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Abstract This study examined some of the methodological approaches used by students

to construct causal maps in order to determine which approaches help students understand

the underlying causes and causal mechanisms in a complex system. This study tested the

relationship between causal understanding (ratio of root causes correctly/incorrectly

identified, number of correctly identified root-cause links explaining how root causes

directly/indirectly impact final outcomes) and three attributes observed in students’ causal

maps (total links, temporal flow, lateral position of final outcome) that students produced

before and after online discussions on noted similarities and differences between students’

causal maps. The findings suggest that: (a) causal understanding can be adversely affected

if students are instructed before group discussion to temporally sequence nodes to flow

from left to right and to position the outcome node farther away from the left edge of the

map relative to other nodes in the map; (b) causal understanding following group dis-

cussion can be increased by instructing students to minimize the number of causal links

and create a map with temporally flow; (c) promoting temporal flow following discussion

may be the most effective means of helping students to identify root causes; and

(d) instructing students to minimize the number of links following discussion may be the

most effective means to helping students explain root causes directly/indirectly impact

outcomes. These findings provide insights on what processes and constraints can be for-

malized and integrated into causal mapping software when used as an instructional and

assessment tool.
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Introduction

One of the most basic cognitive process in human learning is causal reasoning (Rehder

2003) when concepts are combined into propositions (e.g., heat increases pressure) to

determine the functional properties of concepts and to understand the essential parts and

causal-and-effect relationships that exist within a system (Guenther 1998). Given that

causality is the core property of all science (Keil 1989), the ability to reason causally is an

essential cognitive skill that is central to understanding and predicting the behavior of

complex systems (Brewer et al. 2000; Carey 1995; Corrigan and Denton 1996; Schlott-

mann 2001; Thagard 2000; Wellman and Gelman 1998). The National Science Education

Standards emphasizes that students reflect on observations in ways that indicate that he/she

is attempting to find patterns and causal relationships (National Research Council 1996).

The Standards place more emphasis on science as argument and explanation and on

activities where students analyze science questions using evidence and strategies for

developing explanations. All of these standards focus on understanding causal

relationships.

Causality can be understood in terms of the priority principle, covariation (co-occur-

rence) principle, and mechanism principle (Bullock et al. 1982; Kelley 1973). The priority

principle refers to the temporal relationship between cause and effect. A cause must

precede the effect for a cause to be valid (e.g., ‘‘the boy kicked the stationary ball’’ and

‘‘the ball rolled’’). The covariation principle describes a causal law (Kelley 1973) which

predicts that repeated occurrences of the association between cause and effect over time is

a necessary condition for a causal relationship to be legitimate. In this case, the strength of

the correlational relationship indicates the probability of the cause producing the effect

(Hung and Jonassen 2006). The mechanism principle describes the beliefs that people

construct to explain relationships between cause and effect. The causal mechanism is the

causal chain of intermediary events that connect a cause and an effect (e.g., factories

increased in number ? jobs increased in number ? city population increased). Temporal,

covariational and mechanistic understanding may all be necessary to achieve full under-

standing of causal relationships in a complex system. For example, Rapus (2004) found

that information about how covariation strength is used depends on the detailedness of

mechanistic information and the scope over which covariation information is defined.

Causal reasoning with causal mapping tools

One fundamental assumption of this article is that humans understand the world by con-

structing mental models (or internal symbols and representations) of the world in their

minds that serve as structural analogs of real-world or imaginary situations, events, and

processes (Johnson-Laird 1983). Science and mathematics educators recognize the

importance of modeling in understanding scientific and mathematical phenomena (Confrey

and Doerr 1994; Frederiksen and White 1998; Hestenes 1992; Lehrer and Schauble 2000,

2003). Extensive research has been conducted on the effects of using visual diagrams like

concept maps and/or knowledge maps to support learning in the classroom (Nesbit and

Adesope (2006). Constructing causal maps (one variant use of concept maps) to examine

causal relationships underlying complex phenomena is an important and fundamental

process in scientific inquiry. Modeling helps learners to: (a) express, externalize, and share

their thinking; (b) visualize, discuss, and test components of their theories; and (c) make

materials more interesting. These processes of modeling can, for example, support
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conceptual development, and conceptual change (Nersessian 1999; Vosniadou 2002).

