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Abstract Many important bioactive compounds have

been discovered from natural sources using bioactivity-

directed fractionation and isolation (BDFl) [Balunas MJ,

Kinghorn AD (2005) Drug discovery from medicinal

plants. Life Sci 78:431–441]. Continuing discovery has

also been facilitated by the recent development of new

bioassay methods. These bioactive compounds are mostly

plant secondary metabolites, and many naturally occurring

pure compounds have become medicines, dietary supple-

ments, and other useful commercial products. Active lead

compounds can also be further modified to enhance the

biological profiles and developed as clinical trial candi-

dates. In this review, the authors will summarize research

on many different useful compounds isolated or developed

from plants with emphasis placed on those recently dis-

covered by the authors’ laboratories as antitumor and anti-

HIV clinical trial candidates.
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Introduction

Crude herbs have long been and continue to be the basis of

many traditional medicines worldwide. In Asia, these

therapies include traditional Chinese medicine (TCM),

Japanese Chinese medicine (kampo), Korean Chinese

medicine, jamu (Indonesia), and ayurvedic medicine

(India), and in Europe, phytotherapy and homeopathy have

found medicinal uses. In America, herbal therapies toge-

ther with various other traditional remedies are generally

classified as ‘‘alternative medicines.’’ The combination of

alternative medicine, mainly the aforementioned traditional

and folk medicines used worldwide, with conventional

medicine (Western medicine) is termed ‘‘integrative

medicine.’’

Crude herbal drugs of TCM were formerly divided into

three categories: upper, middle, and lower class medicines.

Upper class medicines are usually not toxic, have moderate

physiological effects, and are often used to maintain good

health. Thus, they are sometimes called supplementary

drugs. Both upper and middle class medicines are used as

therapeutic drugs, but the latter medicines are more toxic

than the former. Lower class medicines can contain very

toxic substances, and must therefore be used with caution

as medicines. TCM relies on close observation and unique

principles [1] to generate herbal prescriptions that often

contain herbs from all three categories. The centuries-long

legacy of TCM provides rich information for modern

research in drug discovery.

Anticancer and antitumor compounds

Both sample sources and bioassay screening systems are

highly important to the development of novel, clinically

useful anticancer agents.

Regarding screening methods, two bioassay types have

mostly been used: cell-based and mechanism of action

(MOA)-based. The initial cell-based assays mainly used

L1210, P388 and KB cells in preliminary screening for
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antitumor activity. To discover agents active against dif-

ferent types of cancer, screening against a panel of human

cancer cell lines was implemented. Compounds that are

found to be active agents in the in vitro studies are then

tested for efficacy through in vivo xenograft studies.

Recent developments of new MOA-based bioassay systems

aimed at particular molecular targets have also revolu-

tionized the discovery of potential drug candidates.

Important anticancer drug targets include tubulin, DNA

topoisomerases I and II (topo I and topo II), cyclin-

dependent kinases (CDKs), growth and transcription fac-

tors, etc.

Regarding sample sources, higher plants have provided

many effective, clinically useful anticancer drugs. These

compounds include Vinca alkaloids, Taxus diterpenes,

Camptotheca alkaloids, and Podophyllum lignans, as well

as modified related compounds. Among the extensive

reviews on research in this area [2–12], reviews describing

the influential discoveries of taxol (tubulin-interactive) and

camptothecin (topo I-interactive) by Wall and Wani illus-

trate how natural products have influenced the further

development of natural product-derived and synthetic

entities [13–15]. Our following discussion of the discovery

and development of currently important antineoplastic

compounds will be organized by plant species.

Because cancer terminology has often varied, Suffness

and Douros [2] suggested the following definitions to avoid

confusion. Cytotoxicity is used when compounds or

extracts show activity against tumor cell lines. Antitumor

or antineoplastic indicates that the materials are effective in

vivo in experimental systems. Anticancer refers to com-

pounds that are active clinically against human cancer.

