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Abstract Resistance mechanisms employed by high-grade

gliomas allow them to successfully evade current standard

treatment of chemotherapy and radiation treatment. With-

aferin A (WA), utilized in Ayurvedic medicine for cen-

turies, is attracting attention for its antitumor capabilities.

Here we review pertinent literature on WA as a high-grade

glioma treatment, and discuss the cancerous mechanisms it

affects. WA is relatively nontoxic and has shown potential

in crossing the blood–brain barrier. WA prevents p53

alterations and inactivates overexpressed MDM2 through

ARF and ROS production. Furthermore, WA upregulates

Bax, inducing mitochondrial death cascades, inhibits

mutated Akt, mTOR, and NF-jB pathways, and inhibits

angiogenesis in tumors. Therapy with WA for high-grade

gliomas is supported through the literature. Further inves-

tigation is warranted and encouraged to fully unearth its

abilities against malignant gliomas.
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Introduction

Withania somnifera (W. somnifera), indigenously referred

to as Ashwagandha, is a medicinal plant commonly utilized

in Ayurvedic medicine known for its sedative, rejuvena-

tive, and life-prolonging properties [1]. Extracts from

various parts of W. somnifera have been linked to different

biological properties, such as anti-inflammatory, anti-bac-

terial, and anti-cancerous effects. One of the more widely

studied constituents of W. somnifera is Withaferin A (WA)

[2–4]. Derived from the leaves and roots of W. somnifera,

WA is a steroidal lactone, containing four cycloalkane

rings, in which the lactone ring consists of five carbon

atoms and a single oxygen atom. Biochemical studies

revealed that the anti-cancer functionality of WA is due

mainly to multiple reactive sites within the compound,

including hydroxyl and ketone moieties [4, 5]. This com-

pound has shown anti-cancer efficacy in vitro by targeting

cellular pathways involved in cell proliferation, growth,

survival, and angiogenesis [5]. WA therefore contains

promise as a non-toxic and effective adjuvant therapy for

cancer patients. We sought to investigate and review the

potential efficacy of WA on brain cancer, particularly adult

and pediatric high-grade gliomas (HGGs).

HGGs account for around 70 % of all malignant primary

brain cancers diagnosed in American adults, with an annual

incidence of approximately five new cases per 100,000

people [6, 7]. Presently, the standard of care of newly

diagnosed gliomas includes maximal safe resection with

concurrent administration of the alkylating cytotoxic agent

temozolomide (TMZ) and fractioned 60 Gy radiation

therapy (RT) [8]. Despite this treatment, nearly all malig-

nant gliomas recur. Although disease progression or

recurrence has multiple specific treatment options, these

tumors are associated with high morbidity and mortality
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rates: median survival is around 15 months in patients with

glioblastoma (GBM), and 2–5 years with anaplastic astro-

cytoma (AA) [9, 10]. In contrast to adult HGGs, pediatric

HGGs, including anaplastic astrocytoma, glioblastoma, and

diffuse intrinsic pontine gliomas, comprise approximately

8–12 % of all central nervous system (CNS) tumors diag-

nosed in children. These tumors are also highly aggressive,

difficult to treat, and result in high morbidity and mortality

rates. Furthermore, current treatment modalities for these

pediatric brain tumors, including RT and chemotherapy

(CT), demonstrate long-term effects on development, such

as cognitive dysfunction, neuroendocrine dysregulation,

and developmental delays [11, 12]. The dismal medial

survival time has been attributed to the existence of the

multiple drug resistance capabilities of HGGs (e.g., treat-

ment resistant cancer stem cells, up-regulation of drug

resistant genes, pro-survival responses such as autophagy,

etc.) [13]. Treatment focus now relies heavily on agents

with low toxicity profiles to effectively penetrate the CNS

[14]. There is critical need for the emergence of innovative

chemotherapeutic agents in the management of adult and

pediatric HGGs that can act singularly or in synergistic

combinations with other treatment modalities—a need that

WA can potentially fill.