When solving problems, learners construct models in memory and apply those models to

solving the problem rather than applying logical rules (Vandierendonck and de Vooght

1996).

However, the models that learners construct are often analogical, incomplete, and

fragmentary representations of a given system (Farooq and Dominick 1988). Students often

possess overly simplistic models of complex systems which fail to recognize the inter-

connectedness of variables within a system, and ignore indirect effects, and/or view all

variables as direct causes (Barman et al. 1995; Griffiths and Grant 1985). To construct

more complete and accurate models, computer-based tools can be used to produce both

computational and visual representations of their models (Richardson 1999). Although

causal models can be constructed both quantitatively and qualitatively, most of the

research on modeling has focused more on the use of quantitative and computational tools

like Stella to facilitate the modeling process. However, qualitative representations may just

be as important as quantitative representations of student’s model/understanding (Ploetzner

and Spada 1998). When students try to understand a problem using quantitative approa-

ches, students often do not conceptually understand the underlying systems and compu-

tational formulas. As a result, it may be necessary to help learners construct qualitative

representations of a problem to facilitate the construction of quantitative representations—

especially for novice problem solvers (Chi et al. 1981; Larkin 1983).

Causal maps can be used by learners to explicate causal relationships using a more

qualitative approach. A causal map is a visual-graphical network of nodes (e.g., graphical

squares, rectangles, or circles) and unidirectional links (e.g., arrows that point in only one

direction) used to represent variables and the causal relationships between variables.

Causal maps and concept maps in general have been used in science education as a tool to

teach and assess learners’ systemic understanding of complex problems and phenomena

(Leelawong and Biswas 2008; Owen 2002; Ruiz-Primo and Shavelson 1996). Specifically,

maps have been used to elicit, articulate, share, identify similarities/differences, trigger and

support discussions, refine, assess, and improve understanding, analysis, and the identifi-

cation of causes and effects, their temporal relationships, and causal mechanism underlying

a complex problem or system (Jeong 2009, 2010a).

A growing number of studies on causal maps and/or concept maps in general have

formulated various metrics to measure the accuracy and structural attributes of students’

maps (parsimony, temporal flow, total links, connectedness)—particularly attributes

believed to be correlated to map accuracy and attributes that can be potentially used as

guidelines to help students create more accurate maps (Nicoll 2001; Scavarda et al. 2004;

Ifenthaler et al. 2011; Jeong 2009; Plate 2010). Studies have been conducted to determine

how different constraints imposed on the map construction process affect student’s maps

and learning—constraints like imposing hierarchical order by allowing students to move

and re-position nodes (Ruiz-Primo et al. 1997; Wilson 1994), providing terms for nodes

(Barenholz and Tamir 1992), providing labels for links (McClure and Bell 1990), and

allowing more than one link between nodes (Fisher 1990).

In addition, studies have been conducted to develop computer-supported tools to

automate and reliably measure the accuracy and structural attributes of maps. Computer

software like the Highly Integrated Model Assessment Technology and Tools or HIMATT

(Ifenthaler 2010, 2011) and jMAP (Jeong 2010b) are being used to not only to address

issues of rater reliability and validity, but also to test the correlation between different

structural attributes and accuracy of students’ maps (Ifenthaler et al. 2011). In addition,

these tools are being used to measure how maps change over time and how observed
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changes over time contribute to convergence in shared understanding between learners

(Jeong 2010a). HIMATT is a web-based tool that enables learners to construct causal maps

and teachers or researchers to quantitatively measure how an individual learner’s causal

map compares to an expert’s map. jMAP is an Excel-based program that also enables

learners to construct causal maps using Excel’s autoshape tools. Most of all, jMAP also

enables users to ‘‘join’’ (or aggregate) and graphically ‘‘juxtapose’’ maps to make visual

and quantitative comparisons between maps produced by an individual, the collective

group of learners, and/or the expert (in any paired combination).

