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Abstract 
Ceramicines are a series of limonoids that were isolated from the bark of Malaysian Chisocheton ceramicus (Meliaceae) and 
were known to show various biological activity. Four new limonoids, ceramicines Q–T (1–4) were isolated from the barks 
of C. ceramicus, and their structures were determined on the basis of the 1D and 2D NMR analyses in combination with 
calculated 13C chemical shift data. Ceramicines Q–T (1–4) were established to be new limonoids with a cyclopentanone[α]
phenanthren ring system with a β-furyl ring at C-17, and without a tetrahydrofuran ring like ceramicine B, which is char-
acteristic of known ceramicines. Ceramicine R (2) exhibited potent antimalarial activity against Plasmodium falciparum 
3D7 strain with IC50 value of 2.8 µM.
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Introduction

The plants belonging to Meliaceae have been reported to 
produce limonoids [1]. In our search for new bioactive com-
pounds from medicinal plants, we have reported the iso-
lation of new limonoids from plants of this genus [2–15], 
and alkaloids [16–23] and coumarins [24] showing antima-
larial activity or inhibiting acetylcholinesterase. Ceramicine 
B, in particular, has been reported to show a strong lipid 
droplets accumulation (LDA) inhibitory activity on mouse 
pre-adipocyte cell line (MC3T3-G2/PA6) [6–8] and also 
anti-melanin deposition activity [9]. With the purpose of 
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discovering limonoids with biological activity, we further 
investigated the constituents of C. ceramicus which led to 

the isolation of four new limonoids, ceramicines Q–T (1–4), 
and ceramicine R (2) showed potent antimalarial activity 

Fig. 1   Structures of 1–4 

Table 1   1H and 13C NMR data 
of 1 and 2 in CDCl3

a Based on HMBC correlations

No. 1 2

δH(J, Hz) δC δH(J, Hz) δC

1 202.0 199.5

2 5.98 (1H, d, 10.2) 131.0 5.94 (1H, d, 10.0) 129.9

3 6.23 (1H, d, 10.2) 146.7 6.70 (1H, d, 10.0) 148.2

4 60.4 55.6

5 3.01 (1H, d, 10.8) 43.5 68.0a

6 4.12 (1H, dd, 10.8, 2.4) 66.7 4.50 (1H, m) 63.8

7 3.92 (1H, d, 2.4) 74.3 4.12 (1H, brd, 2.7) 77.7

8 43.3 43.6

9 2.69 (1H, dd, 11.8, 5.8) 32.5 2.85 (1H, m) 29.7

10 50.3 50.3

11a 1.56 (1H, m) 17.8 1.61 (1H, m) 18.5

11b 2.51 (1H, m) 2.47 (1H, m)

12a 1.63 (1H, m) 33.2 1.61 (1H, m) 32.6

12b 1.93 (1H, m) 1.94 (1H, m)

13 47.0 47.2

14 159.6 160.0a

15 5.54 (1H, brd, 2.0) 119.6 5.60 (1H, brd, 2.0) 119.9

16a 2.39 (1H, ddd, 15.2, 7.3, 3.4) 34.4 2.42 (1H, ddd, 15.4, 7.2, 3.4) 34.3

16b 2.56 (1H, dd, 15.2, 11.5) 2.57 (1H, dd, 15.4, 11.0)

17 2.85 (1H, dd, 11.5, 7.3) 62.0 2.88 (1H, m) 52.1

18 0.92 (3H, s) 21.5 0.94 (3H, s) 21.2

19 1.31 (3H, s) 14.8 1.32 (3H, s) 19.2

20 124.6 124.4

21 7.25 (1H, brs) 139.7 7.26 (1H, m) 139.7

22 6.30 (1H, brs) 111.1 6.29 (1H, brs) 111.0

23 7.37 (1H, brt, 1.8) 142.5 7.39 (1H, brt, 1.6) 142.7

29a 3.09 (1H, d, 3.5) 60.4 1.86 (1H, s) 18.4

29b 3.65 (1H, d, 3.6)

30 1.17 (3H, s) 26.2 1.29 (3H, s) 25.8
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(Fig. 1). Their structures were determined on the basis of 
NMR and MS spectroscopic analyses in combination with 
NMR chemical shifts calculations.