Here, we provide a brief overview of treatment resis-

tance mechanisms adopted by HGGs, and common path-

ways that are altered in HGGs. Additionally, we offer a

comprehensive review of WA as a potential adjunct ther-

apy by discussing cellular responses induced within tumor

tissues. By including the mechanisms of action of WA in

pathways often deregulated in brain cancer, we look to

provide a future perspective of WA treatment against

gliomas.

Characteristics of HGGs

Mechanisms of resistance to CT and RT

The failure of the current chemoradiotherapy to eliminate

all glioma cells is due to the presence of multiple resistance

mechanisms. It is speculated that developed resistance to

current therapy leads to 90 % of HGGs recurring at the

primary site [8, 9, 15].

One such resistance mechanism is the presence of

glioma stem-like cells (GSLCs)—a subset of tumor cells

implicated in disease recurrence. GSLCs confer a thera-

peutic challenge because of their self-renewal properties

and preferential activation of DNA repair machinery due to

insults from CT and RT [13, 16]. RT kills tumor cells

primarily through DNA damage; thus, DNA damage

checkpoints play a crucial role in cellular radiosensitivity.

GSLCs phosphorylate the DNA repair machinery, such as

the ataxia-telangiectasia-mutated (ATM), Rad17, Chk1 and

Chk2 checkpoint proteins, to a higher extent than non-

stem-like cells, indicating that GSLCs have the ability to

induce higher rates of DNA repair post-RT [13].

Other resistance mechanisms include the up-regulation

of multi-drug resistant genes (e.g., BCRP1), DNA-repair

enzymes (e.g., O-6-methylguanine-DNA methyltrans-

ferase, MGMT), and antiapoptotic factors (e.g., Survivin),

that increase difficulty in effective tumor management

[17, 18]. MGMT works by counteracting the ability of

TMZ to introduce cytotoxic methyl adducts, such as O-6-

methylguanine (O-6-meG), which promote DNA strand

breakage and subsequent cell death by interfering with

successive cycles of DNA replication [19]. MGMT restores

the structural integrity of bases with O-6-meG by trans-

ferring the added methyl group to a cysteine residue within

its own active site. Naturally, its expression has been show

to confer chemoresistance against TMZ in vitro and in vivo

[18, 19]. Expression of Survivin, a member of the inhibitor

of apoptosis (IAP) family, has been shown to correlate with

treatment resistance in HGGs [20]. The importance of

Survivin is illustrated in studies where Survivin disruption

abolishes GSLC survival and growth [21]. Furthermore,

pro-survival responses, such as autophagy, promote cell

survival by allowing tumor cells to neutralize the effects of

cytotoxic therapies. Lin et al. [22] showed TMZ-induced

cytoprotective autophagy through a reactive oxygen spe-

cies (ROS) burst and extracellular signal-regulated kinase

(ERK), and, once autophagy was inhibited, malignant

glioma cells underwent apoptosis. Knizhnik and colleagues

[23] verified TMZ-induced autophagy is a survival mech-

anism, stimulating senescence rather than apoptosis.

Resistance mechanisms and deregulated pathways

commonly seen in HGGs are summarized in Fig. 1.

Origin and characteristics of Withaferin A

Structure/anticancer properties and active sites

As previously mentioned, WA is derived from the roots

and leaves of the W. somnifera plant—an erect, evergreen

shrub distributed throughout India. Withanolides are a

group of naturally occurring C28-steroidal lactones iso-

lated from the roots and leaves of W. somnifera. Among

them, WA is one of the most bioactive compounds, pos-

sessing anti-inflammatory, pro-apoptotic, and anti-inva-

sive, as well as anti-angiogenic, effects. However, the

chemical mechanisms by which WA accomplishes these

activities are still largely unknown. Acylation or alkylation

of critical macromolecules and enzymatic active sites by

covalent bonds are among the several proposed explana-

tions [24]. Chemical structural analysis of WA suggests
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three positions that might be involved in the alkylation

reactions with nucleophilic sites. These include the C3 of

the a,b-unsaturated ketone in ring A; the epoxide at posi-

tion C5,6; and the C24 of the a,b-unsaturated lactone in

ring E. Carbon 3 in the unsaturated A-ring has been iden-

tified by NMR spectral analysis as the main nucleophilic

target site for ethyl mercaptan, thiophenol and L-cysteine

ethyl ester in vitro [6].