Limitations of causal mapping tools

However, students’ maps can vary widely in both accuracy and form when a student’s map

is compared to another student’s map or to an expert’s map (Ruiz-Primo and Shavelson

1996; Scavarda et al. 2004). Based on a review of prior research, Ruiz-Primo and

Shavelson (1996) concluded that maps should not be used in the classroom for large-scale

assessments until students’ facility, prior knowledge/skills in using maps, and associated

training techniques are thoroughly examined. Furthermore, variations in the processes used

by students to create their maps (and how these processes affect map quality and accuracy)

need to be identified and thoroughly examined in order to ensure that observed variances in

the accuracy of students’ maps are the result of the differences in students’ causal

understanding and not the result of individual differences in the processes students use

when constructing their maps. Most of all, the processes that help students create more

accurate causal maps must be determined and thoroughly tested so that mapping processes

can be standardized and implemented to eliminate variance in map accuracy attributed to

individual differences in the causal mapping processes used by students. At this time, the

research that has been conducted to examine how various attributes of students maps

correlate to learning outcome have not specifically examined the attributes (temporal,

covariation, mechanisms) that can directly impact causal understanding.

Given the issues described above, new research is needed to: (a) identify the processes

students use when constructing causal maps prior to receiving instruction and training on

causal mapping; and (b) determine to what extent particular processes contribute to causal

understanding measured in terms of the accuracy of students’ maps (the match between the

student’s and expert’s map). A clear understanding of the processes and their effects on

map accuracy will provide the foundation on which to identify the most appropriate

interventions for improving the map construction process, the accuracy of students’ causal

maps, and students’ causal understanding of complex systems (e.g., causal mechanisms,

temporal relationships). This correlational study examined the accuracy of students’ maps

in terms of the ratio of correctly/incorrectly identified root causes and in terms of total

number of correctly identified root-cause links (links stemming from root causes) to gauge

how well students understand the causal chain-mechanisms and mediating factors under-

lying cause-effect relationships between root causes and outcome node. Each of these two

measures of causal understanding were correlated with three attributes observed in stu-

dents’ causal maps: total number of causal and unidirectional links present in the student’s

map (total links), ratio of links that point from left-to-right versus from right-to-left

(temporal flow), and the distance measured by the number of pixels between the position of

the outcome node and the left-most edge of screen (position of the node representing the

final effect/outcome).
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The purpose of this study was to determine which attributes were correlated with (and

possibly contributes to) high scores in map accuracy and causal understanding. The

findings can be used to identify which attributes can be implemented in student training

and instructions and/or integrated into the causal mapping software interface to enhance

and/or scaffold specific mapping processes (e.g., limiting number of links, creating default

links pointing from left to right, positioning by default final outcome nodes at right portion

of screen). To address these issues, this case study examined two research questions:

1. Which attributes (total links, temporal flow, lateral position of final outcomes) are

correlated with causal understanding?

2. What is the relative magnitude of each attribute’s impact on causal understanding?

In this study, the total number of causal links observed in student’s maps was

hypothesized to be negatively correlated with causal understanding. In the case where

event A causes B and B causes C (a total of two causal links), students with little

understanding of direct and indirect causes may insert causal links between A–B, B–C, and

A–C (a total of three causal links). As a result, students’ inability to distinguish direct

causes (B) from indirect causes (A) and inability to construct parsimonious models could

in theory inflate the number of causal links in their causal maps and therefore reduce the

accuracy of their causal understanding.

The degree to which students’ causal maps exhibit temporal flow (the percentage of

links pointing from left to right) was hypothesized to be positively correlated with causal

understanding because the conventional practice of sequencing temporal events from left

to right (at least in the Western culture) may lead students to engage in more reflection on

the temporal nature of causality. This in turn may enable students to apply the priority

principle—one of the three underlying principles of causality noted above—as they

attempt to identify possible cause-effect relationships.

The distance (lateral position) between the outcome node and the left-most edge of the

mapping screen was hypothesized to be positively correlated with causal understanding.

Positioning the outcome node to the far right of the mapping area can help to create

adequate space for students to (either intentionally or unintentionally) re-position and

move direct causes to the middle portion of the map (closer to the outcome node) and move

indirect causes to the left of the mediating causes (farther away from the outcome node).

