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Abstract New psychoactive drugs (NPDs), or so-called

‘‘designer drugs’’ are chemically transformed compounds

of traditional drugs of abuse for the purpose of evading

crackdown. The abuse of NPDs is a significant social

problem and threatens public health; however, few

studies on their effects on the central nervous system

have been conducted. Microdialysis is a useful in vivo

sampling technique in neurochemistry because it enables

monitoring of synaptic release of neurotransmitters by

drug exposure or other stimuli in real time. Dopamine

(DA) and serotonin (5-HT) are important neurotrans-

mitters associated with drug abuse and addiction. In this

study, changes of DA, 5-HT and their metabolites in

brain microdialysates from rats following exposure to

selected 11 NPDs (MPA, 5-APDB, PCA, a-PVT, AB-

PINACA, QUPIC, 5-fluoropentyl-3-pyridinoylindole,

AMT, NMT, 4-OH-DET and desoxy-D2PM, 0.3, 1 and

3 mg/kg, consecutively, intraperitoneally) were investi-

gated using a validated liquid chromatography –tandem

mass spectrometry method. Most NPDs affected the

extracellular levels of DA, 5-HT and/or their metabo-

lites, showing consistent changes depending on the

groups of chemical structures, such as amphetamines,

synthetic cannabinoids and tryptamines. Significant DA

and/or 5-HT increases were observed for all the

amphetamine analogues. Weak fluctuations of DA and/or

5-HT concentrations were observed following exposure

to synthetic cannabinoids and more severe fluctuations

were shown by the tryptamines. The current results

could be used as the preliminary data for further research

concerning monoamine neurotransmitter-related mecha-

nisms of NPDs. Moreover, the understanding gained

from this research could be helpful to monitor the lia-

bility of NPD abuse and addiction.
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Introduction

New psychoactive drugs (NPDs), or so-called ‘‘designer

drugs’’, are chemically transformed compounds of tradi-

tional drugs of abuse for the purpose of evading crack-

down. These compounds are distributed under the names of

‘research chemicals’, ‘bath salts’ and ‘plant food’ etc. and

have been mainly dealt on the Internet markets; thus, the

NPDs also get the nickname of ‘internet drugs’ [1]. The

NPDs not only produce similar psychoactive effects as

existing drugs of abuse but also could be used in less

invasive manners (e.g., smoking, insufflating or ingesting

orally rather than injecting). Recently, more and more

NPDs have rapidly appeared and spread globally.

According to the European Union (EU) Early Warning
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System (EWS), 418 NPDs appeared during 2005–2014,

and in particular, in 2014, 101 NPDs were notified. In

addition, between 2008 and 2013, the quantity of confis-

cated NPDs increased sevenfold [2].

Microdialysis is a useful sampling technique of an

in vivo experiment concerning the neurochemical effects of

drug exposure and other stimuli, by collecting extracellular

fluid in the brain [3–5]. This approach enables monitoring

of the synaptic release of neurotransmitters, such as cate-

cholamines, amino acid neurotransmitters, and acetyl-

choline, in real time in different brain parts in awake,

freely-moving animals and to determine the changes of

these neurotransmitters during a prolonged sampling time

(e.g., up to several days) [6, 7]. However, the limited

sample size (20–30 lL), analytical interference, such as

inorganic salts in fluid, and low basal concentrations (pi-

comolar range) of neurotransmitters, demand sophisticated

analytical methods with high sensitivity and selectivity

[8–10].

The neurotransmitters are related to various neuropsy-

chiatric symptoms, such as anxiety, affective regulation,

learning ability, pain, regulation of body temperature and so

on [11, 12]. Dopamine (DA) and serotonin (5-hydrox-

ytryptamine, 5-HT) are important neurotransmitters in both

the central nervous system (CNS) and the peripheral nervous

system. The imbalance of DA and 5-HT contributes to

neuropsychiatric disorders, such as Parkinson’s disease,

epilepsy, Alzheimer’s disease, depression, stress,

schizophrenia and drug addiction [11, 13, 14]. First-gener-

ation NPDs stimulate or inhibit the dopaminergic and/or

serotonergic system. For instance, 3,4-methylene-

dioxymethamphetamine (MDMA), also known as ecstasy,

produces not only a psychostimulant effect but also an

empathogenic effect [15] and clearly increases 5-HT and

DA levels in areas of rat brain, such as the hippocampus and

the caudate-putamen [16]. 4-Methylmethcathinone (mephe-

drone) belongs to the group, cathinones, as its name sug-

gests, and it is known to produce higher addictive effects

than cocaine, based on user experience [1]. When mephe-

drone was injected at 1 and 3 mg/kg to rats, DA and 5-HT

levels significantly increased in the nucleus accumbens [17].