Structure–activity relationship (SAR) studies have

indicated that removal of the double bond in ring A con-

siderably decreased the activity, indicating that the pres-

ence of the double bond in WA contributes significantly to

its activity. In another example, disruption of ring A pre-

vented the ability of WA to bind to and induce vimentin

fragmentation, reversing WA’s inhibition of cancer cell

invasion and apoptosis [25]. Introduction of a bulky group,

such as glucose, at the C27 hydroxyl group caused a

reduction in activity. This suggested that the C27 hydroxyl

is important for activity. However, introduction of small

groups, such as acetates, did not affect activity [2]. Inac-

tivation of the 5(6) epoxide group with 2-mercaptoethanol

resulted in the loss of activity, indicating the requirement

of this group for biological activity [26]. For example, SAR

studies determined that this group was important for

binding and inhibiting the molecular chaperone, HSP90,

resulting in HSP90 client protein degradation and pancre-

atic cell death [27]. Furthermore, the authors of the latter

study suggested that the hydroxyl group at C4 may increase

binding to HSP90 and disrupt its interaction with the key

co-chaperone Cdc37. Therefore, based on SAR studies and

on the chemical reactions performed, it is reasonable to

conclude that biological activities of these withanolides

was due mainly to an a,b-unsaturated ketone moiety in ring

A, C5(6) epoxide, and hydroxyl group at C27 (Fig. 2).

Blood–brain barrier

An important limitation to current treatment for HGGs is

the inability of antitumor chemotherapeutics to penetrate

the blood–brain-barrier (BBB). Therefore, in order to be

considered as a possible HGG treatment, WA must also be

able to cross the BBB effectively. One preliminary study

showed that WA treatment led to a survival advantage in a

murine orthotopic GBM model, suggesting that the WA

compound, or one of its active metabolites, is able to reach

the brain tumor [28, 29].

Additionally, WA does not violated the Rule of Five,

otherwise known as Lipinski’s Rule of Five, which assesses

a compound’s properties to determine the likelihood of its

efficacy as an orally absorbed drug. Lipinksi and col-

leagues analyzed the physicochemical properties of

roughly 2000 drugs, and concluded compounds were more

likely to be membrane permeable if they adhered to a set of

criteria [30]. These criteria have also been applied to

Fig. 1 Diagram of the various

pathways deregulated in high-

grade gliomas (HGG) cells,

leading to overall tumor cell

survival. Green arrows

Upregulation of signaling

pathway, red lines decreased

expression or downregulation of

signaling pathway (color

figure online)
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characterize the ability of drugs to pass through the BBB

[28, 31]. WA does not display any violation of these rules,

and contains a favorable blood/brain partition coefficient,

which implies its efficacy in penetrating the BBB (Table 1)

[32]. Additional in vivo studies are needed in mammals to

determine WA’s effectiveness in crossing the BBB to truly

ensure its potential for success in human trials.

Safety considerations

The anticancerous benefits of chemotherapeutic agents

must be balanced against their inherent cytotoxic properties

to normal cellular tissues. Ideally, a chemotherapeutic

agent targets cancer cells without affecting the integrity of

surrounding tissues. WA has been shown to selectively

induce cell death in cancerous cells while sparing non-

cancerous cells [25, 34, 35]. A study was conducted to

elucidate the effects of WA on prostate adenocarcinoma

cells as compared to WA effects on normal human

fibroblasts. After a 2 lM treatment of WA, normal cells

were found to be still viable in vitro at 96 h, whereas

cancerous cells demonstrated a loss of viability at 72 h

[34]. In vivo experiments also show that WA has little to

no cytotoxic effects on normal cells. Thaiparambil et al.