Results and discussions

Compounds 1–4 were obtained as optically active white 
amorphous solids. The 1H and 13C NMR data (Tables 1 and 
2) suggested the identity of 1–4 as ceramicine derivatives.

Ceramicine Q (1) was obtained as an optically active, 
[α]27

D
 + 119 (c 1.0, CHCl3), white amorphous solid and was 

revealed to have the molecular formula C25H30O5, by HRE-
SITOFMS [m/z 433.1991 (M + Na)+, ∆ − 1.4 mmu]. IR 
absorptions implied the presence of α,β-unsaturated ketone 
(1683 cm−1) and hydroxy (3461 cm−1) groups. 1H and 13C 
NMR data (Table 1) revealed 25 carbon resonances due to 
one carbonyl, two sp2 quaternary carbons, four sp3 quater-
nary carbons, six sp2 methines, five sp3 methines, four sp3 
methylenes, and three methyls. Among them, four sp3 car-
bons (δC60.4, 60.4, 66.7, and 74.3) and two sp2 methines (δC 
139.7 and 142.5) were ascribed to those bearing an oxygen 
atom.

Analyses of the HSQC and 1H-1H COSY spectra 
(Fig. 2) revealed the presence of four partial structures; a 
(C-2 and C-3), b (C-5 ~ C-7), c (C-9, C-11, and C-12), d 
(C-15 ~ C-17), and e (C-22 ~ C-23). HMBC correlations of 
H3-18 to C-12, C-13, C-14 and C-17 suggested the connec-
tivity of c, d, and C-14 through C-13. HMBC correlations 
of H-17 to C-21, H-16 to C-20, and H-23 to C-20 and C-21 
suggested the presence of β-furyl at C-17, and the corre-
lation of H2-16 to C-13 and C-14 completed the structure 
of ring D. The presence of ring C was deduced from the 
HMBC cross-peaks of H3-30 to C-7, C-8, C-9 and C-14, 
and the connectivity of b, C-1, C-5, and C-19 through C-10 
was suggested by the HMBC correlations of H3-19 to C-1, 
C-5, C-9 and C-10. HMBC correlations of H-2 to C-10 and 
C-4, and H-3 to C-1 and C-5 suggested the presence of ring 
A. Finally, HMBC correlations of H-3 to C-29 (δC 60.4) 
suggested the presence of 1-oxaspiro[2.5]oct-4-ene of 1 as 
shown in Fig. 2.

The relative configuration of 1 was assigned by analyses 
of the 1H-1H coupling constant data and the NOESY cor-
relations (Fig. 2). First, H-6, H-17, CH3-19, and CH3-30 
were assigned to be β-axially oriented from the NOESY cor-
relations of H-6/H3-19 and H3-30/H-17 and H3-19, while 
H-5, H-9 and CH3-18 were deduced to possess α-orientation 
from the NOESY correlations of H-9/H-5 and H3-18. Both 
H-6 and H-7 should possess β-orientation because of the 
multiplicity pattern of H-6 (dd, 10.8, 2.4) and H-7 (d, 2.4). 
The stereochemistry of epoxy ring was elucidated to be as 
shown in Fig. 2 by the presence of NOESY correlations of 
H-29a/H-3 and H3-19, and H-29b/H3-19.

Ceramicine R (2), [α]28
D

 126 (c 0.5, CHCl3), was revealed 
to have the molecular formula C25H30O5 by HRESITOFMS. 
Its NMR data are highly similar to 1. However, the signals 
for oxymethylene of H2-29 in 1 are not observed in 2, and 
a methyl signal (δH 1.86) and two sp3 quaternary carbons 
bearing an oxygen atom (δC 55.6 and 68.0) are observed 
instead. Analysis of the 2D NMR data including HMBC 
and NOESY (Fig. 3) correlations supported the structure of 
2 to be 4,5-epoxy derivative as shown in Fig. 1. Specifically, 
the HMBC correlations of H3-29 to C-3, C-4 (δC 55.6) and 
C-5 (δC 68.0), and H3-19 to C-5 supported its functionality 
in the structure of 2.