Even though a lot of NPDs has been appearing quickly,

previous studies on the dopaminergic and serotonergic

effects of the NPDs were conducted for only a limited

numbers of drugs. In this study, changes in DA, 5-HT and

their metabolites (Fig. 1) in brain microdialysates from rats

following exposure to 11 selected NPDs (Table 1), the

candidates for legislation to Narcotics Control Law in

Korea in 2015, were simultaneously investigated using

sensitive and selective liquid chromatography–tandem

mass spectrometry (LC–MS/MS) developed and fully

validated in our previous study [18].

Materials and methods

Reagents and drugs

DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic

acid (HVA), 5-HT, 5-hydroxyindoleacetic acid (5-HIAA),

DA-d4, DOPAC-d5, HVA-d5, 5-HIAA-d5 and ascorbic acid

were obtained from Sigma-Aldrich (Saint Louis, MO, USA).

Also, to prepare the artificial cerebrospinal fluid (aCSF), 1.0-

M phosphoric acid solution, sodium phosphate dibasic,

magnesium chloride hexahydrate, calcium chloride dehy-

drate, potassium chloride and sodium chloride were also

purchased from Sigma-Aldrich. 5-HT-d4 was purchased from

TLC PharmaChem (Vaughan, Ontario, Canada). Saline,

Tween 80 and dimethyl sulfoxide (DMSO) were purchased

from JW Pharmaceutical (Seoul, Republic of Korea), Sigma-

Aldrich and PanReac AppliChem (Darmstadt, Germany),

respectively, for the preparation of the NPD solutions and

vehicles of microdialysis. Methanol was of LC grade and

purchased from Fisher Scientific (Leics, UK). All NPDs were

synthesized and provided from Kyunghee University (Seoul,

Republic of Korea).

Preparation of standards

The aCSF (pH 7.4) consisted of 0.8-mM magnesium

chloride hexahydrate, 1.4-mM calcium chloride dehydrate,

3.0-mM potassium chloride and 150-mM sodium chloride

in 10-mM phosphate buffer. All analytical stock solutions

(1 mg/mL) were prepared in 1-mM ascorbic acid in water

and methanol (1:1, v/v) and stored at -80 �C. A working

mixture standard solution of DA, 5-HT, DOPAC, HVA and

5-HIAA (10 lg/mL for each) and a working mixture

internal standard solution (DA-d4 30 ng/mL; 5-HT-d4

20 ng/mL; DOPAC-d5 5 lg/mL; HVA-d5 800 ng/mL;

5-HIAA-d5 500 ng/mL) were prepared in aCSF from stock

solutions, immediately before analysis.

Animals

Male Sprague–Dawely (SD) rats (Daehan Animal, Seoul,

Republic of Korea) weighing 270–320 g were used for the

animal study. The rats were kept in the laboratory animal

facility with a 12 h light/dark cycle. Food and water were

freely available.

Microdialysis

Microdialysis was conducted according to the previous

study with minor modification [19]. Rats were anesthetized

by sodium pentobarbital [50 mg/kg, intraperitoneally (i.p.)]

and then microdialysis probe guide cannula (CMA 11;
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CMA Microdialysis AB, Kista, Sweden) were stereotaxi-

cally implanted into the rats’ brains. The rats were allowed

to recover from surgery for 6 days. In each case, a

microdialysis probe (membrane length, 2 mm; cut-off,

6 kDa; CMA Microdialysis AB) was inserted into the

nucleus accumbens shell (AP ? 1.7 mm, ML ? 0.8 mm,

from bregma; DV-6.0 mm, from skull) through the guide

cannula of unanesthetized rats and the aCSF was perfused

at a rate of 1.5 ll/min (CMA 100, microinjection pump) at

least during 2 h for stabilization. Six baseline samples were

collected following microdialysates every 20 min for 2 h.