[25] discovered that, when WA was utilized to treat breast

cancer in mice, histological sections of lung and liver

parenchyma from WA-treated mice versus non-treated

mice showed minimal necrosis at doses up to 4 mg/kg.

Such experiments imply that WA spares normal tissue

from the negative effects seen in cancer cells.

Fig. 2 Chemical structure of

Withaferin A (WA) with arrows

indicating pertinent reactive

sites with anticancer properties.

Solid arrows Essential sites,

dashed arrows sites in which

modification may affect

biological activity. Molecular

formula, C28H38O6; molecular

mass, 470.6 g/mol

Table 1 Withaferin A (WA) does not violate any condition set forth by Lipinski’s rule of five [30], which assesses the molecular likelihood of

membrane permeability

Lipinski’s rule of fivea Properties of WA Adherence to rules

(1) Molecular weight under 500 Da Molecular weight = 470.6 Da Yes

(2) 1-Octanol/water partition coefficientb (log P) not greater than 5 Partition coefficient = 3.50 [33] Yes

(3) No more than five hydrogen bond donors (total number of nitrogen–hydrogen

and oxygen–hydrogen bonds)

H-bond donors = 2 Yes

(4) Not more than ten hydrogen bond acceptors (all nitrogen or oxygen atoms) H-bond acceptors = 6 Yes

a Lipinski’s rule of five refers to the four criteria of membrane permeability whose numeric constraints have a common denominator of five
b The compound’s lipophilicity, expressed as a quantity known as log P (the logarithm of the partition coefficient between water and 1-octanol)
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It important to note the dose-dependent effects of WA in

human cancers remain to be determined. Further investi-

gation is warranted to fully elucidate the effects of WA in

humans; however, the compound has been shown to be safe

in preliminary in vitro and in vivo studies.

Anti-HGG properties of WA

WA as an effective treatment against known

resistance mechanisms

GSLCs play a huge role in tumor renewal due to their self-

protective properties when targeted by CT and RT, so the

importance of effectively treating this subpopulation of

tumor cells cannot be understated. Studies with mice

bearing human ovarian tumors have shown that WA alone

can preferentially target putative cancer stem-like cells

(CSLCs), causing dose-related cell death [36, 37]. Fur-

thermore, combining WA with cisplatin resulted in a syn-

ergistic effect, reducing tumor size by 70–80 % and

preventing metastasis [36]. The latter is displayed in WA’s

ability to inhibit epithelial-mesenchymal transition by

suppressing vimentin, a key protein in mesenchymal

mobility [38]. Indicators of CT resistant GSLCs, such as

aldehyde dehydrogenase 1 (ALDH1) activity, and stem cell

marker gene expression (CD44, CD24 and CD 117) were

significantly decreased when exposed to WA [37]. Notch1

signaling, which plays an important role in cancer stem cell

self-renewal, was also inhibited upon WA treatment,

resulting in inhibition of Notch1 downstream signaling

genes Hes1 and Hey1. These genes normally function to

prevent differentiation of quiescent cells, aiding cancer

progression. Whether in monotherapy or in combination

effect with cisplatin, WA treatment also resulted in an

increase in ROS production and DNA damage, therefore

causing cell death and apoptosis in GSLCs [37]. These

results reveal the ability of WA to overcome and sensitize

the protective barriers exhibited by GSLCs.

Furthermore, TMZ-resistant HGGs express MGMT,

which inhibits O-6-meG adducts from inducing DNA

strand breakage, thereby promoting cell survival. Current

research looks at combining WA and TMZ, which shows

promise by allowing resistant cells to become sensitized

and undergo apoptosis [39, 40]. WA treatment acts by

depleting MGMT, enabling TMZ to cause DNA damage,

G2/M cell cycle arrest, and death in cancerous cells [41].

The TMZ resistant cell line T98G underwent a 43 %

MGMT reduction after treatment with 5 lM WA, and

completely eliminated MGMT production at 10 lM WA.