Table 2   1H and 13C NMR data of 3 and 4 in CDCl3

No. 3 4

δH(J, Hz) δC δH(J, Hz) δC

1 204.7 203.2
2 5.80 (1H, d, 10.2) 126.0 5.86 (1H, d, 10.1) 126.9
3 6.27 (1H, m) 151.3 6.32 (1H, d, 10.1) 146.4
4 40.9 47.7
5 2.38 (1H, d, 11.2) 41.7 3.27 (1H, d, 11.8) 44.0
6 4.20 (1H, brd, 11.2) 67.9 4.23 (1H, m) 66.5
7 3.94 (1H, brd, 2.2) 76.0 5.35 (1H, brd, 2.2) 78.5
8 44.0 42.8
9 2.47 (1H, m) 33.1 2.57 (1H, dd, 11.5, 4.9) 35.3
10 49.2 48.3
11a 1.52 (1H, m) 17.6 1.57 (1H, m) 18.5
11b 2.47 (1H, m) 2.47 (1H, m)
12a 1.57 (1H, m) 32.8 1.66 (1H, m) 33.7
12b 1.90 (1H, m) 1.94 (1H, m)
13 47.1 47.0
14 161.0 158.4
15 5.55 (1H, brd, 2.2) 119.8 5.43 (1H, m) 120.0
16a 2.42 (1H, m) 34.3 2.34 (1H, m) 34.3
16b 2.53 (1H, m) 2.39 (1H, m)
17 2.85 (1H, dd, 10.8, 7.4) 51.9 2.83 (1H, dd, 10.5, 7.7) 52.0
18 0.90 (3H, s) 21.3 0.89 (3H, s) 22.2
19 1.32 (3H, s) 17.0 1.30 (3H, s) 16.3
20 124.4 124.7
21 7.25 (1H, brs) 139.7 7.24 (1H, brs) 139.7
22 6.28 (1H, m) 111.0 6.29 (1H, brs) 111.0
23 7.38 (1H, brs) 142.6 7.38 (1H, brt, 1.5) 142.6
28a 4.03 (1H, d, 10.8) 72.0 175.8
28b 4.59 (1H, d, 10.8)
29a 1.36 (3H, s) 17.0 1.61 (3H, s) 17.0
29b
30 1.19 (3H, s) 26.6 1.26 (3H, s) 26.7
1’ 171.3 171.8
2’ 2.01 (3H, s) 21.0 2.04 (3H, s) 21.0
3’ 3.65 (3H, s) 52.7
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NOESY correlations of H-6/H3-19 and H3-30, H-7/H3-
30 and H-15, and H-9/H3-18 supported the stereochemistry 
of 2. Configurations of H-6 and H-7 taking β-orientation 
like as in 1 also supported by proton 3J coupling constant 
(J = 2.7 Hz).

The remaining problem regarding stereochemistry is that 
of epoxy in positions 4 and 5. Only the presence of two 
NOESY correlations of H-3/H3-29 and H-6/H3-19 is difficult 
to determine unequivocally. Therefore, we compared the pre-
dicted NMR chemical shifts of the two possible diastereom-
ers, 2a (4,5-α-epoxy) and 2b (4,5-β-epoxy) as shown below 
(Fig. 4), calculated for the ωB97X-V/6-311+G* optimized 
conformations using ωB97X-V/6-311+G*(2df,2p).

Conformational searches and chemical shift calcula-
tions for compounds 2a and 2b were performed with the 
Spartan’20 software [25]. Stable conformers up to 40 kJ/
mol for 2a and 2b were initially searched using the Merck 
molecular force field (MMFF) method. Stable conformers 

suggested were optimized using Hartree–Fock (HF)/3-
21G (40 kJ/mol) and ωB97X-D/6-31G* (15 kJ/mol). Final 
energy optimization for the Boltzmann distribution was 
conducted at the ωB97X-V/6-311+G*(2df,2p) level of 
theory. NMR properties were calculated at the ωB97X-V/6-
311+G*(2df,2p) level of theory and scaled. The obtained 
chemical shifts were corrected using the Boltzmann distribu-
tion to give calculated 13C chemical shifts.

The 13C chemical shift differences of predicted and exper-
imental data are shown as graph in Fig. 5. Two atoms of C-6 
and C-9 in 2b shows a deviation of greater than 5 ppm, but 
the average deviation is less than 2 ppm in 2a. Overall, the 
13C chemical shifts predicted for structure 2a (Fig. 4) cor-
relate very well with those observed for ceramicine R (2).

