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Abstract Cognitive scientists investigate mental models (how humans organize and

structure knowledge in their minds) so as to understand human understanding of and

interactions with the world. Cognitive and mental model research is concerned with

internal conceptual systems that are not easily or directly observable. The goal of this

research was to investigate the use of Evaluation of Mental Models (EMM) to assess the

mental models of individuals and groups in solving complex problems and to compare

novices and experts models as bases for providing feedback to learners. This study tested a

qualified web-based assessment tool kit, Highly Interactive Model-based Assessment Tools

and Technologies (HIMATT), in an as yet untested domain—mathematics. In this study,

university students and their mathematics instructors used two tools in HIMATT, Dynamic

Evaluation of Enhanced Problem Solving (DEEP) and Text-Model Inspection Trace of

Concepts and Relations (T-MITOCAR). The research questions include: Do novice par-

ticipants exhibit common patterns of thoughts when they conceptualize complex mathe-

matical problems? Do novices conceptualize complex mathematical problems differently

from experts? What differences in DEEP and T-MITOCAR patterns and responses exist

according to the measures of HIMATT? Findings suggest that EMM and HIMATT could

effectively support formative assessment in a complex mathematical domain. Finally, this

study confirms a common assumption of cognitive scientists that the tool being used could

affect the tool user’s understanding of the problem being solved. In this case, while DEEP

and T-MITOCAR led to somewhat different expert models, both tools prove useful in

support of formative assessment.
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Introduction

Mental models are internal constructs that comprise an individual’s conceptual systems and

enable him or her to make sense of experience. Cognitive and mental model research is

concerned with internal conceptual systems that are not easily or directly observable;

researchers can only learn about internal conceptual systems by interpreting that which is

more easily and directly observed—namely, individuals’ communications about and repre-

sentations of their own knowledge. External representations of mental models in the form of

text (written or spoken), diagrams, physical models and such enable researchers to understand

human perceptions of and interactions with the world so as to explain how humans organize,

perceive and structure knowledge in their mind (e.g. Alexander 1963; Gentner and Stevens

1983; Gogus 2012a; Johnson-Laird 1983; Seel 1999). This study investigates the use of

Evaluation of Mental Models (EMM) methodology that includes a specific approach for

collecting, analyzing and interpreting data and an aggregation technique in terms of using

three different tools of Highly Interactive Model-based Assessment Tools and Technologies

(HIMATT): (1) Dynamic Evaluation of Enhanced Problem-solving (DEEP) (Spector and

Koszalka 2004) using concept mapping (2) Text- Model Inspection Trace of Concepts and

Relations (T-MITOCAR) (Pirnay-Dummer 2007) employing text form, and (3) surface

structure, matching relations, deep semantics (SMD) (Ifenthaler 2006; Ifenthaler et al. 2007)

to capture external representations of mental models of individuals who are solving complex

mathematical problems and compares these models with each other.

Previous studies have conducted research to create reliable and valid methods to

investigate conceptual representations of individuals and groups (e.g. Ifenthaler 2010;

Johnson et al. 2006 as cited in Gogus 2009; Gogus and Gogus 2009; Gogus 2012a). As

mental models are internal entities that have dynamic structures and subjective explana-

tions, it is very difficult to determine the details of mental models and identify how they

affect learning (Alexander 1963; Ariely 2009; Gentner and Stevens 1983; Gogus 2009,

2012a; Gogus and Gogus 2009; Ifenthaler 2010; Johnson-Laird 1983; Lakoff and Johnson

1981; Payne 1991; Polk and Seifert 2002; Seel 2003; Taleb 2008; Young 2008). Mental

models represent constructs developed in order to understand human learning and problem

solving processes. Seel (1991) emphasizes that constructing a mental model involves both

assimilation (adding to existing mental model structures) and accommodation (reorga-

nizing mental model structures and/or creating new mental models). Gentner and Stevens

(1983) propose that there are three key dimensions of mental model research: (1) the

domain studied (2) the theoretical approach involved, and (3) the methodology. There are

relationships among these three dimensions, although the first is somewhat independent of

the latter two which are more closely interrelated. Spector and Koszalka (2004) proceed on

the assumption that the theoretical approach and methodology could be developed inde-

pendently of a problem-solving domain and then applied in multiple domains. Their

research applied a particular theoretical approach with regard to expertise development and

an associated methodology for representing and assessing mental models in three domains

(biology, engineering design and medical diagnosis) with the specific purpose of reliably

distinguishing less experienced problem conceptualizations from those generated by

experts. Their approach was successful in all cases that they examined in those three

domains (15 experts and 60 novices).

Since mental models are internal representations of human conception on the problem,

the structure of the problem and its presentation serve as important bases for the devel-

opment of mental models on the problem. Therefore, this study chooses complex mathe-

matical problems. To further elaborate the close connection between the theoretical
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approach and methodology, this study considers the case of complex learning. One theory

of learning in complex domains suggests that expertise develops over time and through

sustained and systematic engagement with increasingly challenging problems (Ericsson

and Smith 1991; Milrad et al. 2003). This view of expertise posits the progressive

development of mental models. A related methodology, then, is to capture or represent in

some way expert models and use them as reference points to determine how less experi-

enced individuals think about a complex problem (Ifenthaler 2010; Spector and Koszalka

2004).

This research approach also has implications for the design of instruction and teaching.

