential to cut across disciplinary boundaries (e.g., tra-

ditional language comprehension studies). In learning and instruction, SR is applicable to a

wide range of areas: automated essay evaluation, expertise modeling, competency diag-

nosis in adult learning, technology-enhanced adaptive learning systems (e.g., intelligent

tutoring system), longitudinal studies of learning progress, and formative assessment and

feedback. For instance, SR technology enables researchers to keep track of structural

changes in individuals’ concept maps over time so that longitudinal changes are measured

and described. Another example is automated expertise modeling of a complex problem

task. We can postulate a situation and process expert responses to a certain problem

through SR, and then share expert understanding established by drawing on the concepts

and relations across the responses.
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Suggestions

Complex sentences are not easily interpreted using a concept map because correctly dis-

tilling paired concepts is more difficult. Future studies might address the following topics:

(1) Elaborate the algorithm to identify semantic relations from a text. This study

proposed a set of algorithms and methods to deconstruct a student’s written response

based on basic principles of computational linguistics. Admittedly, additional ways of

identifying logical relations in a text require development.

(2) Build diverse measures that capture the attributes of the knowledge structure. When an

individual’s understanding is visually represented in the form of a concept map, the

characteristics need to be described. Studies have defined some parameters of a concept

map that quantify its features (Ifenthaler 2006; Kim 2012a; Spector and Koszalka

2004). Nonetheless, additional parameters need to be identified and validated due to

limited evidence and lack of consensus regarding current measures (Kim 2012b).

(3) Elaborate the methodology to compare concept maps to the reference model(s) and to

monitor structural changes as learning trajectories. A simple way to conduct concept

map comparison is to compare two matrices. For example, Schwartz et al. (2009)

compared student-generated and expert-generated matrices to find missing concepts

and relations. Furthermore, drawing on similarity formulas, the alignment of a student’s

concept model with an expert model was used as a learning achievement indicator

(Clariana and Taricani 2010; Kim 2008; McKoewn 2009; Schlomske and Pirnay-

Dummer 2008). However, as pointed out previously, some concept map parameters

describe different features of a knowledge structure and change patterns over time (Kim

2012b). Thus, a comprehensive methodology for explaining and monitoring changes in

concept maps as they approach an expert model is highly desired.

Acknowledgments The problem-solving task used in this article is based on a case described by Robert
Reiser for use in his Trends and Issues in ID&T course at Florida State University.

Appendix A

Case study

Directions: read the case study described below and then prepare a response to the questions below

Assume that you have been involved in evaluating a media implementation project in an urban inner middle
school. At the beginning of the school year all of the students assigned to four subject area teachers (math,
language arts, social studies and science) in the seventh grade at the middle school were given tablet PCs
(laptop computers also equipped with a stylus/pen and a touchscreen that can be written upon) and were
also given wireless internet access at home and in school for a entire year.

The students took the tablet PCs home every evening and brought them into classes every day. The teachers
were also provided with tablet PCs 24/7 (24 h a day, every day of the week) for the entire year. The
teachers and students were trained on how to use the tablet PCs. Moreover, all of the curriculum materials
(textbooks, workbooks, student study guides, teacher curriculum guides, some activities, tests, etc.) were
installed on the tablet PCs or were accessible through the tablet PCs.

Your job as one of the evaluators for the project was to examine how this innovation (providing teachers and
students with tablet PCs 24/7) changed the way instruction was presented in the classrooms of the four
teachers. Results indicated that the innovation had very little effect on the manner in which instruction
took place in the teachers’ classrooms.

Written response with at least 350 words is required for each question
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1. Based on what you have learned about the use of technology in education, describe

what concepts, issues, factors, and variables are likely to have contributed to the fact

that the introduction of the tablet PCs had very little effect on the instructional

practices that were employed in the classes.

2. Describe the strategies that could have been employed to help mitigate the factors that

you think contributed to the minimal effect the tablet PCs had on instructional

practices. When you answering this question, use the concepts, factors, and variables

you described in the question 1 or add other assumptions and information that would

be required to solve this problem.

Appendix B

Rules for determining pairs of concepts from complex lexico-syntactic
patterns

Complex lexico-syntactic patterns Pairs of concepts–R(Ci, Cj)

N0 is N1 and N2
(e.g., technology is hardware and software)

(N0, N1); (N0, N2); (N1, N2)

N0 of N1 and N2 verb N3
(e.g., the use of technology and access to internet allow students to…)

(N0, N1); (N0, N2); (N0, N3); (N2,
N3)

N0 such as N1, N2,…, Nn
(e.g., classroom technologies such as laptops, internet, and electronic

whiteboard)

(N0, N1); (N0, N2);…; (N0, Nn)

Such N0 as N1, N2,…, Nn
(e.g., such new technologies as Web 2.0, cloud computing, and mobile

internet)

(N0, N1); (N0, N2);…; (N0, Nn)

Np are N1, N2,…, Nn or other N0
(e.g., magnetism is positive or negative)

(Np, N1); (Np, N2);…; (Np, Nn);
or (Np, N0)

N0 include N2 and N3
(e.g., internal representation includes conceptual structure and linguistic

semantic structure)

(N0, N1); (N0, N2)

N0, especially N1, verb…
(e.g., supportive environments, especially leadership support, are the most

important)

(N0, N1)

N1 of N2 in N3 of N4
(e.g., the use of technology in the classrooms of participating schools)

(N1, N2); (N3, N4); (N1, N3)

By –ing N1 and N2, Np verb N3a

(e.g., by using the Internet and Smartphone, students can access learning
materials anytime, anywhere)

(Np, N1); (Np, N2); (Np, N3)

N1 provide N2 with N3
(e.g., the Internet provides us with)

(N1, N2); (N1, N3)

N1 and N2 verb N3
(e.g., teachers and students are not used to using a computer)

(N1, N2); (N1, N3); (N2, N3)

N1 verb that-clause
(e.g., the witness hated that the boy attacked the victim)

(N1, the first N in that-clause)c

N1 between N2 and N3
(e.g., discrepancy between boys and girls)

(N1, N2); (N1, N3)

N1 that N2 verb N3b

(e.g., teachers maintain the belief that these efforts will have positive
results)

(N1, N2); (N2, N3)

a Subordinate clause in which the subject is omitted
b Conjunction clause
c It connects N1 to the that-clause
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