From Vinca (Catharanthus) species (Fig. 1)

The Vinca alkaloids vinblastine (A1) and vincristine (A2)

are well-known anticancer drugs. Their main clinical uses

are to treat Hodgkin’s lymphoma and acute childhood

lymphoblastic leukemia, respectively. The target of Vinca

alkaloids is tubulin, a protein needed for cell division, and

their mechanism of action is inhibition of mitosis (the

process of cell division).

Vinca rosea (also known as Catharanthus roseus)

(Apocynaceae) is the original plant source of the Vinca

alkaloids. This species has folkloric uses in Madagascar to

inhibit milk secretion and as a hypotensive agent, astringent

and emetic. Other Vinca species are used by the native

people in the West Indian Islands to lower blood sugar levels.

Other drugs have been developed as synthetic analogs of

vincristine and vinblastine to be active against other tumor

types or have fewer side effects. For example, Burroughs

Wellcome synthesized navelvine (vinorelbine) (A3), which

is used to treat non-small cell lung and advanced breast

cancers [16]. Structurally, A3 has a smaller (eight-mem-

bered rather than nine-membered) C ring and a dehydrated

D ring compared with A1 [17]. Eldisine (vindesine) (A4),

another structural analog, is used to treat acute lympho-

blastic leukemia, breast cancer, and malignant melanoma.

In the new generation of receptor-specific targeted

chemotherapy, EC145 (A5), which is a folic acid conjugate

of desacetyl vinblastine monohydrazide, is undergoing

Phase I anticancer clinical trials [18], and vinflunine (A6),

a bifluorinated vinolrebine derivative, is in Phase II trials

against bladder and kidney cancers [19, 20].

From Taxus species (Fig. 2)

Chemotherapy of breast cancer was revolutionized by the

discovery of taxol (paclitaxel) (B1), a taxane diterpene, by

Wall and Wani from the bark of the Pacific yew tree Taxus

brevifolia (Taxaceae) [21]. However, its antineoplastic

potential could not be fully explored at first, as its source,

the tree bark, was nonrenewable and severely limited its

supply. An alternative renewable supply was found by the

semi-synthesis of B1 from 10-deacetylbaccatin III (B2),

which is isolated from needles of the European yew tree.

Various Taxus species have yielded around 400 taxoids.

Taxus alkaloids were recently reviewed in the book Taxus,

genus Taxus, edited by the authors of this review [22]. The

biological activity and chemistry of taxoids from Japanese

yew have also been reviewed [23].

B1 interacts with cellular tubulin to promote microtu-

bule assembly and inhibit mitosis. It is now used

extensively in patients with advanced and metastatic

ovarian and breast tumors, particularly tumors that are

refractory to standard chemotherapy. However, it is also

active against brain, tongue, endometrial, and other cancers

[24, 25]. The synthetic analog docetaxel (taxotere) (B3),

also produced from the more readily available B2, is

chiefly used against non-small cell lung cancers.

Other related antineoplastic taxane analogs have resul-

ted from extensive structure–activity relationship (SAR)

studies. For example, ortataxel (B4) is a promising orally

administered taxoid now in Phase II clinical trials [26].

SAR studies of ring C-secotaxoids were recently published

[27].

In effort to improve drug targeting or tissue distribution,

taxoids have also been conjugated with various other

compounds, including 3,17b-estradiol [28], various fatty

acids [29], and a biodegradable polymer (poly-L-glutamic

acid, paclitaxel polyglumex) [30, 31]. In the authors’ lab-

oratories, taxoids were conjugated with other anticancer

agents, including epipodophyllotoxins (B5) [32] and cam-

ptothecin (B6) [33].

Recent overviews of various other aspects of taxoid

development have been published. In one review, novel
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taxane formulations, including many in clinical trials, have

been studied to overcome solubility issues of B1 and B3

[34]. In another recent review, Kingston and Newman [35]

state that B3 is the first example of a ‘‘tunable’’ anticancer

agent, and that it has activities beyond the known antitumor

indications. An example is the use of paclitaxel-coated

stents in cardiovascular therapies.