Developing assessment tools on the basis of a theoretical approach and an associated

methodology is beneficial in assessing complex problem-solving skills and improving the

quality of the most suitable instructional methods, course materials and learning activities

(Andrews and Halford 2002; Gogus et al. 2009; Gogus 2012a; Dabbagh et al. 2000;

Ericsson and Smith 1991; Herl et al. 1999; Ifenthaler 2010; Ifenthaler et al. 2009; Jacobson

2000; Jonassen 1997; Pirnay-Dummer et al. 2010). The theoretical approach and meth-

odology developed by Spector and Koszalka (2004) involve an annotated concept map or

influence diagram to elicit and represent a problem solver’s mental model.

Concept mapping has been identified as a promising strategy to support assessment of

learning in complex problem solving domains (Fisher 2000; Herl et al. 1999; Gogus and

Gogus 2009; Gogus et al. 2009; Liu and Hichey 1996; McClure et al. 1999; Polk and

Seifert 2002; Ruiz-Primo and Shavelson 1997; Taricani and Clariana 2006). Based on prior

research and the success of recent efforts (Ifenthaler 2010; Ifenthaler and Seel 2005;

Pirnay-Dummer 2007; Spector and Koszalka 2004), concept mapping tools are embedded

in an integrated set of tools called HIMATT (Pirnay-Dummer et al. 2008, 2010).

The study reported here adopts the theoretical development of expertise characterized

above and uses an associated methodology, EMM along with HIMATT to evaluate the

mental models of individuals as they solve complex mathematical problems. EMM

involves analyzing and comparing individual mental models and adds the construct of

shared understanding and a method for capturing the common models of groups. Shared

understanding means that a shared mental model can be created from common represen-

tations and trajectories of individual meaning within a group. This study assesses mental

models using extensions to the previous concept mapping methods while participants are

engaged in solving complex mathematical problems. The concept maps are drawn by

analyzing key concepts and their relationships as the previous research on HIMATT

suggests. This research extends prior studies into a new subject domain and focuses on

higher-order thinking and problem solving skills for complex mathematical problems.

These problems typically involve many interrelated factors without an obvious or simple

algorithmic solution (Gogus and Gogus 2009; Gogus et al. 2009; Ifenthaler 2010; Spector

et al. 2005; Spector and Koszalka 2004).

This research considers the process of learning as gaining expertise in problem solving.

Therefore, experts’ mental models are compared with those of students. The research

questions include: do expert participants and novice participants exhibit common patterns

of thoughts when they conceptualize complex mathematical problems? Do novices con-

ceptualize complex mathematical problems differently than do experts? What differences

in DEEP and T-MITOCAR patterns and responses exist according to the measures of

HIMATT? Patterns mean a model that includes common concepts and links that are used

in problem conceptualization. This study has aimed primarily at determining (a) what

participants conceptualize when solving complex mathematical problems, and (b) whether

there exists recognizable patterns in expert and student conceptualizations that can
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facilitate the development of expertise (Gogus 2009, 2012a). In addition, differences

between two different forms of externalizing mental models were examined to explore the

notion of the impact of a tool on the conceptualization process.

Research methodology

Data collection tools

HIMATT, a set of Web-based assessment tools to measure and assess mental models of

individuals and groups (Pirnay-Dummer et al. 2008, 2010) was used for the analysis of

problem conceptualizations. HIMATT consists of three integrated tools: (1) DEEP

(Spector and Koszalka 2004), (2) T-MITOCAR (Pirnay-Dummer 2007), and (3) SMD

(Ifenthaler 2006). These three integrated tools of HIMATT have been used in more than a

dozen studies but have not been previously tested in the area of mathematics and HIMATT

was used in this study for the first time in the mathematics domain in 2008 (Gogus 2009,

2012a).

DEEP was developed in a project funded by the U.S. National Science Foundation

entitled ‘‘Enhanced Evaluation of Learning in Complex Domains’’ which demonstrated the

validity of the method (Spector and Koszalka 2004). In DEEP, annotated causal concept

maps are used to elicit a conceptualization of how an individual (or small group of persons)

is thinking about a problem situation. MITOCAR was found to visualize knowledge from

groups of experts by using natural language expressions and several subsequent tests which

the experts worked on individually (Pirnay-Dummer 2007). The whole process of

knowledge elicitation methodology of MITOCAR was homogeneous, highly reliable and

valid (Pirnay-Dummer 2007). Based on MITOCAR, Text-MITOCAR (T-MITOCAR) was

designed to visualize knowledge structures on the basis of written text (Pirnay-Dummer

2007). T-MITOCAR relies on the structures and meanings of the words and uses the

associative features of text to represent knowledge from text sources in a heuristic process

(Pirnay-Dummer et al. 2008, 2010). The SMD Technology was developed to meet the

demand for valid and reliable analytical instruments for educational research (Ifenthaler

2006). The reliability and validity of the computer-based and automated SMD Technology

was tested in three experimental studies with 106 participants by Ifenthaler (2006). The

SMD Technology measures relational, structural and semantic levels of graphical repre-

sentations and concept maps (Ifenthaler 2006). The development of SMD and T-MITO-

CAR were mainly funded by ParaDocks Omnimedia (R), and also in minor parts by the

University of Freiburg. HIMATT had funding from multiple sources, including a Social

Science Program Enhancement Grant from Florida State University managed by the

International Center for Learning, Education and Performance.