This study demonstrates the inverse correlation between

MGMT production and TMZ effectiveness, and also

provides evidence of the ability of WA to sensitize HGG

cells to treatment [40].

Pro-survival proteins, such as Survivin, are also inhib-

ited by WA, which reduces cancer cell viability. The effect

of WA on Survivin was tested in in vivo studies using

hamsters with induced oral carcinogenesis as well as in

human breast cancer xenografted mice [41]. After 6 h of up

to 5 lM of WA exposure, human breast cancer cells dis-

played a decrease in Survivin, XIAP, and cIAP-2 protein

levels.

WA targets deregulated pathways common in HGGs

p53 signaling pathway

The p53 pathway is one of the pathways most commonly

mutated in tumorigenesis with a low survival rate [42]. It

acts as a tumor suppressor, modulating cell cycle arrest and

apoptosis in response to cytotoxic stress and DNA damage.

In addition to its tumor-suppressing functions, it acts as a

transcription factor that regulates genes involved in tumor

development, proliferation, and infiltration [43]. Mutations

in p53 can be found in up to 80 % of adult HGG patients

and approximately 50 % of pediatric HGGs [44, 45].

Mutations to p53 affect its ability to induce pro-apoptotic

pathways when genetic anomalies are detected, thereby

propagating the genomic instability of glioma cells

[44, 46].

Panjamurthy et al. [47] found that oral administration of

WA (20 mg/kg for 14 weeks) entirely prevented 7,12-

dimethylbenz(a)anthracene(DMBA)-induced oral squa-

mous cell carcinoma in golden Syrian hamsters. Further-

more, in an immunohistochemical analysis, DMBA-

painted animals stained 80 % positive for p53 mutation,

while WA-treated DMBA-painted animals showed a sig-

nificantly weaker positive staining for p53 mutation. While

this study was performed on hamsters with oral cancers, the

results highlight that WA may preserve the integrity of p53

proteins during tumorigenesis.

Furthermore, an indirect mutation of p53 results in the

amplification of MDM2—an E3 ubiquitin ligase that disrupts

p53 activity by transcription inhibition, binds to p53 active

sites, and marks it for degradation. Around 15 % of AA and

GBMs display amplification of MDM2, indicating a means

for tumors to deactivate p53 other than by direct mutation

[26]. Increased concentrations of MDM2 within cellular

structures can exert tumorigenic phenotypes. Currently, new

anticancer strategies focus on inactivating MDM2 to restore

p53 function. Some therapies, such as Cisplatin administra-

tion, are dependent on regular p53 function [48]. WA is able

to stabilize p53 through activating ARF, which functions to

prevent MDM2 binding to p53 [49].

20 J Nat Med (2017) 71:16–26
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Additionally, cancer cells with mutated p53 proteins are

often ROS-compromised; the ubiquitin proteasome system

(UPS) is deregulated in the removal of oxidized proteins,

allowing pro cell survival [49, 50]. In addition to targeting

the UPS, investigators also studied the activation of

TAp73, a tumor suppressor that causes chemosensitivity to

Cisplatin or CT when p53 is lost or mutated [49]. TAp73 is

also modulated through MDM2 concentrations in a rela-

tionship similar to the p53/MDM2 complex. WA-induced

ROS activates JNK kinases to phosphorylate TAp73,

thereby inhibiting the TAp73/MDM2 complex. The syn-

ergistic effect of WA-induced ROS production and the

inhibition of the TAp73/MDM2 complex allowed TAp73

to induce apoptosis in cancer cells [49].