Thus, we propose that the correct structure of cerami-
cine R (2) is the structure 2a. The prediction of 13C chemi-
cal shifts by DFT calculation is a very powerful tool for 
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screening proposed structures and should be used more 
widely.

Ceramicine S (3), [α]27
D

 + 34 (c 1.0, CHCl3), was revealed 
to have the molecular formula C28H36O6 by HRESITOFMS. 

Its 1H and 13C NMR data are highly similar to ceramicine R 
(2) (Table 2). However, the NMR data of 3 suggested that 
the oxymethylene moiety [δH 4.03 (d, 10.8), 4.59 (d, 10.8); 
δC 72.0] with acetyl group [δH 2.01 (3H, s); δC 21.0 and 

O
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O

O
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H
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Fig. 4   Structures of the lowest-energy conformation of the two possible isomers (2a and 2b) of ceramicine R (2)

Fig. 5   Parts per million difference between the calculated 13C NMR shifts for the two possible isomers (2a and 2b) and the experimental data of 
ceramicine R (2)
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171.3] was observed instead of the epoxide function in 2. IR 
absorptions implied the presence of α,β-unsaturated ketone 
(1684 cm−1), hydroxy (3502 cm−1), and acetyl (1733 cm−1) 
groups. The HMBC correlations of H2-28 and H3-2’ to C-1’ 
(δC 171.3) supported its functionality in the structure of 3. 
Finally, the NOESY correlations confirmed the position of 
the oxymethylene moiety with the acetyl group at C-28 and 
the α orientation of the hydroxy at C-6 and C-7 (See Sup-
plementary Information).

By HRESITOFMS, ceramicine T (4), [α]28
D

 + 67 (c 
0.5, CHCl3), was revealed to have the molecular formula 
C29H36O7. Their NMR data are also highly similar to 3, dif-
fering only on the signals assigned to the presence of one 
acetyl and one methoxy carbonyl groups in 4 and the dis-
appearance of oxy-methylene protons of 3. IR absorptions 
implied the presence of α,β-unsaturated ketone (1683 cm−1), 
hydroxy (3534 cm−1), and acetyl and/or methoxycarbonyl 
(1732 cm−1) groups. Analysis of the NMR data revealed 
the presence of a cyclopentanone[α]phenanthren ring system 
with a β-furyl ring at C-17.

The planar structure of 4 was deduced from the 1H-1H 
COSY correlations and the especially HMBC correlations 
of H3-29 and H3-3’ to C-28 and H3-30 to C-7. The relative 
configuration of 4 was then deduced from the NOESY 
correlations of H-6/H3-19, H3-29 and H3-30, H-9/H-5 
and H3-18, H-7/H3-30, and H-12a/H3-30 and H-17 (See 
Supplementary Information). Thus, the structure of 4 was 
proposed to be as shown in Fig. 1.

Considering that 1–4 were isolated from the same 
extract as ceramicine B [3], their absolute configurations 
were assumed to be similar to ceramicine B based on the 
biogenetic relationships. Ceramicines Q and R might be 
generated from a cyclopentanone[α]phenanthren ring sys-
tem followed by oxidative decarboxylation at C-28.

Antimalarial activity

Ceramicines Q–T (1–4) were tested for antimalarial activ-
ity against Plasmodium falciparum 3D7 strain. The assay 
showed that 2 had potent in  vitro antimalarial activ-
ity [the half-maximal (50%) inhibitory concentration 
(IC50) = 2.8 µM, whereas 1, 3, and 4 did not (> 5.0 µM).].

Previously, we also reported some limonoids, ceramicines 
A–D with a cyclopentanone[α]phenanthren ring system with 
a tetrahydrofuran ring and a β-furyl ring from the barks of 
C. ceramicus, exhibited antimalarial activity against P. fal-
ciparum 3D7 in vitro [2, 3].

The activity might be depending on their unique 
cyclopentanone[α]phenanthren ring system and also be 
influenced by the presence of a tetrahydrofuran ring and its 
substituent patterns around rings A and B.