T-MITOCAR and DEEP are compatible with a theoretical perspective but take different

methodological approaches. Whereas DEEP supports the creation of an annotated concept

map or influence diagram (Spector and Koszalka 2004), T-MITOCAR generates an

association network based on text input. In that sense, T-MITOCAR is more closely

aligned with the talk-aloud protocol method that was mentioned earlier. There are minor

differences between the concept maps created using DEEP and the association networks

created by T-MITOCAR. More specifically, the links in DEEP are directional while they

are not directional in T-MITOCAR. Nonetheless, the same analytical methods (based on

the SMD component of HIMATT) are used for analysis and for comparing two concept

maps or two association networks. What have been left unanalyzed are the differences in
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how T-MITOCAR and DEEP representations might be useful for predicting relative levels

of expertise and as a basis for formative feedback to learners. Additionally, the impact of

the tool being used to externalize mental models on those externalizations has not been

investigated previously.

HIMATT have been used successfully in many research areas, including: assessments

of performance and understanding of complex problems for teacher technology integration

(McKeown 2008); acquiring instructional design expertise (Kim 2008); and diagnosis of

stage-sequential learning (Kim 2012).

Research design

This study uses HIMATT in the mathematics domain for the first time. In addition, this

study explores differences in DEEP and T-MITOCAR representations. Figure 1 shows the

general approaches to using these two tools.

This mental model research design (see Fig. 1) uses both DEEP and T-MITOCAR to

investigate how an internal representation can be re-represented with these two different

tools. DEEP uses annotated concept maps while T-MITOCAR is a natural language

capture of the thinking and mental models of the problem solver as she/he responds to a

particular problem scenario. Since T-MITOCAR allows collecting the direct response to

the problem as a text document, it is assumed to closely reflect the mental model. Using

DEEP is good for gaining a sense of the entire problem space and for visualization whereas

T-MITOCAR lends itself to natural language elicitation and is appropriate for general use

and for those who might not find the visual concept map approach strange. This research

intends to benefit from the advantages of both DEEP and T-MITOCAR and also explores

differences in two different representations.

Fig. 1 The research design
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EMM methodology: a research procedure and strategy

In EMM methodology, experts and novices develop annotated concept maps as conceptual

representations of their understanding of a complex problem. This method constitutes a

specific form of the talk-aloud protocol developed by Ericson and Simon (1993). It might

be more accurately described as a think and externalize protocol that lends itself to a visual

representation as well as a representation that can support formative feedback to learners.

Within EMM, HIMATT tools are used to analyze the underlying cognitive structures in the

concept maps and to get predictable patterns of structural understanding that can both

inform and facilitate problem-solving processes (Markham et al. 1994). EMM methodol-

ogy consists of the following stages:

1. Decide problem scenarios.

2. Organize an experimental group and ask them to describe what they think about the

solution of the problem they have individually presented in graphic and text formats.

3. Create a reference model of experts.

4. Use the reference model to look for a common model between experts and compare

this model with those of the novices and observe how to give feedback while

comparing two different models with each other.

In this study, university students and their mathematics instructors use two tools (DEEP

and T-MITOCAR) in HIMATT during data collection. This study also uses SMD, the

feedback function of HIMATT, during data analysis. By taking into account that effective

model-based feedback is composed of externalized representations (re-representations) of

mental models such as a causal model, a concept map, written text and aims at the

improvement of expertise and expert performance, the data will be collected with a concept

map tool (DEEP) and a written text tool (T-MITOCAR) and will be analyzed by using an

automatic model-based feedback tool (SMD). HIMATT has a model-based feedback

function to generate a reference model (e.g. an expert’s model), a participant model (e.g. a

learner’s model), and a cutaway model which is generated by the comparison of a par-

ticipant’s model with a reference model to show similarities and differences between two

models (Ifenthaler 2010).

Research questions

The purpose of this research study is to assess the mental models of individuals and groups

in solving complex and challenging mathematics problems and to compare novices and

experts models as a basis for providing feedback to learners. The primary research ques-

tions include:

1. Do novice participants exhibit common patterns of thoughts when conceptualizing

complex mathematical problems?

2. Do novices conceptualize complex mathematical problems differently than do

experts?

3. What differences in DEEP and T-MITOCAR patterns and responses exist according to

the measures of HIMATT?

Figure 2 provides a general overview of the research approach.

Firstly, this study aims to test HIMATT in an as yet untested domain—mathematics—to

see if and to what extent annotated concept maps can distinguish expert responses from

those of less experienced persons.
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Secondly, this study aims to investigate if the tool used to elicit the problem concep-

tualization affects what is elicited by comparing and contrasting DEEP and T-MITOCAR

since some researchers (Pirnay-Dummer et al. 2008, 2010) argue that natural language

elicitation is closer to the mental model and similar to the established technique of talk-

aloud protocol analysis; however, other researchers (Spector and Koszalka 2004) suggest

that what is important for inexperienced learners is to gain an early appreciation for the

entire system. Since a holistic overview of all factors influences the problem, the DEEP

methodology is better suited for problem conceptualization. That is the reason why this

research design first uses DEEP and then T-MITOCAR.

Thirdly, this study aims to investigate whether DEEP or T-MITOCAR, or both, can be

used to create an expert reference model that can be used for formative feedback in a

meaningful way to personalize and individualize feedback and also serve to promote

expert-like understanding.