As a result, the relative positions of the nodes may assist students in recognizing and

distinguishing which factors might be direct and indirect causes and successfully identify

the causal mechanisms to explain how indirect causes affect the final outcome.

Given the hypotheses presented above, the total number of causal links, temporal flow,

and lateral position of the final outcome node was hypothesized to be significant predictors

of causal understanding measured in terms of the ratio of correct/incorrect root causes and

the number of correct root links. Given the absence of prior research on the relative impact

of these three variables on causal understanding, no hypotheses were made on the relative

magnitude of each attribute’s impact on causal understanding.

Method

Participants

The participants in this study were 19 graduate-level students enrolled in an online course

on the topic of computer-supported collaborative learning at a large university in the
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southeast region of the U.S. in the summer of 2008. Eight participants were male, and

eleven were female ranging from 22 to 55 years in age.

Procedures

The students were given two class activities to examine the cause-effect relationships

between factors that influence learning in collaborative learning groups and to create a

personal theory that explains how student learn successfully in collaborative groups. In

week 2 of the course, students used a Wiki web page to share and construct a running list of

factors that they believed to influence the level of learning in collaborative groups. Stu-

dents classified and merged the proposed factors, discussed the merits of each factor, and

submitted votes on the factors believed to exert the largest influence on the outcomes of a

group assignment. The votes were used to select a final list of 14 factors (see Fig. 1).

In week 3, students were presented six example diagrams to illustrate the characteristics

(temporal flow and parsimony) and functions of causal maps. Students were then provided

a MS Excel-based software program called jMAP to construct their first causal map. The

map template was pre-loaded with the final list of14 factors. The nodes were randomly

placed along the left and bottom edge of the screen with the outcome node placed on the

right portion of the screen. The purpose of each student’s map was to graphically explain

their understanding of how the selected factors influence learning in collaborative groups.

Using the functions in jMAP, students connected the factors with causal links by creating

each link with: (a) varying densities to reflect the perceived strength of the link (1 = weak,

Fig. 1 Instructor map superimposed over a student’s map to reveal matching and missing causal links.
Note: Dark gray link is present in student’s map; light gray link missing in student’s map
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2 = moderate, 3 = strong); and (b) varying link styles (continuous, dotted, sparsely dot-

ted) to convey the amount of evidence (from past personal experiences or from empirical

research) that is available to validate/verify the presence of a causal relationship. The

course instructor also used jMAP to construct an expert map (see Fig. 1) that was used in

this study to assess the accuracy of students’ maps. While constructing the expert map, the

instructor applied the same guidelines that were shared with students before they con-

structed their causal maps. In following the guidelines, the instructor: (a) immediately

positioned the outcome node to the far right of the causal map; (b) purposefully sought to

establish temporal flow while examining and identifying direct from indirect causes; and

(c) purposefully removed causal links inserted between indirect causes and final outcome

node in order to achieve a parsimonious model. As students constructed their causal maps,

students were permitted to omit any factors that he/she did not believe to directly or

indirectly influence the learning outcome. Personal causal maps were completed and

electronically uploaded within a 1-week period. Any student that submitted a map received

10 class participation points, and as a result, the causal maps were not graded. Class

participation points earned by students (out of 275 total possible points) accounted for 25%

of the course grade. Students used and made references to their causal maps in a written

assignment due in week 4 that described their personal theory of collaborative learning

(accounting for 10% of the course grade).

Once all the students submitted their first causal map, the instructor used jMAP to

download and aggregate all diagrams (n = 19) to produce and share with students a matrix

conveying the percentage of diagrams that possessed each causal link. For example, the

matrix in Fig. 2 shows that the causal link between ‘Individual Accountability’ and

‘Learner Motivation’ was observed in 47% of students’ diagrams. The highlighted cells in

the right matrix in Fig. 2 identify the common links observed in 20% or more of the

students’ diagrams (note: this criterion was specified by the instructor when aggregating

diagrams in jMAP). Presented in the left matrix are the mean strength values of only those

links observed in 20% or more of the diagrams. The highlighted values reveal links that are

present or absent in the expert’s map (i.e., dark = links and strength values match, medium

dark = links match, but strength values do not, light gray = missing target links).

