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Introduction

Excessive joint loadings, either single (acute contact stress
caused, for example, by blunt trauma) or repetitive
(cumulative contact stress caused by cyclic loading of the
joint), cause progressive joint degeneration and subsequent
development of the clinical syndrome of osteoarthritis (OA)
[3, 4, 6, 7, 10, 13, 15, 21]. Joint injuries causing acute
excessive contact stress are common and often affect young
adults. Each year, one in 12 people between the ages of 18
and 44 seeks medical attention for treatment of joint injury,
and more than 12% of all lower limb OA is caused by joint
trauma [5]. Despite advances in surgical treatment and
rehabilitation of injured joints, the risk of OA following
joint fractures has not decreased in the last 50 years [3].
Recent evidence [21] shows that intraarticular fractures are
accompanied by acute, rapid chondrocyte death along
fracture lines in the tissue (Fig. 1). This progressive cell
damage may be an effective target for therapeutic treatment
to preserve cartilage metabolism and thus, reduce the risk of
subsequent posttraumatic OA.

Excessive Loading and Articular Cartilage Damage

Cumulative excessive contact stress at the articular surface
that leads to OA can be exacerbated by joint dysplasia,
incongruity, and instability [3, 4, 10, 15–18, 22], but also
may cause OA in patients without known joint abnormal-

ities [2, 20]. Advances in understanding of the thresholds
for mechanical damage to articular cartilage and of the
biologic mediators that cause progressive loss of articular
cartilage due to excessive mechanical stress, will lead to
better treatments of joint injuries and improved strategies
for restoration of damaged joint surfaces [1, 3].

New Biologic and Mechanical Approaches
to the Prevention and Treatment of OA

Recent in vitro investigations show that reactive oxygen
species (ROS) released from mitochondria following exces-
sive articular cartilage loading can cause chondrocyte death
and matrix degradation [9, 14, 19]. Preventing the release of
ROS or inhibiting their effects preserves chondrocytes and
their matrix [9, 14]. Fibronectin fragments released from
articular cartilage subjected to excessive loads also stimulate
matrix degradation; inhibition of the molecular pathways
initiated by these fragments prevents this effect [8].

Distraction and motion of osteoarthritic articular surfaces
can promote joint remodeling, decrease pain, and improve
joint function in patients with end-stage posttraumatic OA
[11]. This result, combined with the observation that chon-
droprogenitor cells are active in osteoarthritic joints [12],
suggests that altered loading creates an environment that
promotes beneficial joint remodeling.

Summary

Taken together, these recent advances in understanding
of how mechanical forces cause loss of articular
cartilage including identification of mechanically induced
mediators of cartilage loss and of how changing joint
loading can promote joint remodeling provide the basis
for new biologic and mechanical approaches to the
prevention and treatment of OA.
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Fig. 1. Confocal microscope images of human superficial chondro-
cyte viability at a representative fracture edge scan site, at the
immediate, 1-day, and 2-day postfracture time points. Live cells are
labeled by green fluorescence, while dead cells are labeled by red
fluorescence. White arrows indicate the edge of cartilage on the
fracture line. Reprinted from Tochigi Y., Buckwalter J.A., Martin J.A.,
Hillis S.L., Zhang P., Vaseenon T., Lehman A.D., Brown T.D.. 2011.
Distribution and progression of chondrocyte damage in a whole organ
model of human ankle intraarticular fracture,93(6):533–539 copyright
2011 with permission from J Bone Joint Surg Am
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