Then, the NPDs were administered by intraperitoneal

injection every hour with increasing doses (0.3, 1 and

3 mg/kg) gradually and microdialysates were collected at

20-min intervals. a-PVT, 5-APDB, MPA, PCA, 4-HO-

DET, AMT, NMT and desoxy-D2PM were dissolved in

saline, and 5-fluoropentyl-3-pyridinoylindole, AB-

PINACA and QUPIC were prepared in a mixture solution

of DMSO/Tween 80/saline (5:5:90, v/v/v). The schedule

for microdialysate collection from rats during the admin-

istration of vehicle or NPDs is shown in Fig. 2. To confirm

the location of the microdialysis probe, rats were sacrificed

and brains were prepared for histological verification on

completion of the microdialysis experiment.

Sample preparation

Microdialysates (25 lL each) collected from rats were

mixed with 5 lL each of the internal standard solution. The

calibrators were prepared with 25 lL of aCSF including

each analyte and mixed with 5 lL of internal standard

solution. The sample preparation was conducted on ice

bath to prevent degradation.

LC–MS/MS analysis

The analysis of microdialysates was conducted using a fully

validated LC–MS/MS, as described in our previous study

using a 1260 Infinity LC system and 6460 triple quadrupole

MS/MS (Agilent Technologies, Santa Clara, CA, USA)

coupled with a 1260 Infinity extra binary pump and degasser

(Agilent Technologies) [18]. Separation was conducted with

the Atlantis T3 column (100 9 2.1 mm i.d., particle size

3 lm; Waters, Milford, MA, USA) after on-line sample

enrichment with the XBridge BEH HILIC Sentry Guard

Cartridge 130 Å (20 9 4.6 mm i.d., particle size 3.5 lm;

Waters). The mobile phases (A 5-mM ammonium formate/

0.1 % formic acid in water; B 0.1 % formic acid in ace-

tonitrile) were flowed through both of the enrichment and

separation columns by gradient condition as follows:

0–1.0 min, 5 % B; 1.0–6.5 min, 5–90 % B; 6.5–7.5 min,

90 % B; 7.5–7.6 min, 90–5 % B; 7.6–11.5 min, 5 % B.

The MS/MS system was operated using the multiple

reaction monitoring (MRM) mode (Table 2) and polarity-

switching electrospray ionization (ESI). The MS/MS con-

ditions were optimized as follows: drying gas temperature,

350 �C; drying gas flow, 10 L/min; nebulization pressure,

35 psi; capillary voltage, 4.5 kV; temperature of sheath

gas, 250 �C; and sheath gas flow, 5 L/min. The limits of

quantification for DA, 5-HT, DOPAC, HVA and 5-HIAA

were 0.1, 0.025, 2.5, 25 and 0.5 ng/mL, respectively [18].

Fig. 1 Main metabolism pathways of dopamine (DA) and serotonin (5-HT)
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Table 1 Selected new psychoactive drugs tested in the present study

Class Compound name [formal name] Chemical structure
Amphetamines
(extended)

α-PVT [α-
pyrrolidinopentiothiophenone]

5-APDB [5-(2-aminopropyl)-2,3-
dihydrobenzofuran]

MPA [methiopropamine]

PCA [p-chloroamphetamine]

Synthetic 
cannabinoids

5-Fluoropentyl-3-pyridinoylindole

AB-PINACA [(S)-N-(1-amino-3-
methyl-1-oxobutan-2-yl)-1-pentyl-
1H-indazole-3-carboxamide]
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Table 1 continued

PB-22 or QUPIC [quinolin-8-yl 1-
pentyl-1H-indole-3-carboxylate]

Tryptamines 4-HO-DET or CZ-74 [4-hydroxy-
diethyltryptamine]

AMT [α--methyltryptamine]

NMT [N-methyltryptamine]

Etc. Desoxy-D2PM [2-
diphenylmethylpyrrolidine]

Chemical structures were originated from Chemspider (http://www.chemspider.com/)
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Data processing and statistical analysis

Analytical data was processed using the MassHunter soft-

ware (B. 04. 00, Agilent Technologies). The baseline val-

ues were defined as those with less than 15 % of the

coefficient of variation of 3 consecutive quantitative results

before the administration of drugs or vehicle. The changes

in the levels of DA, 5-HT and their metabolites were

expressed as a percentage of their concentration in a

microdialysate obtained from each rat administered with a

drug against the baseline value, adjusting with those of

vehicles at the same time points. Statistical evaluation was

performed by one-way analysis of variance (ANOVA) for

repeated measures followed by Bonferroni post hoc testing.