In week 9, students were presented the matrix that revealed what percent of students’

maps (Fig. 2) possessed each link. In an online discussion forum hosted in the Black-

boardTM course management system, the instructor created an individual discussion thread

for each factor pairing. Within each discussion thread, students posted messages to explain,

defend, and challenge the rationale behind each proposed causal relationship. Each posted

explanation was labeled by students with the tag ‘EXPL’ in message subject headings.

Postings that questioned or challenged explanations were tagged with ‘BUT.’ Postings that

provided additional support were tagged with ‘SUPPORT.’ In weeks 9, students searched

and reported quantitative findings from empirical research in a Wiki to determine the

relative impact (strength values) of one factor on another factor.

Finally, in week 10, students reviewed the discussions produced in week 9. Within each

discussion thread for each proposed causal link, students posted messages to report whe-

ther they rejected or accepted the link (along with explanations). At the end of week 10,

students revised and submitted their causal maps (map 2) based on their analysis of the

arguments presented in class discussions. Similar to the first map produced in week 4,

students received 15 class participation points for submitting their final maps. All students

received the 15 participation points for simply creating and submitting a final map. With

three students that did not submit their final maps, a total of 16 final maps were collected.
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Data analysis

This study measured students’ causal understanding in terms of (a) the ratio of correctly/

incorrectly identified root causes (nodes with only out-going causal links) and (b) total

number of correctly identified root-cause links (links stemming from root causes) used to

gauge how well students understand the causal chain-mechanisms and mediating factors

underlying cause-effect relationships between root causes and outcomes. The students’

scores on each of these measures of causal understanding were based on a direct com-

parison of each student’s causal map and the instructor’s causal map. Matrices like the one

in Fig. 3 were automatically produced by jMAP in MS Excel worksheets for each student’s

map to facilitate the process of comparing and scoring each student’s map in relation to the

instructor’s map. Each matrix represents one student’s causal map with causes listed by

row, effects listed by column, dark and medium-dark colored cells identifying correctly

identified links, light gray colored cells identifying missing links, factors with empty

columns identifying root causes (factors with no incoming links), and red triangles

denoting the presence of a student’s personal explanation for inserting the causal link

stored in the cell’s comment box. The values entered in each cell that denote the perceived

strength of impact each cause has on each effect (first value in cell) and the amount of

existing evidence to validate/verify the cause effect relationship (second value in cell) were

not examined in this study.

Each of these two measures of causal understanding were correlated with three

attributes observed in students’ causal maps: total number of causal links (total links),

Fig. 3 Matrix representing a student’s causal map with causes listed by row and effects listed by column.
Note: Dark gray links in expert map with matching strength values; medium gray links in expert map with
different strength value; light gray expert link not present in the student’s maps
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ratio of right/left pointing links (temporal flow), and distance of final outcome node

from left edge of screen (outcome position). Total links was measured by counting all

links in each student’s causal map using the matrices like the one illustrated in Fig. 3.

Temporal flow was computed by visually examining the actual maps produced by each

student to count the number of right and left pointing links. The temporal flow of each

map was then scored by dividing the number of right pointing links by the number of

left pointing links. Links that pointed straight up or straight down were not included in

the computation. Outcome position was based on the number of pixels separating the

left edge of the screen and the middle position of the outcome node titled ‘‘Level of

learning achieved’’. The descriptive statistics for each of the measures are presented in

Table 1.

To determine how the attributes might potentially affect causal understanding

(research question 1), correlations were computed between all the examined attributes

(total links, temporal flow, lateral position of final outcomes) and the two measures of

causal understanding (ratio of correctly/incorrectly identified root causes, number of

correctly identified root cause links). One correlation matrix was produced for all causal

maps (map 1) students produced before participating in the online discussions/debate

over their causal relationships between the factors and outcome. A second correlation

matrix was produced for all maps (map 2) students produced after they presented,

discussed, and examined the causal relationships in the online discussions/debate in

week 9.