Experimental section

General experimental procedures

Optical rotations were measured on a JASCO DIP-1000 
polarimeter. UV spectra were recorded on a Shimadzu 
UVmini-1240 spectrophotometer and IR spectra on a 
JASCO FT/IR-4100 spectrophotometer. High-resolution 
ESI MS were obtained on a JMS-T100LP (JEOL). 1H and 
2D NMR spectra were measured on a 400 MHz or 600 MHz 
spectrometer at 300 K, while 13C NMR spectra were on a 
100 MHz or 150 MHz spectrometer. The residual solvent 
peaks were used as internal standards (δH 7.26 and δC 77.0 
for CDCl3, δH 3.31 and δC 49.0 for CD3OD).

Material

The barks of C. ceramicus were collected in Terengganu, 
Malaysia in July 2013. The botanical identification was 
made by Prof. A. Hamid A. Hadi, University of Malaya. 
Voucher specimens (No. HOSHI13CCB) are deposited in 
the department of Pharmacognosy Hoshi University.

Extraction and isolation

The barks of C. ceramicus (8 kg) were extracted with MeOH 
to obtain 1.43 kg of extract. The MeOH extract was suc-
cessively partitioned with n-hexane, EtOAc, n-BuOH and 
water. The n-hexane-soluble materials were separated fur-
ther by silica gel column chromatography (n-hexane/EtOAc 
1:0→1:1, CHCl3/MeOH 1:0→0:1) to obtain 10 fractions 
(A–J). Fraction I was separated further with a ODS silica 
gel column (MeOH/H2O 7:3→1:0, acetone) to obtain 6 frac-
tions (I-1–I-6). Fraction I-3 was also separated by HPLC 
(Shiseido ODS MGII 30 × 250 mm, 85% aqueous MeOH at 
8.0 mL/min, UV detection at 210 nm) into 7 fractions (I-3-
a–I-3-g). Fraction I-3-c, I-3-d, and I-3-f are ceramicine F, G 
and B, respectively. Separation of fraction I-3-a by HPLC 
(Nacalai tesque Cholester 10 × 250 mm, 65% aqueous MeCN 
at 2.0 mL/min, UV detection at 210 nm) yielded ceramicine 
Q (1) (6.0 mg, 0.000075%, tR 18.6 min) and ceramicine R 
(2) (0.8 mg, 0.00001%, tR 21.0 min).

Separation of fraction I-3-e by HPLC (Nacalai tesque 
Cholester 10 × 250 mm, 60% aqueous MeCN at 2.0 mL/
min, UV detection at 210 nm) yielded ceramicine S (3) 
(10.6 mg, 0.00013%, tR 44.0 min) and ceramicine T (4) 
(1.0 mg, 0.000012%, tR 50.0 min).

Ceramicine Q (1): white amorphous solid; [α]27
D

 + 119 
(c 1.0, CHCl3); UV (MeOH) λmax (ε) 204 (10,000) nm; 
CD (MeOH) λmax (Δε) 337 (− 1.59) and 216 (10.3) nm; 
IR (Zn-Se) νmax 3461 and 1683 cm–1; 1H and 13C NMR 
data (Table 1); ESIMS m/z 433 (M + Na)+; HRESIMS m/z 
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433.1977 (M + Na)+ [calcd for C25H30O5Na (M + Na)+: 
433.1991].

Ceramicine R (2): white amorphous solid; [α]28
D

 + 126 (c 
0.5, CHCl3); UV (MeOH) λmax (ε) 204 (10,700) nm; CD 
(MeOH) λmax (Δε) 336 (− 2.36), 250 (2.18) and 230 (1.52) 
nm; IR (Zn-Se) νmax 3450 and 1697 cm–1; 1H and 13C NMR 
data (Table 1); ESIMS m/z 433 (M + Na)+; HRESIMS m/z 
433.1982 (M + Na)+ [calcd for C25H30O5Na (M + Na)+: 
433.1991].

Ceramicine S (3): white amorphous solid; [α]27
D

 + 34 (c 
1.0, CHCl3); UV (MeOH) λmax (ε) 204 (11,900) nm; CD 
(MeOH) λmax (Δε) 333 (− 2.96), 249 (Δ 0.36), 230 (Δ 
− 0.35) and 212 (Δ 3.79) nm; IR (Zn-Se) νmax 3502, 1733 
and 1684 cm–1; 1H and 13C NMR data (Table 1); ESIMS m/z 
491 (M + Na)+; HRESIMS m/z 491.2417 (M + Na)+ [calcd 
for C28H36O6Na (M + Na)+: 491.2410].