Results and discussion

a-PVT, 5-APDB, MPA and PCA belong to a large family of

amphetamine compounds. It was previously reported that

both traditional (e.g., amphetamine, methamphetamine etc.)

[20] and novel (e.g., camfeamine, methylphenyl-am-

phetamines, MPA, aminopropylbenzofurans, etc.) amphe-

tamine derivatives [21] provoke the release and reuptake

inhibition of DA and/or 5-HT to varying degrees. There have

been no studies on the effects of a-PVT, 5-APDB and MPA

on changes in DA, 5-HT and their metabolites using

microdialysis. a-PVT is one of the newly identified synthetic

cathinones with a pyrrolidine ring and only very little

information is available regarding its effects on the changes

in neurotransmitter release. Our results demonstrated that a-

PVT exposure markedly increased the level of DA (Fig. 3a).

Kaizaki et al. [22] reported that 25 mg/kg oral ingestion of a-

pyrrolidinovalerophenone (a-PVP), one of the pyrro-

lidinophenones, significantly increased the extracellular

level of DA in the striatum of mice. The authors concluded

that the rapid increase in DA concentration would be medi-

ated by the stimulation of DA1 and DA2 receptors. Recently,

it was also suggested that two pyrrolidinophenones, a-PVP

and 3,4-methylenedioxypyrovalerone (MDPV) are potent

dopamine transporter (DAT) reuptake inhibitors, which

were produced by a longer alkyl chain length on the a-carbon

[23, 24]. Accordingly, it is presumed that a DA increase in

the present study occurs following exposure to a-PVT, the

pyrrolidinophenone with the same alkyl chain length as a-

PVP and MDPV, due to a strong inhibition of DAT.

5-APDB was originally synthesized for research pur-

poses to study the neurochemical effects of analogues of

3,4-methylenedioxymethamphetamine (MDMA) [25]. In

the current study, the exposure of 5-APDB provoked the

Fig. 2 Time points (;) starting microdialysate collection from rats during the administration of vehicle or new psychoactive drugs (NPDs)

Table 2 Multiple reaction

monitoring (MRM) transitions,

retention times and other

conditions for each analyte and

each internal standard

Compound MRM transition, m/z (CE, V) tR (min) Ionization polarity

Quantifier Qualifier

5-HT 177.1 ? 160 (9) 177.1 ? 115 (32) 3.7 ?ESI

DA 154.1 ? 137.1 (8) 154.1 ? 90.9 (26) 2.7 ?ESI

5-HIAA 192.1 ? 146.1 (16) 192.1 ? 91.2 (42) 5.2 ?ESI

HVA 180.9 ? 136.9 (2) – 5.5 -ESI

DOPAC 166.9 ? 123.1 (8) – 4.9 -ESI

5-HT-d4 181 ? 164.1 (8) – 3.7 ?ESI

DA-d4 157.9 ? 141 (6) – 2.7 ?ESI

5-HIAA-d5 197 ? 149.9 (14) – 5.2 ?ESI

HVA-d5 186.2 ? 142.1 (3) – 5.5 -ESI

DOPAC-d5 172.7 ? 128.8 (8) – 4.9 -ESI

CE collision energy, tR retention time, ESI electrospray ionization

? positive ionization mode, - negative ionization mode

Forensic Toxicol (2017) 35:66–76 71

123



significant increase of both DA and 5-HT concentrations.

In particular, the DA level tended to increase in proportion

to the dose of 5-APDB (Fig. 3b). 5-APDB is one of the

dihydrobenzofuran analogues of 3,4-methylenedioxyam-

phetamine (MDA). A previous study reported that 5-APDB

did not significantly affect DAT while it inhibited the

serotonin transporter (SERT) more potently than both

MDMA and MDA in HEK 293 cells expressing the

transporters, and the DAT/SERT inhibition ratio of

5-APDB was even lower than those of MDMA and MDA.

In addition, 5-APDB induced both DA and 5-HT release

following its exposure (100 lM) in HEK 293 cells [26].