To determine the relative impact of each attribute on causal understanding (research

question 2), two regression models were tested on the maps produced before discussion

and on the maps produced after discussion:

Model 1 Ratio of correct root causesi = b0 ? b1(number of total linki) ? b2(ratio of

temp flowi) ? b3(outcome node position).

Model 2 Number of correct root linksi = b0 ? b1(number of total linki) ? b2 (ratio of

temp flowi) ? b3 (outcome node position).

Table 1 Descriptive statistics on each of the five measures

n Min Max Mean Std Skew SE

Before discussion

Total causal links 19 9 35 18.26 5.06 1.69 0.52

Ratio of temporal flow 19 55 100 80.58 15.60 0.09 0.52

Outcome node position 19 345 1330 763.68 229.75 1.38 0.52

Ratio correct/incorrect root causes 19 0 100 60.41 34.67 1.97 0.52

Number of correct root links 19 0 100 11.35 25.77 -0.53 0.52

After discussion

Total causal links 16 12 21 16.69 2.41 0.03 0.56

Ratio of temporal flow 16 18.75 100 77.83 24.45 -1.33 0.56

Outcome node position 16 650 1085 784.69 117.98 1.38 0.56

Ratio correct/incorrect root causes 16 0 100 61.71 26.98 -1.51 0.56

Number of correct root links 16 0 3 1.31 1.08 0.01 0.56
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Results

Correlations between attributes and causal understanding

The correlations between the attributes and measures of causal understanding are presented

in Table 2. In the student’s initial maps (map 1) produced prior to discussion, temporal

flow was negatively correlated to the number of correct root links (r = -0.461,

P = 0.047), outcome position was negatively correlated to the number of correct root links

(r = -0.465, P = 0.045). In the maps produced following discussion (map 2), temporal

flow was positively correlated with ratio of correct/incorrectly root causes (r = 0.688,

P = 0.003), while total causal links was negatively correlated with number of correct

causal root links (r = -0.523, P = 0.037).

These findings suggest that: (a) understanding of the underlying causal mechanisms

during early map construction can be adversely affected if students are instructed to

temporally sequence nodes to flow from left to right and position the outcome node farther

away from the left edge of the map relative to other nodes in the map; and (b) the ability of

identify root causes during the later process of map construction following class debate

over the causal links can be increased by instructing students to minimize the number of

causal links and create a map that temporally flows from left to right.

Relative impact of attributes

The regression analysis produced one model of statistical significance (see Table 3). The

regression model for the ratio of correct/incorrect root causes identified in students’ maps

produced after the online discussions (F(3,12) = 5.025, p = 0.017) explained 44.6% of

the variance (Adjusted R2 = 0.446) and power was 0.73. In this model, the variables that

were the most to least predictive were temporal flow (b = 0.772, P = 0.004), total links

(b = -0.263), and outcome position (b = -0.092). These results suggest that during the

later causal mapping process, temporal flow can make the greatest impact on students’

Table 2 Correlations between two measures of causal understanding and the three causal map attributes

Variables Total
links

Temp
flow

Outcome
position

Root
causes

Root
links

Prior to online discussion

Total causal links 1

Ratio of temporal flow 0.028 1

Outcome node position 0.334 0.254 1

Ratio correct/incorrect root causes -0.213 -0.432 -0.381 1

Number of correct root links -0.165 -0.461* -0.465* 0.541* 1

Following online discussion

Total causal links 1

Ratio of temporal flow 0.023 1

Outcome node position 0.159 0.303 1

Ratio correct/incorrect root causes -0.261 0.688* 0.085 1

Number of correct root links (RL) -0.523* 0.352 0.153 0.492 1

* P \ 0.05, ** P \ 0.001
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ability to identify the root causes. An increase in temporal flow by one standard deviation

(while holding total causal links and outcome node position constant) can potentially

increase the ratio of correct/incorrect root causes by 0.722 standard deviations.

Although the model was not statistical significant (P = 0.076), the regression model for

the number of correctly identified root links following online discussion explained 28.1%

of the variance (Adjusted R2 = 0.281). In this model, the variables that were most to least

predictive were total links (b = -0.554, P = 0.028), temporal flow (b = 0.321), and

outcome position (b = 0.143). This finding suggests that instructing students to minimize

the number of links in their causal map during the later process of map construction

(following discussions) can make the greatest impact on explaining how root causes

directly/indirectly impact outcomes.