MAPK/ERK pathway

The MAPK/ERK pathway is a chain of proteins that par-

ticipate in communication of signal molecules on cell

surface receptors to nuclear DNA to promote cellular

growth and proliferation or cell death; this pathway is

frequently mutated in human cancer. Extracellular mito-

gens attach to a cell-surface receptor, causing the activation

of Rat sarcoma protein (Ras). From here, activated Ras

effects downstream activation of Raf, MEK, and, finally,

ERK, to elicit cellular responses such as increased growth

and cell mitosis [51, 52]. Deregulation of any point in the

pathway can induce an increase in cellular proliferation,

signal transduction, apoptosis, and tumorigenesis. HGGs

up-regulate the MAPK/ERK pathway by producing a

greater number of cell signal receptors, such as epidermal

growth factor receptors (EGFR), which can be seen in

40–60 % of adult cases [53] Increased levels or increased

activity of these receptors leads to amplified signal trans-

duction and an enhancement in tumorigenesis.

WA has been shown to have many functions in the

cascade, usually with p38MAPK, which functions to

induce RNA interference against apoptosis [32, 35, 54].

In one case with in vitro leukemic cells from clinical

patients before CT, WA phosphorylated p38MAPK,

which phosphorylated ATF-2 and HSP27, ultimately

leading to an increase in Bax, promoting the mitochon-

drial death cascade [35]. The results showed an increase

in phosphorylation of p38MAPK of *90.96 %with a

3.0 lM treatment of WA after 2.5 h. After 72 h of WA

treatment, no viable leukemic cells of myeloid origin

were observed.

PI3K/Akt/mTOR pathway

PI3K phosphorylation activates Akt, which then activates

many downstream targets, mainly mTOR [55]. Addition-

ally, up-regulation in Akt or its hyperactivation (due to

overexpression of growth factor receptors like EGFR) has

been seen to promote uncontrolled cell cycle progression in

HGG cells and their subsequent protection from apoptosis.

Numerous studies have found that WA produces an inhi-

bitory effect on Akt and mTOR signaling [32, 56, 57].

Multiple oncogenic pathways, including MAPK, Akt, NF-

jB, and mTOR often associate directly with Notch sig-

naling. Overexpression of Notch-1 resulted in an increase

of expression in Akt/mTOR signaling in colon cancer lines,

promoting cell survival [56]. Reduction of Notch-1 reduced

Akt/mTOR signaling. Western blot analysis revealed that

treatment with 5 lM WA treatment reduced phosphory-

lated Akt (pAkt) as well as Notch-1 expression signifi-

cantly over a period of 24 h. However, total Akt levels

remained the same throughout the entire treatment. The

WA inhibition of Notch-1 helped facilitate significant

JNK-mediated apoptosis in colon cancer cells. After WA

treatment, the cell percent viability of three colon cancer

cell lines SW-480 (IC50: 3.56 lM), SW-620 (IC50: 5.0 lM)

and HCT-116 (IC50: 5.33 lM) also showed a significant

decrease.

Another study revealed WA (2 lM) in combination with

oxaliplatin (25 lM) reduced both pAkt and total Akt levels

over 24 and 48 h [58]. In non-cancerous cells, the activity

of PI3K is counteracted by its inhibitor, and tumor sup-

pressor, phosphatase and tensin homolog (PTEN) [60].

However, in more than 60 % of GBMs and other HGGs,

PTEN is inactivated by genetic alterations, allowing PI3K

to act uninhibited [59]. Phosphorylated PTEN levels were

also reduced in combination therapy with no significant

change in total PTEN levels [58].

NF-jB pathway

The NF-jB family of transcription factors plays an

important role in inflammatory and immune responses. It is

found in almost all animal cell types and is involved in

cellular responses to various stimuli such as stress, radia-

tion, and free radicals [61, 62]. A common regulatory step

in this signal cascade is the activation of IjB kinase (IKK),

which prevents NF-jB function. Activation of NF-jB

dimers is due to phosphorylation of IjB by IKK, enabling

the active NF-jB transcription factor subunits to translo-

cate to the nucleus and induce target gene expression

[63, 64]. Deregulation of the NF-jB pathway is involved in

HGGs through the up-regulation of factors that activate

NF-jB, such as tumor necrosis factor-a (TNFa) [65, 66].