Participants

The EMM study was conducted at Sabanci University in Turkey in 2009–2010 Spring

Semester with the second year undergraduate students of the course ‘‘Differential Equa-

tions’’. The participants included 22 college students and 4 experienced academicians in

mathematics who taught ‘‘Differential Equations’’ at Sabanci University. Participation was

voluntary, and participants were compensated for their participation. The study was

approved by the university’s institutional review board (IRB) and participant identifying

information was kept confidential in compliance with IRB requirements. Demographic

information of the participants is summarized in Table 1.

Fig. 2 Research overview
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There were three male and one female experts, two of whom were over 50 years old and

had field experience of more than 20 years, whereas two were under 35 years old and had 5

and 10 years of field experience, respectively. One of the experts was a Bulgarian math-

ematician and the rest were Turkish. These four experts were from the Faculty of Engi-

neering and Natural Sciences (FENS) since faculty members of mathematics program work

at FENS, not at the Faculty of Arts and Social Science (FASS). There were 22 student

participants with a mean age of 21; 4 students were from FASS and 18 students were from

FENS. Among the students, 21 were male and one was female. These 22 college students

from the course ‘‘Differential Equations’’ voluntarily participated in this study. All these

students took the prerequisite courses as a requirement of the curriculum at Sabanci

University even though they were registered to a different faculty. All student participants

were Turkish. Males were certainly overrepresented in the sample.

Data collection

The data was collected from participants (four instructors and 22 university students) indi-

vidually and one at a time. Participants responded to two representative problem scenarios

developed or chosen by domain experts. The experiments took approximately one and half

an hour for the first problem and around 1 h for the second problem since the participants had

gotten used to the process of data collection when the second problem was provided.

The procedure (see Fig. 2) was that participants were first provided a brief introduction

to the study. Then they were presented with the first problem scenario (see Appendix 1)

and asked to individually develop a DEEP representation in the form of an annotated

concept map of the key concepts (variables) involved and their relationships. Participants

were then asked to use T-MITOCAR to describe the problem in terms of key concepts and

relationships. EMM in HIMATT involves providing the participants with a complex

problem and eliciting their thoughts on how they would approach the development of a

solution—this is called conceptualizing the problem space (Gogus et al. 2009). The

Table 1 Demographic
information

Experts (4) Students (22)

Gender

Male 3 (75 %) 21 (95 %)

Female 1 (25 %) 1 (5 %)

Age

15–19 0 (0 %) 4 (18 %)

20–24 0 (0 %) 18 (82 %)

25–49 2 (50 %) 0 (0 %)

50– 2 (50 %) 0 (0 %)

Work experience (year)

0 B year \ 1 0 (0 %) 22 (100 %)

1 B year \ 5 0 (0 %) 0 (0 %)

5 B year \ 10 2 (50 %) 0 (0 %)

Over 10 2 (50 %) 0 (0 %)

Faculty

FASS 0 (0 %) 4 (18 %)

FENS 4 (100 %) 18 (81 %)
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participants are not asked to solve the problem; rather, they are asked to conceptualize the

problem through four tasks: (a) identify and briefly describe the key factors influencing the

situation (b) identify and describe how these factors are interconnected (c) indicate

additional information that would be required to actually resolve the problem situation, and

(d) identify assumptions made in response to the previous three questions.

Figure 1 represents the general research approach. The reason why DEEP was used

firstly was based on the assumption that it would facilitate a more holistic or global way of

thinking about all aspects of the problem since DEEP is based on the use of causal

influence diagrams used by system dynamicists when creating the initial of a large,

complex system (Spector and Koszalka 2004). This assumption has not been empirically

tested and is recommended for investigation in future studies. After a short break, par-

ticipants were then asked to repeat this process for the second problem scenario. For each

problem scenario, an effort was made to create an expert reference model based on the

experts’ representations in DEEP and again in T-MITOCAR. All data were then analyzed

to address the four research questions.

Data analysis and outcomes of measures

There were three main categories of analysis: surface features (e.g. the number of nodes and

links, average number of words to describe each node and link), structural features (e.g. key

node clusters, connectedness of the concept maps measured by the percentage of orphan nodes

lacking connection back to other nodes), and semantic features (e.g. did experts and novices

say the same kinds of things about similar nodes). By considering these three main categories

of analysis, the six measures developed in HIMATT were used to analyze the DEEP concept

maps and the T-MITOCAR networks based on the written text (Ifenthaler 2009, 2010; Pirnay-

Dummer 2007; Pirnay-Dummer 2010; Pirnay-Dummer and Ifenthaler 2010):

• Surface matching measure surface complexity of the graphs (Ifenthaler 2009, 2010).

• Graphical matching is an indicator for the range of conceptual knowledge (Ifenthaler

2009, 2010).

• Concept matching determines differences in language use between the models

(Ifenthaler 2009; Pirnay-Dummer 2007).

• Structural matching compares the complete structures of two graphs (Ifenthaler 2009;

Pirnay-Dummer 2007).

• Gamma (node density and connectedness) matching describes the quotient of terms per

vertex within a graph (Ifenthaler 2009; Pirnay-Dummer 2007).

• Propositional matching compares only identical propositions. It is a good measure to

quantify semantic similarity between two graphs (Ifenthaler 2009, 2010).