Other reports explore B1 from the viewpoint of

improved biochemical strategies and structure–activity

relationships of taxoids as multidrug resistance modulators

[36, 37]. Similarly, the synthesis and structure–activity

relationships of taxuyunnanine C derivatives as multidrug-

resistance modulators in MDR cancer cells have been

reported [38].

From Camptotheca species (Fig. 3)

Camptothecin (CPT, C1) is a potent antitumor pentacyclic

alkaloid isolated from Taiwanese or Chinese Camptotheca

acuminata (Nyssaceae) [39, 40]. DNA topo I is its pri-

mary cellular target [41]. In China, the naturally occurring

10-hydroxycamtothecin (C2) is used to treat many can-

cers. This compound has a better therapeutic index than

C1.

Because both natural products are poorly water soluble,

semi-synthetic, more water-soluble analogs including to-

potecan (Hycamptin, C3) and irinotecan (Camptosar, C4)

were developed. These two compounds are used primarily

against advanced ovarian and metastatic colorectal cancers,

respectively [42]. In work in the authors’ laboratories,

synthetic CPT analogs, such as C5, were found to be more

active than C1 against topo I [43], and two epipodo-

phyllotoxin–camptothecin conjugates, C6 and C7,

inhibited both topo I and topo II [44]. The conjugates have

also improved in vitro anticancer profiles [45] and are

active against etoposide- and camptothecin-resistant KB

cells (KB7D and KB/CPT 100, respectively). Combination

therapy regimens have included CPT analogs as radiation

sensitizers [45]. DB-67 (C8, a 7-silylcamptothecan or

silatecan) [46] and rubitecan (C9, 9-nitrocamptotecin) [47]

are new C1-analogs in anticancer clinical trials.

Several excellent reviews have discussed clinical

applications of and perspectives on the camptothecins

[48–50].

Recently, electrochemical studies of C1 and its inter-

action with human serum albumin have been reported [51].

From Podophyllum species (Fig. 4)

Podophyllum (Berberidaceae) species, including the

American P. peltatum L. (American mayapple) and Indian

or Tibetan P. emodi Wall (syn. P. hexansdrum Royle),

have long been used medicinally. In fact, podophyllin, a
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resin obtained from an alcoholic extract of Podophyllum

rhizome and used to treat warts, was listed in the US

Pharmacopoeia from 1820 to 1942. However, it was then

removed due to undesirable toxicity [52].

In 1880, podophyllotoxin (D1), an aryltetrainlactone

cycloliganan with a flat, rigid five-ring skeleton, was iso-

lated from P. peltatum rhizomes. Although it has

antineoplastic activity, it is also extremely toxic, and thus,

failed the NCI’s Phase I antitumor drug clinical trials in the

1970s. However, chemical modification of D1 led to the

successful development of the clinically useful anticancer

drugs etoposide (D2) and teniposide (D3). These com-

pounds target cellular DNA topo II and are used to treat

small cell lung and testicular cancers and lymphomas/

leukemias. However, these compounds are poorly water

soluble, which can lead to precipitation of the drug during

intravenous administration. Accordingly, Etopopos (eto-

poside phosphate, D4) was developed as a clinically useful

water-soluble phosphate ester of D2.

In addition to poor water solubility, limitations of D2

include myelosuppression and drug resistance development.

To improve the drug, SAR studies in the authors’ laborato-

ries led to several series of 4-alkylamino and 4-arylamino

epipodophyllotoxin analogs, which showed increased inhi-

bition of DNA topo II activity and increased cytotoxic

acitivity in D2-resistant cell lines [53–55]. GL-331 (D5)

[56], which contains a p-nitroanilino moiety at the position of

D2, was chosen as a clinical trials candidate. D5 is more

water soluble, easier to manufacture, more active against in

D2-resistant cell lines, and causes fewer side effects than D2.