An in vitro and in vivo study in mice revealed that WA

prevented TNF from activating downstream signaling of

IjB kinase b via a thioalkylation-sensitive redox mecha-

nism [67]. WA inhibited TNF-induced NF-jB activation in

murine fibrosarcoma and human embryonic kidney cell

lines [37, 67]. Another study showed that WA increased
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ubiquitinated-proteins in TNF-a-treated human umbilical

vein endothelial cells at global levels, which suggests that

WA tends to target the ubiquitin–proteasome pathway

(UPP) [50, 68].

Effects on angiogenesis

HGGs are among the most angiogenic of cancers: one of

the hallmarks of transformation from low-grade glioma

(LGG) to HGG is the stimulation of angiogenesis and the

formation of new vessels [67]. Angiogenesis supplies the

cancerous microenvironment with new vasculature from

pre-existing blood vessels. This process is coordinated by

an increase in pro-angiogenic gene expression, including

vascular endothelial growth factor (VEGF) [68]. Due to the

importance of angiogenesis in HGG progression, greater

attention has been paid to anti-VEGF therapies. While

enthusiasm for evaluating anti-VEGF agents has been rel-

atively dampened by safety concerns, including the risk of

intracranial hemorrhage, recent trials among malignant

glioma patients treated with VEGF- or VEGF receptor

(VEGFR)-targeting therapeutics plus CT report an antitu-

mor benefit, as well as acceptable safety profiles [69].

WA shows potential for inhibiting angiogenesis by

binding VEGF. One study analyzed WA’s potential for

molecular docking through programs such as SwissDock

and Docking Server [70]. Current anti-angiogenic thera-

pies approved by the FDA, such as Bevacizumab, have

serious to life-threatening side effects, and have little

effect on brain tumor invasiveness [71–73]. After treat-

ment with Bevacizumab, glioblastomas will adapt by

upregulating glycolysis production, moving towards a

more anaerobic metabolism, and inducing a microenvi-

ronmental acidosis. This adaptation leads to tumor

growth, invasiveness, and unconstrained proliferation. In

comparison to Bevacizumab, WA showed higher cluster

formation and an overall more favorable binding and

affinity to VEGF using Fullfitness [70]. An in-depth study

that combined Withanone, a compound found in W.

somnifera (1 mg/kg) and Withaferin A (0.5 mg/kg)

(WiNA), tested both in vitro and in vivo [74]. The in vivo

studies consisted of human glioblastoma, osteosarcoma,

fibrosarcoma, neuroblastoma, rat glioblastoma, and mouse

fibroblast cell lines. WiNA was toxic to cancer cells and

nontoxic on normal human cells at the optimal ratio of

20:1. Ratios such as 5:1 and 3:1 became toxic to normal

cells as well. In VEGF-stimulated HUVECs, WiNA lim-

ited migration and invasiveness. In vivo studies with nude

mice subcutaneous xenograft and lung metastasis models

revealed nontoxicity in mice as well as tumor and VEGF

Fig. 3 A diagram of the effects of WA on various pathways in HGG cells, leading to tumor cell death and inhibition. Green arrows Increased

protein expression, red arrows decreased protein expression, red bars inhibition of downstream signaling targets (e.g., PTEN inhibits PI3K)

(color figure online)
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reduction in small tumors. This combination effect using

multiple parts of W. somnifera may be another therapy

worthy of future study in HGGs.

At low doses, WA exerts potent anti-angiogenic

activity in vivo [66, 75]. Treating human umbilical vein

endothelial cells (HUVEC) with WA resulted in induced

cytostatic cell cycle G1 arrest. WA also inhibited vessel

formation in vitro in endothelial cells and in vivo in mice-

induced tumors [66, 76]. WA also has the ability to bind

to vimentin and covalently modify its cysteine residue,

which is present in the highly conserved a-helical coiled-

coil 2B domain. This binding causes an aggregation of

vimentin, ultimately leading to apoptosis [76]. WA sup-

pressed neovascularization in wild type mice at 73 %

inhibition and only marginally inhibited (29 %) neovas-

cularization in vimentin-null mice. This revealed that

inhibition of capillary growth from WA treatment relies

on vimentin expression.