Another previous study reported that 5-APDB was more

selective to the 5-HT reuptake carrier than other neuro-

transmitters, such as DA [25]. In our results, the increase in

5-HT was more considerable than that of DA; however,

severe variations were observed.

MPA was first synthesized by Blicke et al. for research

purposes in 1942 and it started to appear as a ‘‘legal high’’

on the Internet from 2010 [21]. It was reported that MPA

Fig. 3 Changes in the levels of DA, 5-HT and their metabolites in

microdialysates collected from rats following exposure to NPDs. The

vertical bar represents standard error of the mean obtained from four

to six animal experiments. DA, aP\ 0.1, aaP\ 0.05 or aaaP\ 0.01;

5-HT, bP\ 0.1, bbP\ 0.05 or bbbP\ 0.01; DOPAC, cP\ 0.1,
ccP\ 0.05 or cccP\ 0.01; HVA, dP\ 0.1, ddP\ 0.05 or
dddP\ 0.01; 5-HIAA, eP\ 0.1 or eeP\ 0.05
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acted as an inhibitor of DAT but that it was not as potent as

amphetamine [27]. Based on this knowledge, it was pre-

sumed that MPA could prevent DA reuptake and increase

the extracellular level. As expected, our results showed that

MPA increased DA and 5-HT levels with serious variation

among animals; however, the concentrations of their

metabolites were not significantly changed by exposure to

MPA. (Fig. 3c).

The administration of PCA provoked significant alter-

ations in the concentrations of DA, 5-HT and their

metabolites. The levels of DA and 5-HT markedly

increased in a dose-dependent manner, while DOPAC, one

metabolite of DA, significantly decreased, and HVA,

another metabolite, slightly increased. The metabolite of

5-HT, 5-HIAA, also show a tendency of increase following

exposure to PCA (Fig. 3d). Many studies regarding the

effects of PCA on the central changes of monoamines and/

or their metabolites were conducted by other research

groups but their results were inconsistent. A previous study

reported that PCA behaved as a potent inhibitor of DA and

5-HT uptake in whole-brain synaptosomes from male SD

rats and showed significant changes in the concentration of

DA, 5-HT and their metabolites in the in vivo microdial-

ysis experiments [28]. PCA (10 mg/kg) induced the

Fig. 3 continued
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increase of the extracellular concentration of DA but a

decrease of DOPAC in the striatum [28]. On the other

hand, a decrease in the level of both 5-HT and 5-HIAA was

observed [28], which is in contrast to the results of our

study. However, other previous studies demonstrated that

the cortical extracellular 5-HT levels were increased in

C57Bl6 male mice (7 mg/kg, i.p) [29] and that the con-

centrations of both DA and 5-HT were significantly

reduced in mouse striatum (male NIH-Swiss) following the

ingestion of a neurotoxic dose (15 mg/kg, twice, 6-h

interval, i.p.) [30]. Murnane et al. [31] also reported a

significant decrease in the concentrations of DA, 5-HT,

DOPAC, HVA and 5-HIAA in mouse striatum tissue. In

spite of the exposure to the same drug, the monoamine

levels were diametrically different, depending on the dose,

administration method and/or animal species. Most of

researches demonstrated that PCA affected the neuro-

transmitter systems but did not agree if it was up- or down-

regulated.

5-Fluoropentyl-3-pyridinoylindole, AB-PINACA and

PB-22 are synthetic cannabinoids and few studies have

been conducted regarding their effects on monoamine

neurotransmission. In our study, the changes in the levels

of DA, 5-HT and their metabolites were not as considerable

as amphetamine-related compounds tested but fluctuations

in the DA and/or the 5-HT concentrations were observed

(Fig. 3e–g). Previous studies on the DA-stimulating prop-

erties of other synthetic cannabinoids such as JWH-018

[32], JWH-250 [33], JWH-073 [33] and 5F-PB-22 [34]

demonstrated that these drugs increased extracellular DA

levels in the nucleus accumbens shell of mice or rats but

not for all tested doses.