The measures were calculated automatically within seconds and then displayed as

pairwise sets including the six core measures described above (see Fig. 3) and the

researcher could download a spreadsheet containing all measures for further statistical

analysis (Ifenthaler 2009, 2010; Pirnay-Dummer 2007). These six measures were used to

analyze each concept map and determine similarities and differences between the concept

maps of learners and the expert reference concept map by getting through the similarity

measures that are described in the HIMATT manual (Ifenthaler 2009, 2010; Pirnay-

Dummer 2007). Previous HIMATT studies have generally found the concept similarity

measure and gamma to be the most useful for tracking expertise (Kim 2008, 2010; Lee

2008; McKeown 2008). Concept similarity (Pirnay-Dummer 2007) means similarities in

language use between the models. Gamma, the density of vertices, (Pirnay-Dummer 2007)
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measures the connectedness of nodes, 0 means no interconnections and 1 means maximum

connects such as all connected. According to previous research (e.g. Spector and Koszalka

2004; Kim 2008), while novice representations show few interconnections, expert repre-

sentations shows significant interconnectedness.

In addition to these measures of HIMATT, the feedback function of the SMD Technology

was implemented in HIMATT (Ifenthaler 2009, 2010). When analyzing and comparing the

models in this study, this feedback function was used in the form of the cutaway model-based

feedback which are considered as graphical re-representations constructed from a set of

concepts and vertices (concepts or corners) whose relationships are represented by edges
(links or lines) (Ifenthaler 2010; Ifenthaler et al. 2009). The feedback function of the SMD

Technology in HIMATT automatically generates a standardized reference re-representation

(e.g. the expert’s solution), participant re-representation (e.g. the learner’s solution) and

cutaway re-representation (Ifenthaler 2010). By comparing the participant re-representation

(e.g. the learner’s solution) with the reference re-representation (e.g. the expert’s solution),

the cutaway re-representation was created by HIMATT to give feedback to the learner

according to the expert’s solution (Ifenthaler 2010) after the experiment.

Findings from research questions

In the HIMATT subject environment, the participants create a concept map within the

DEEP module by adding nodes and links to the concept map and annotating the nodes with

additional information. The reference mental model of experts (see Fig. 4) was created

using the DEEP tool in the HIMATT Subject Environment. This reference model is a

common model that is created by the subject matter expert and co-researcher in this study,

through comparing four experts’ models drawn by the examination of the mental models of

4 experts (see Appendix 1). The solution of the problem is given in Appendix 2.

Do novice participants exhibit common patterns of thoughts when they conceptualize
complex mathematical problems?

Since participants conceptualize their thoughts on complex mathematical problems in two

ways: (1) using the DEEP tool to construct a concept map with written explanation (2)

using the T-MITOCAR tool to express written texts, the research questions are answered

Fig. 3 Compare function including all six HIMATT core measures
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by using data from both the DEEP tool and the T-MITOCAR tool. When the mental model

measurements of 22 novices were analyzed, there was a significant common mental model

in both DEEP and T-MITOCAR tools. Figure 5 shows the common mental model of

novices created by using DEEP. This model includes the most frequent used nodes and the

links at the students’ models that are analyzed by the subject matter expert. The partici-

pants constructed the concept maps by organizing information about the problem scenario

and identifying the problem solution procedures. Therefore, the concept map in Fig. 5

shows the common concepts, facts, and procedures from the models of each participant.

This model demonstrates that the students indicate main concepts and the basic strategy

that is appropriate to reach the problem solution.

When the measurement was conducted through the DEEP tool, the results of a single

sample t test showed that t(21) = 10.99, p \ .001. When the measurement was conducted

through T-MITOCAR tool, the results of a single sample t test showed that t(21) = 12.32,

p \ .001. The results indicated that novices had a common mental model in both the

conceptual and the grammatical context. By performing single sample t tests in every area

of HIMATT’s six measures for the data from the DEEP tool, novices showed significant

commonalities in the areas of surface measure [t(21) = 18.66, p \ .001], graphical

matching [t(21) = 19.2, p \ .001], structural matching [t(21) = 34.6, p \ .001], and node

density [t(21) = 25, p \ .001]. It was determined from these results that novices had

significant commonalities in every area except concept matching. The results are sum-

marized in Table 2. There were no results for the proportional matching.

By performing single sample t test in every area of HIMATT’s six measures for the data

from the T-MITOCAR tool, commonality was found in novices’ surface measure

[t(21) = 6.429, p \ .001], graphical matching [t(21) = 13.087, p \ .001], and structural

Fig. 4 The common representation of a mental model of experts created using DEEP
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matching [t(21) = 10.99, p \ .001], node density [t(21) = 6.501, p \ .001] and proposi-

tion matching [t(21) = 2.366, p \ .05]. It was observed that novices had commonalities in

every measurement area. Results are summarized in Table 3.

Do novices conceptualize complex mathematical problems differently from experts?

When the DEEP models of experts and novices were compared qualitatively, there were

some common nodes and explanations for relations. However, it can be seen that the

experts’ models (see Fig. 6) were more detailed than those of the novices (see Fig. 7).

Appendix 3 shows two sample DEEP models from an expert participant and a novice

participant from the two participants.

The feedback function of the SMD Technology in HIMATT allows viewing the experts’

models (e.g. Fig. 6), the students’ models (e.g. Fig. 7) and a cutaway model (see Fig. 8) by

comparing the students’ models with the experts’ models in order to give feedback to the

learner according to the expert’s solution. In Fig. 8, circles indicate similar concepts and

ellipses indicate no similarity and/or missing concepts.

When mental models of experts and novices were compared quantitatively using DEEP,

no significant commonality was found. Using the six matching measurements of DEEP as

the dependent variable and the expertise level as the independent variable, a one-way

ANOVA indicated that there was no significant commonality between novices and experts;

F(1,24) = 2.89, p = .102. These measurements are summarized in Table 4. There were no

results for the proportional matching.