A summary of cellular responses induced by WA can be

found in Fig. 3.

Future perspectives

Recent laboratory investigations have begun to elucidate the

multitude of effects WA exerts on cancer cells while

simultaneously having minimal consequences on normal

tissue. WA in various cancer types primes it to be efficacious

in HGGs because many deregulated signaling pathways

commonly identified in HGGs are also characteristically

preserved in other cancer types [77]. Unfortunately, there is

little information available on WA as a treatment against

HGGs. In the literature, there are a few papers investigating

the use of WA directly against HGGs (Table 2). Along with

these other authors, we believe that WA can be applied to

treating HGGs, and that WA therapy has the potential to

yield remarkable results.

Interestingly, WA has been found to have promising

effects in multiple other disease entities. In many cases,

safety has already been shown and studies are now

investigating efficacy. Table 3 summarizes these trials and

each of their focuses.

The future of utilizing WA for HGG treatment involves

determining its ability to cross the BBB in humans. WA

adheres to Lipinski’s Rule of Five; therefore, pharmacoki-

netic study could confirm the ability of WA to be BBB

permeable. Additionally, more in vivo studies are needed to

allow scientists to gain additional evidence of WA safety in

relevant biological contexts. Overall, the future perspectives

behind the use of WA in HGGs are positive. The innocuous

nature and efficacy of WA in completed clinical and pre-

clinical trials make it a compound highly worthy of con-

sideration for the treatment of pediatric HGGs. A great deal

of preliminary work has emerged to solidify WA’s place as

an efficient anti-cancer treatment. Its success across various

tumor types justifies its use in brain cancer settings.

Conclusions

Targeting HGGs requires a novel approach in response to

tumor resistance to current treatment modalities, and the

multitude of deregulated signaling pathways characteristic

of malignant brain cancers. Metabolites from the indige-

nous Indian plant W. somnifera have garnered attention

from the scientific community for their novel cancer pre-

ventative and anti-tumor properties. Specifically, WA

derived from the root of W. somnifera has shown its anti-

cancer efficacy in humans across multiple cancer types, and

its effects should warrant its further study in HGGs. WA is

hypothesized to be BBB permeable, allowing for infiltra-

tion into the brain, which further strengthens its potential

for use in the setting of HGGs.

WA effectively targets and prevents over-proliferation

of GSLCs, while downregulating survival proteins

expressed in HGGs, such as Survivin. In preclinical stud-

ies, WA was able to prevent alterations to p53 in a dose-

dependent manner, as well as inactivate MDM2 through

activation of ARF and ROS production. Additionally, WA

promotes a mitochondrial death cascade by upregulating

Table 2 Studies in the literature that include WA as a treatment against high-grade gliomas (HGGs)

References Study type Biological

context

HGG

type

Pertinent conclusions

Grogan

et al. [78]

Laboratory

research

In vitro GBM In GBM, WA inhibits proliferation through G2/M cycle arrest, inhibits Akt/mTOR

pathways, increases ROS production, upregulates HSP, and downregulates HSF1

Grogan

et al. [39]

Laboratory

research

In vitro GBM Along with previous results (mentioned above), WA with TMZ causes dose dependent

depletion of MGMT, which sensitizing GBM cancer cells to cytotoxic effects of TMZ

Shah et al.

[79]

Laboratory

research

In vitro Glioma WA inhibited proliferation, enhanced expression of GFAP, induced senescence-like growth

arrest, and delayed cellular migration

GFAP Glial fibrillary acidic protein, GBM glioblastoma multiforme, HSF1 heat shock factor, HSP heat shock proteins, ROS reactive oxygen

species, TMZ temozolomide
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Bax, inhibits mutated Akt, mTOR, and NF-jB pathways,

and inhibits angiogenesis in tumors. However, while its

effects are promising in preclinical settings, further inves-

tigation is warranted to fully unearth the ability of WA to

act against HGGs.
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