Although the models tested to determine the impact of the attributes early in the map

construction process (prior to discussions) were not statistically significant, what is worth

noting is that the impact of total links was very low or non-existent while temporal flow

and node position appear to have an adverse impact on causal understanding. On the other

hand, the impact of these attributes during the later processes of map construction are quite

different in that total links appears to make a small impact (as opposed to no impact) while

temporal flow makes a positive (not negative impact) and node position makes little or no

impact.

Discussion

Overall, the findings in this correlational study (though not conclusive) suggest when and

what methodological approaches students should use to construct causal maps in ways that

help them to achieve a better understanding of underlying causes and causal mechanisms in

complex systems. One of the findings suggests that students’ understanding of the causal

mechanisms underlying the cause effect relationships between root causes and outcomes

achieved during early processes of map construction can be adversely affected when

(a) students are instructed to temporally sequence nodes to flow from left to right and

Table 3 The unstandardized and standardized regression coefficients for the variables

Variables Ratio of correct/incorrect root causes Number of correct root links

B SE b B SE B

Prior to online discussion

Total causal links -0.448 1.606 -0.065 -0.015 0.037 -0.089

Ratio of temporal flow -0.805 0.508 -0.362 -0.020 0.012 -0.372

Outcome node position -0.040 0.037 -0.267 -0.001 0.001 -0.341

F(3,15) = 1.840, P = 0.183 Adjusted
R2 = 0.123

F(3,15) = 2.682, P = 0.084 Adjusted
R2 = 0.219

Following online discussion

Total causal links -2.935 2.176 -0.263 -0.247 0.099 -0.554*

Ratio of temporal flow 0.796 0.223 0.722** 0.014 0.010 0.321

Outcome node position -0.021 0.047 -0.092 0.001 0.002 0.143

F(3,12) = 5.025, P = 0.017 Adjusted
R2 = 0.446

F(3,12) = 2.95, P = 0.076 Adjusted
R2 = 0.281

* P \ 0.05, ** P \ 0.01
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(b) position the outcome node farther away from the left edge of the map relative to other

nodes in the map. On the other hand, temporal flow and outcome node position seem to

make a positive impact when implemented after class discussions. Students’ ability to

identify the root causes later in the map construction process can be increased by

instructing students to create maps that flow temporally from left to right. In addition,

students’ ability to identify root links and underlying causal mechanisms can be increased

by instructing students to minimize the number of causal links in their causal maps.

One plausible explanation as to why these three attributes appear to have an adverse

and/or little or no impact early in the map construction process is that the process of

implementing these attributes may be imposing too many constraints on students as they

brainstorm and explore the relationships between all possible factor pairings. For example,

a student who re-positions a given node closer to one node to convey their temporal

relationship is at the same time positioning the given node farther away from other nodes.

The increased distance between the given node from other nodes (and thereby reducing

their visual proximity) may lead students to skip and omit from consideration the rela-

tionship that the given node might have with other nodes. As a result, these actions may

pre-empt students from conducting a more thorough exploration of all possible cause effect

relationships and hence lead students to produce less accurate maps and poorer causal

understanding.

On the other hand, the findings in this study suggest that once students participate in

deliberate discussions and debates over the validity of the causal links in their maps (and

have mentally winnowed down the number of possible cause-effect relationships), estab-

lishing temporal flow during the map construction process can help students substantially

increase the their ability to identify root causes. One possible explanation for this finding is

that the process of positioning nodes in temporal sequence creates a task-demand char-

acteristic that encourages students to identify mediating causes and thereby distinguish root

causes from mediating causes. This finding contradcts the previous finding where hierar-

chical structure was found to have no effect on accuracy (Ruiz-Primo et al. 1997).

However, computing and scoring temporal flow in each student’s map in this study did not

pose any methodological problems like those Ruiz-Primo et al. (1997) reported in their

study in their attempt to formulate an operational measure of hierarchical structure. The

differences in the measures and the instructional tasks (e.g., create initial map individually,

structured online debates on causal links, etc.) used in this study versus Ruiz-Primo et al’s

(1997) study may have contributed to the different findings.