Fig. 5 The common representation of a mental model of novices created using DEEP

Table 2 Single sample t test results of novice participants using the DEEP tool

DEEP t df Mean square difference Significance level

Surface matching 18.66 21 .73 \.001

Graphical matching 19.2 21 .75 \.001

Conceptual matching 1.81 21 .02 .084

Structural matching 34.6 21 .85 \.001

Node density (Gamma) 25 21 .79 \.001
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Table 3 Single sample t test
results of novice participants
using the T-MITOCAR tool

T-MITOCAR t df Mean square
difference

Significance
level

Surface matching 6.43 21 .45 \.001

Graphical matching 13.09 21 .7 \.001

Conceptual matching 7.06 21 .13 .084

Structural matching 10.99 21 .42 \.001

Node density (Gamma) 6.5 21 .39 \.001

Proposition matching 2.37 21 .01 \.001

Fig. 6 The expert model derived from the DEEP tool

Fig. 7 The novice model derived from the DEEP tool
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Similarly, when the models of experts and novices were compared qualitatively using

DEEP, the experts’ models (see Fig. 9) were more detailed and the nodes were more

connected than the novices’ models (see Fig. 10). The feedback function of the SMD

Technology in HIMATT allows viewing the experts’ model (a re-representations from the

participant’s T-MITOCAR data, e.g. Fig. 9), the students’ models (a re-representations

from the participant’s T-MITOCAR data, e.g. Fig. 10) and a cutaway model (see Fig. 11)

by comparing the students’ models with the experts’ models in order to give feedback to

the learner according to the expert’s solution. In Fig. 11, circles indicate similar concepts

and ellipses indicate no similarity.

Using the six matching measurements of T-MITOCAR as the dependent variable and

the expertise level as the independent variable, the one-way ANOVA indicated that there

was no significant commonality between novices and experts; F(1,24) = .004, p = .949.

When six of the measures were examined one by one, it was observed that there was no

significant commonality in any area. Measurements conducted by T-MITOCAR are

summarized in Table 5.

These results show that there is a difference between the way experts and novices

conceptualize the complex mathematical problems.

What differences in DEEP and T-MITOCAR patterns and responses exist according
to the measures of HIMATT?

HIMATT allows recording individual responses during data collection and comparing

these responses with each other and/or with a reference model during data analysis to find

Fig. 8 The model display Cutaway data for comparison of the model in Fig. 7 with the model in Fig. 6

Table 4 A one-way ANOVA comparing novices and experts using DEEP

DEEP F Mean squares Significance level

Surface matching 2.39 .084 .135

Graphical matching 1 .038 .327

Conceptual matching .59 .001 .452

Structural matching .36 .004 .556

Node density (Gamma) .08 .002 .784
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patterns that indicate similarities between individuals’ responses. In addition to the three

main research questions of the study, a comparison between DEEP and T-MITOCAR was

conducted by performing repeated sample t test in the six measurement areas. According to

Fig. 9 The expert model derived from the T-MITOCAR tool

Fig. 10 The novice model derived from the T-MITOCAR tool
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the findings, only the graphical matching measurement was similar in the results given by

DEEP and T-MITOCAR; [t(25) = .72, p = .476]. In other areas, DEEP and T-MITOCAR

had significantly different measurements; surface measure [t(25) = 3.31, p \ .05], concept

matching [t(25) = -7.28, p \ .001], structural matching [t(25) = 12.55, p \ .001], node

Fig. 11 The model display Cutaway data for comparison of the model in Fig. 10 with the model in Fig. 9

Table 5 A one way ANOVA comparing novices and experts using the T-MITOCAR

T-MITOCAR F Mean squares Significance level

Surface matching .02 .003 .88

Graphical matching .81 .06 .378

Conceptual matching .27 .002 .609

Structural matching .2 .01 .658

Node density (Gamma) .1 .01 .75

Proposition matching .01 .00 .911
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density [t(25) = 3.31, p \ .05] and preposition matching [t(25) = -2.61, p \ .05] as

shown in Table 6.

Except for graphical matching, these results support the assumption that DEEP mea-

sures conceptual graphical representations and T-MITOCAR measures descriptive text

representations.

Discussions and conclusions

This study tested HIMATT in an as yet untested domain—mathematics—to see if and to

what extent annotated concept maps can distinguish expert responses from those of less

experienced persons. The general HIMATT does hold up in mathematics even though math

problems are well-structured in most cases but can also be complex and challenging, and

seem amenable to treatment with annotated concept maps and the HIMATT approach.

This study primarily determined (a) how participants conceptualize complex mathe-

matical problems and (b) whether there exists recognizable patterns in expert and student

conceptualizations that can facilitate the development of expertise. The use of concept

maps and text summaries as means of capturing students’ mental models (external rep-

resentations) were proposed as viable means to measure students’ understanding and

conceptualization of problem scenarios (Ifenthaler 2010; Johnson et al. 2006). The analysis

and comparisons of the externalized representations consisted of six measures suggested by

the HIMATT toolset (Pirnay-Dummer and Ifenthaler 2010). The automated quantitative

analysis generated structural measures (surface, graphical, gamma, and structural
matching) and semantic measures (concept and propositional matching) to obtain students’

representations and compare the problem conceptualizations both graphically and textually

(Ifenthaler 2010).