Ceramicine T (4): white amorphous solid; [α]28
D

 + 67 (c 
0.5, CHCl3); UV (MeOH) λmax (ε) 204 (12,000) nm; CD 
(MeOH) λmax (Δε) 336 (− 2.21), 234 (− 12.6), 206 (17.0) 
nm; IR (Zn-Se) νmax 3534, 1732 and 1683 cm–1; 1H and 13C 
NMR data (Table 2); ESIMS m/z 519 (M + Na)+; HRESIMS 
m/z 519.2361 (M + Na)+ [calcd for C29H36O7Na (M + Na)+: 
519.2359].

13C chemical shift calculations

Conformational searches and chemical shift calculations for 
compounds 2a and 2b were performed with the Spartan’20 
software [25]. Stable conformers up to 40 kJ/mol for 2a 
and 2b were initially searched using the Merck molecular 
force field (MMFF) method. Stable conformers suggested 
were optimized using Hartree–Fock (HF)/3-21G (40 kJ/mol) 
and ωB97X-D/6-31G* (15 kJ/mol). Final energy optimiza-
tion for the Boltzmann distribution was conducted at the 
ωB97X-V/6-311+G*(2df,2p) level of theory. NMR prop-
erties were calculated at the ωB97X-V/6-311+G*(2df,2p) 
level of theory and scaled. The obtained chemical shifts 
were corrected using the Boltzmann distribution to give 
calculated 13C chemical shifts.

Parasite strain culture

P. falciparum laboratory strain 3D7 was obtained from Prof. 
Masatsugu Kimura (Osaka City University, Osaka, Japan). 
For the assessment of antimalarial activity of the compounds 
in vitro, the parasites were cultured in Roswell Park Memo-
rial Institute (RPMI) 1640 medium supplemented with 
0.5 g/L l-glutamine, 5.96 g/L HEPES, 2 g/L sodium bicar-
bonate (NaHCO3), 50 mg/L hypoxanthine, 10 mg/L gen-
tamicin, 10% heat-inactivated human serum, and red blood 
cells (RBCs) at a 3% hematocrit in an atmosphere of 5% 
CO2, 5% O2, and 90% N2 at 37 °C as previously described 

[26]. Ring-form parasites were collected using the sorbitol 
synchronization technique [27]. Briefly, the cultured para-
sites were collected by centrifugation at 840 g for 5 min at 
room temperature, suspended in a fivefold volume of 5% 
D-sorbitol (Nacalai Tesque, Kyoto, Japan) for 10 min at 
room temperature, and then they were washed twice with 
RPMI 1640 medium to remove the D-sorbitol. The utiliza-
tion of blood samples of healthy Japanese volunteers for 
the parasite culture was approved by the institutional review 
committee of the Research Institute for Microbial Diseases 
(RIMD), Osaka University (approval number: 22-3).

Antimalarial activity

Ring-form-synchronized parasites were cultured with com-
pounds 1–4 at sequentially decreasing concentrations (50, 
15, 5, 1.5, 0.5, and 0.15 µM) for 48 h for the flow cyto-
metric analysis using an automated hematology analyzer, 
XN-30. The XN-30 analyzer was equipped with a proto-
type algorithm for cultured falciparum parasites [prototype; 
software version: 01-03, (build 16)] and used specific rea-
gents (CELLPACK DCL, SULFOLYSER, Lysercell M, and 
Fluorocell M) (Sysmex, Kobe, Japan) [28, 29]. Approxi-
mately 100 µL of the culture suspension diluted with 100 
µL phosphate-buffered saline was added to a BD Microtainer 
MAP Microtube for Automated Process K2 EDTA 1.0 mg 
tube (Becton Dickinson and Co., Franklin Lakes, NJ, USA) 
and loaded onto the XN-30 analyzer with an auto-sampler 
as described in the instrument manual (Sysmex). The para-
sitemia (MI-RBC%) was automatically reported [25]. Then 
0.5% DMSO alone or containing 5 µM artemisinin was 
used as the negative and positive controls, respectively. The 
growth inhibition (GI) rate was calculated from the MI-
RBC% according to the following equation:

The IC50 was calculated from GI (%) using GraphPad 
Prism version 5.0 (GraphPad Prism Software, San Diego, 
CA, USA) [30].

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11418-​023-​01706-w.
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