The effects of three tryptamines, 4-HO-DET, AMT and

NMT on monoamine neurotransmitters were also investi-

gated. The levels of DA and/or 5-HT severely fluctuated by

the administration of the tryptamines with large variations

among the animals while those of their metabolites were

slightly or little changed. 4-HO-DET increased the con-

centration of HVA across all doses, and that of 5-HIAA

immediately increased after the administration of 0.3 and

1 mg/kg. Distinctively, AMT gradually increased the

concentrations of DA while it decreased the concentrations

of its metabolites, DOPAC and HVA, in a dose- and time-

dependent manner. The levels of HVA were below the

limit of quantification at 160 and 180 min. NMT also

affected the release of DA, 5-HT and their metabolites in

spite of a little statistical significance. In a previous study,

both AMT and NMT showed DAT and SERT-mediated

releasing properties in rat brain synaptosomes [35, 36]. It

was also reported that AMT acted as a potent inhibitor of

DA and 5-HT reuptake into the rat brain synaptosome and

showed that the releasing activity of the monoamines was

similar to methamphetamine. A methoxylated tryptamine

with a primary amine group, 5-methoxy-a-methyl-

tryptamine (5-MeO-AMT) stimulates DA and 5-HT release

from the rat brain synaptosome while other methoxylated

tryptamines with a tertiary amine group, such as N,N-

dipropyltryptamine (DPT), 5-methoxy-N,N-diisopropyl-

tryptamine (5-MeO-DIPT), 5-methoxy-N,N-methyliso-

propyltrypatmine (5-MeO-MIPT), 5-methoxy-N,N-

dimethyltryptamine (5-MeO-DMT) and 5-methoxy-N,N-

diallyltryptamine (5-MeO-DALT), did not show any

monoamine-releasing effect [35, 36]. Arunotayanun et al.

[37] discovered that AMT expressed high affinity to cloned

5-HT receptors (5-HT1A, 5-HT2A, 5-HT2B and 5-HT2C) and

SERT, which implies that this drug could also affect 5-HT

release. No previous reports regarding the effects of 4-HO-

DET on the monoamine neurotransmitter system were

found. 3-[2-(Dimethylamino)ethyl]-4-indolol (4-HO-

DMT) increased the extracellular levels of DA and/or 5-HT

in the mesoaccumbens and/or mesocortical pathway in a

previous animal study of male Wistar rats [38].

The exposure of desoxy-D2PM remarkably caused the

gradual increase in the level of DA; in contrast, the 5-HT

level fluctuated after the ingestion of 0.3 and 1 mg/kg and

then significantly decreased after the ingestion of 3 mg/kg.

Their metabolites were not significantly changed. The

effects of desoxy-D2PM on monoamine neurotransmitters

have not been reported elsewhere. Consistent with our

results, its structural analogues, such as desoxypipradrol (2-

DPMP) and diphenyl-2-pyrrolidinemethanol (D2PM),

showed potent DAT inhibition [27, 39], stimulated the DA

efflux in rat brain and a transporter-mediated assay, and

inhibited DA reuptake dose-dependently [39, 40] in pre-

vious studies. However, both compounds did not affect

5-HT release [39], SERT inhibition [27, 39] or 5-HT

reuptake inhibition [39].

To take advantage of the loopholes in the law, NPDs

with diverse chemical structures appear quickly, but sci-

entific understanding of their effects on the CNS is not able

to keep up with their appearance. The current study was

conducted to rapidly monitor the changes of monoamine

neurotransmitters induced by 11 selected NPDs. Most

NPDs affected the extracellular levels of DA, 5-HT and/or

their metabolites, showing consistent changes depending

on groups of chemical structures, such as amphetamines,

synthetic cannabinoids and tryptamines. These consisten-

cies could be observed because the animal experiments

were carried out in a system under the same conditions. As

such, the results can now be used as the preliminary data

for further research concerning the monoamine neuro-

transmitter-related mechanisms of NPDs, in spite of the

limitations of drug dose, administration routes and intervals

or animal species used. Moreover, this understanding could

be helpful to monitor the liability of their abuse and

addiction.
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Conclusions

DA and 5-HT are important neurotransmitters associated

with drug abuse and addiction. In this study, changes in

DA, 5-HT and their metabolites in brain microdialysates

from awake rats following exposure to 11 selected NPDs

were investigated using a validated LC–MS/MS method.

Most NPDs up- and/or down-regulated the extracellular

levels of DA, 5-HT and/or their metabolites, which implies

that they disturb the CNS. The results will be useful not

only for further studies of neurotoxicity of NPDs in neu-

roscience and forensic science but also to legislate for their

regulation with scientific evidence.
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