A common mental model was extracted by comparing the mental models of partici-

pants. The common mental model based on expert representations was used as a reference

model to analyze individual models for purposes of formative feedback (e.g. finding expert

nodes not included in a novice representation). The expert reference model was used to

develop a relative measure of the level of expertise and estimate the level of learning.

Except for concept matching, all of the five measurement areas included commonalities

between the expert and the novice models. This finding is consistent with the notion that

the lack of common concepts between an expert representation and a novice representation

is a good indicator of relative levels of expertise (see Spector and Koszalka 2004). Dif-

ferences in language use were found when the concepts in the models were compared. This

Table 6 Repeated sample t-test comparing DEEP and T-MITOCAR measurements

DEEP versus T-MITOCAR t df Mean Significance level

DEEP—T-MITOCAR Surface matching 3.31 25 .26 .003

DEEP—T-MITOCAR Graphical matching .72 25 .05 .476

DEEP—T-MITOCAR Conceptual matching -7.28 25 -.11 \.001

DEEP—T-MITOCAR Structural matching 12.55 25 .44 \.001

DEEP—T-MITOCAR Node density (Gamma) 5.25 25 .39 \.001

DEEP—T-MITOCAR Proposition matching -2.61 25 -.01 .015
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discrepancy occurs because in mathematics, it may be difficult to describe mathematical

relationships in words rather than in formulas.

This study investigated if the tool used to elicit the problem conceptualization affects

what is elicited by comparing and contrasting DEEP and T-MITOCAR. This study design

asked participants firstly to use the DEEP tool and then T-MITOCAR tool. Findings show

that the tool used here does seem to influence the conceptualization elicited although it is

not clear which might be better used first since both seem to be useful in a practical way.

Findings of the research questions 1, 2 and 3 suggest that both DEEP and T-MITOCAR

can be used to create an expert reference model that can be used for formative feedback in

a meaningful way to personalize and individualize feedback and also serve to promote

expert-like understanding. A practical question can be asked: is it better to support iden-

tifying gaps or to target formative feedback? Findings suggest that either can be used to

support formative feedback, even though there are some differences between the two

representations. Findings show that using DEEP is good for gaining a sense of the entire

problem space in the case of visually-oriented learners whereas T-MITOCAR allows

collecting the direct response to the problem as a text document. This research suggests

benefiting from the advantages of both DEEP and T-MITOCAR. The potential for the

tools, DEEP and T-MITOCAR, ‘‘to provide a learner with near real-time feedback com-

paring his or her problem conceptualization with that of an expert or another learner exists

now and is of obvious value in promoting the development of productive mental models to

solve complex problems’’ (Spector 2010, p. 11).

When the mental model measurement was conducted by using T-MITOCAR, com-

monality was found only in graphical matching. This finding may be due to the fact that

T-MITOCAR creates a graph from text, although prior studies with T-MITOCAR have

found concept measures to be useful along with the gamma measure. In any case, the

gamma measure does provide a basis for determining a relative level of expertise and may

help in identifying gaps in a novice representation. The results of this study suggest that

experts have a common mental model in conceptual and graphical representations but not

in grammatical or propositional similarity. Grammatical similarity is associated with the

propositional similarity measure that is used in this study. However, the results of the

propositional similarity suggest that the measurement by the propositional matching is

useless in HIMATT since the requirements for a propositional match are too severe since it

must be an exact match. The gamma measure is associated with connectedness but not

graphical similarity while graphical similarity requires having the same nodes connected to

the same nodes in two different representations done by pair wise comparison when there

are common nodes (concepts) in two representations.

According to the previous mental model studies, a mental model progression starts with

a model that contains the ideas that are most simple, representative and fundamental (van

Merriënboer 1997). And then, subsequent models add complexity to a part of the former

models and become their elaborations. In line with the descriptions of mental models by

van Merriënboer (1997), mental models of experts are seen as extremely complex sche-

mata in which the nodes are either concepts or principles and some types of relationships

are used. However, students’ mental models were simple mental models that included

isolated concepts, principles, and relationship between concepts (van Merriënboer 1997).

While experts gave more importance to the causal relationships of key concepts, nov-

ices used a wider range of information. This difference is in line with the findings of Glaser

(1996) and Perez et al. (1995) indicating that experts use well-established principles in

their field of expertise while novices are usually limited to descriptions and surface

explanations as they lack knowledge of general principles. Novices could not explain many
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relationships between and among concepts due to gaps in their knowledge and unaware-

ness of general principles. This characterization is in line with the findings of Shin et al.

(2003), which have emphasized that subject knowledge is an effective factor in success-

fully solving complex structured problems. In this study, learners were presented with real

life problems so that the patterns of their causal thinking could be evaluated (Jonassen

2000).

In addition, previous research emphasizes that concept maps and causal interaction

diagrams have a critical role in the evaluation of complex problems (e.g., Jonassen

et al. 1993; McKeown 2008; Seel 2004; Shute et al. 2000; Spector and Koszalka 2004).

The use of concept maps is important because it reveals the external representations of

the individual’s thinking, knowledge and ability to solve a complex mathematical

problem.