The findings in this study also suggests that if students are encouraged to keep the

number of causal links to a minimum (and to achieve parsimony), students are better able

to correctly identify root-cause links given the negative correlation found between total

links and ratio of correct/incorrect root links. Some plausible explanations for this finding

is that: (a) the students that inserted an excessive number of links did not mentally rec-

ognize potential redundancies between direct links (A-outcome) and mediated links (A–B-

outcome) and as a result, did not remove redundant links (A-outcome) from their causal

maps to minimize the number of links and to increase the accuracy of their maps; (b) the

excessive number of links was a reflection of student’s inability to break down and

understand the causal mechanisms and relationships and as a result, these students may

have intentionally created as many links as possible in order to maximize the chances of

identifying the correct links in their maps. To prevent students from making large numbers

of wild guesses, it may be necessary in the future to inform students that their maps will be

assessed not on the number of correctly identified links but on the ratio of correctly/

incorrectly identified causal links. However, assessing and assigning grades to students’
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maps cannot be legitimized until thorough research is conducted to achieve a complete

understanding of how individual differences in causal mapping knowledge, skills, and

processes affect the quality of students’ maps (while controlling for individual differences

in the knowledge and understanding of the domain/content under study).

Given the limitations of this study, future research will need to: (1) replicate this study

using a substantially larger sample (and with different student populations) while control-

ling for individual differences in students’ knowledge of the domain and concepts that

students are mapping and prior experience with causal and/or concept mapping; (2) set the

default position of the outcome node at the center of the screen rather than to the right

portion of the screen in order to fully assess the effects of outcome node position;

(3) analyze videos of each student’s desktop as they are constructing their maps to identify

and determine how other real-time processes impact student’s causal maps and causal

understanding (work in progress); (4) compare the effects of constructing causal maps that

flow temporally from left-to-right versus right-to-left to examine which reasoning process

(forward vs. backward or predicting vs. explaining) helps students better identify root and

mediating causes; (5) validate the quality and accuracy of the instructor’s causal map by

using outside criterion and/or by generating the target map by aggregating maps produced

by multiple experts using the same mapping guidelines examined in this study; (6) integrate

the desired attributes into the causal mapping software and conduct a controlled experi-

ments to determine the effects of limiting number of links, manipulating the option to create

links that can point in any or in only one direction, and intentionally varying the default

position of outcome nodes; (7) determine the extent to which students are able to correctly

interpret their own maps to correctly and verbally report the root causes and verbally explain

how root causes directly/indirectly impact outcomes; and (8) consider how the effects of

each constraint vary when examining causal maps across different domains or topics that are

or are not naturally temporal in nature; (9) include other measures of map accuracy and

causal understanding such as the number of correctly identified causal chains and students’

rank ordering of causes on overall impact based on number of out-going links stemming

from each cause); and (10) examine how specific attributes and processes also affect causal

understanding in terms of covariation (or strength of effect) in addition to temporal and

mechanistic nature of cause-effect relationships.

Although the findings in this study are not conclusive given the limitations noted above,

some of the preliminary findings were nevertheless consistent with our predictions—

predictions that were based on established principles and procedures used to construct

causal maps. For the findings that were not anticipated, logical and yet plausible expla-

nations were presented to help understand possible reasons behind the findings. Further-

more, this study fills an important research gap by providing a framework and bringing to

our attention the types of mapping processes and measures of map accuracy that need to be

thoroughly investigated and understood before we can justify the large-scale use of causal

maps (and/or concept maps in general) as an instructional and assessment tool. This

framework will help set the necessary groundwork to developing an empirically based

methodology on how to use causal maps in teaching and learning. The findings reported in

this study provide useful and preliminary insights into the processes of constructing causal

maps and insights on how these processes can positively as well as adversely impact level

of causal understanding, problem analysis, and problem solving. These and future findings

will provide useful data for developing and testing more rigorous and empirically based

procedural models on how to construct causal maps in ways that maximizes the affor-

dances gained from using causal mapping as tools for assessing and facilitating learning

and problem solving.
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