This evaluation study of mental models, using a title of the EMM methodology,

requires analyzing and comparing individuals’ mental models and capturing shared

models of groups. There are two dimensions of this evaluation: (1) comparing indi-

viduals’ mental models in one group and capturing shared models of groups (2) com-

paring mental models of two groups that have two various levels of expertise and

analyzing these compared mental models. In further studies, one more dimension can be

added to the EMM methodology and this amended methodology can be used in more

detailed research studies related to the assessment of learning outcomes and perfor-

mance evaluation. Thus, the EMM methodology can be used in three dimensions:

(1) comparing individuals’ mental models in one group and capturing shared models of

groups (2) comparing mental models of two groups that have two various levels of

expertise and analyzing these compared mental models in terms of learning outcomes

and performance evaluation (3) analyzing mental models of individuals and groups to

investigate the changes of progress over time.

A limitation of this study is having a relatively small subject group. It is important to

work with larger samples when a more facile interface is eventually developed for the

tools. Further important research studies should be conducted for a large-scale use of the

EMM methodology. The EMM methodology can be used to provide real-time and dynamic

feedback to learners in learning situations involving challenging and complex problems.

Also, the use of the EMM methodology allows determining the impact on learning

effectiveness and efficiency.
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Appendix 1

The first problem scenario: the hanging chain (Boyce and DiPrima 2005)

Imagine a flexible steel chain, attached firmly at equal height at both ends, hanging under

its own weight (see Fig. 12). What shape will it describe as it hangs? This is a classical

Evaluating mental models in mathematics 189

123



problem of mechanical engineering, and its analytical solution involves calculus, ele-

mentary physics, and differential equations. We describe it here.

We analyze a portion of the chain between points A and B, as shown in Fig. 13, where A

is the lowest point of the chain and B = (x, y) is a variable point. We let T1 be the

horizontal tension at A; T2 be the component of tension tangent to the chain at B; w be the

weight of the chain per unit of length. Here T1, T2, w are numbers. Figure 14 exhibits these

quantities.

Notice that if s is the length of the chain between two given points, then sw is the

downward force of gravity on this portion of the chain; this is indicated in the figure. We

use the symbol h to denote the angle that the tangent to the chain at B makes with the

horizontal.

Problem

Think of the hanging chain as the graph of a function: y (the height of the wire from the

ground) is a function of x. Find an equation of y(x) in terms of y(0) (the height at the point

A), T1 and w.

Problem instruction

Your task is to reflect on the problem scenario and then indicate how you conceptualize the

problem and how you would go about solving the problem. Here, the main purpose is NOT

to solve the problem. The primary interest is in understanding what you believe in relevant

to developing an acceptable solution.

Fig. 12

Fig. 13

Fig. 14
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Appendix 2

Solution of the problem 1

Concept map was drawn (see Fig. 1). Description of each concept and links were written as

below:

Concepts

Equilibrium of forces, modeling, obtaining differential equation (DE, Pythagoras, trigo-

nometry, derivative, tangent line, slope, initial value, solving of the differential equation

(DE), slope of tangent, tangent line, slope.

Descriptions of concepts

1. Equilibrium of forces: This is an engineering problem; one assumes that the cable has

the shape of a curve y = f(x) and identifies forces acting at a particular point of the

cable. In this step engineering common sense is needed. To derive the DE that governs

this phenomenon one has to use vector calculus and the physical notion of equilibrium

of the three acting forces. Horizontal and vertical components of force acting on a

body are equal. Newton’s first law, tension, physics can be used instead of equilibrium

of forces.

2. Modeling: Expressing a real world problem in terms of mathematics. Writing a

differential equation.

3. Differential Equation (DE): After obtaining differential equation, one identifies the

type of the DE and solves it. In this case by the method of separation of the variables.

4. Solving of DE: Integration is used to obtain the solution of differential equation.

5. Derivative: differential equation consists of a function and its derivatives. There will

be a need to express the arc length variable by x and y, and this is achieved by

differentiating the equation obtained from the equilibrium of the acting forces with

respect to x and using the formula for the derivative of arc length in terms of dy/dx.

6. Tangent line—slope: The slope of the tangent line gives the derivative of the function.

7. Integral: derivative or differentiation is reverse operation of integration or integral.

8. Pythagoras—trigonometry: There will be a need to express the arc length variable by x

and y. Elementary trigonometry is used for modeling.

Description of links

1. Step 1: This is an engineering problem; one assumes that the cable has the shape of a

curve y = f(x) and identifies forces acting at a particular point of the cable. In this step

engineering common sense is needed. To derive the DE that governs this phenomenon

one has to use vector calculus and the physical notion of equilibrium of the three

acting forces. Horizontal and vertical components of force acting on a body are equal.

Newton’s first law, tension, physics can be used instead of equilibrium of forces.

2. Step 2: Expressing a real world problem in terms of mathematics. Writing a

differential equation. Obtaining DE.

3. Step 3: After obtaining differential equation, one identifies the type of the DE and

solve it. In this case by the method of separation of the variables.

4. Integration is used to obtain the solution of differential equation.

Evaluating mental models in mathematics 191

123



5. Differential equation consists of a function and its derivatives. There will be a need to

express the arc length variable by x and y, and this is achieved by differentiating the

equation obtained from the equilibrium of the acting forces with respect to x and using

the formula for the derivative of arc length in terms of dy/dx.

6. Derivative or differentiation is reverse operation of integration or integral.

7. Elementary trigonometry is used for modeling.

8. Slope of tangent line equals to derivative or differentiation.

Appendix 3

Sample DEEP models from an expert participant and a novice participant

See Figs. 15 and 16.

Fig. 15 Sample for one of the experts’ DEEP model
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