D5 progressed to Phase IIa anticancer clinical trials (personal

communications from Genelabs Technologies Inc. and F.V.

Fossella, University of Texas M.D. Anderson Cancer Cen-

ter). New computational strategies were applied in this

rational design of improved D2-analogs [56, 57–59].

In 2004, Godaliza et al. [60] discussed the distribution,

sources, application, and new cytotoxic derivatives of D1. Lee

and Xiao [61] reviewed podophyllotoxins and related analogs,

including D5, to demonstrate how plant natural products can

be developed as successful preclinical drug candidates.

Another review of D1 has been published recently [62].

From Cephalotaxus species (Fig. 5)

In TCM, the bark of indigenous plants from the genus

Cephalotaxus (Cephalotaxaceae) has long been used for
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various indications. Chinese investigators [63] discovered

the antitumor properties of alkaloids from C. fortunei

Hook., subsequent to Powell’s [64–66] original isolation

of the antitumor alkaloids homoharringtonine (E1) and

harringtonine (E2). The Chinese evergreen tree C.

harringtonia K. Koch var. harringtonia was also found to

contain E1 [67], and various Cephalotaxus species yielded

other related active alkaloids [68, 69]. However, cephalo-

taxine (E3), the parent compound, does not show antitumor

activity.

Although E1 has reached Phase I/II clinical trials against

myeloid leukemia in the US [70, 71], its severe side effects

still remain problematic. Accordingly, the authors have

continued to study new natural products from Cephalo-

taxus species and develop new analogs on the basis of SAR

studies, as reviewed by Itokawa et al. [72].

From Colchicum species (Fig. 6)

The medicinal plant Colchicum autumnale L. (Liliaceae)

contains the bioactive alkaloid colchicine (F1). F1 and its

close natural analog thiocolchicine (F2) (SCH3 rather than

OCH3 at C-10) inhibit the polymerization of tubulin [73]

and consequently inhibit mitosis. Both compounds show

antileukemic activity, but are too toxic to use as anticancer

agents, although F1 is still used to treat gout and familial

Mediterranean fever.

In SAR studies in the authors’ laboratories, the C-7

acetamide group on ring B was replaced with various

oxygen-containing groups [ketone (F3, thiocolchicone),

hydroxy (F4), and ester (F5, F6)] [74]. These compounds

were equally or more active in vitro than F2. In addition,

colchinol-7-one thiomethyl ether or allo-ketone (F7),

which has a six-membered ring C, was equipotent with the

seven-membered-ring natural product F1. Three related

ring-contracted colchicinoids (F8–F10) showed significant

activity against drug-sensitive and -resistant KB cell lines

[75].

Removing one or two of the methyl groups from the

three ring A phenolic groups reduces tubulin/mitotic inhi-

bition; thus, three methylated phenolic groups, as found in

F1–F10, are needed for full potency. If all three methyl

groups are removed, the resulting tri-demethylated col-

chicines and thiocolchicines (F11–F14) no longer interact

with tubulin but instead inhibit DNA topo II [76]. They

also are active in vitro against bone and breast cancers [77].

From Salvia species (S. miltiorrhiza) (Fig. 7)

In China, the roots and rhizome of Salvia miltiorrhiza

(called Tanshen) have been widely used to treat cardiac and

vascular disorders such as atherosclerosis or blood clotting

abnormalities. Hemorrhage, dysmenorrhea, miscarriage,

swelling, inflammation, chronic hepatitis, and insomnia are

also treated with Tanshen [78, 79]. Because this plant

exhibits hypotensive effects, causes coronary artery vaso-

dilation, and inhibits platelet aggregation, it should not be

used in combination with warfarin. Clinically available

preparations of a S. miltiorrhiza/Dalbergia mixture may

show promise in the treatment of angina [80].

Salvia miltiorrhiza contains bioactive tanshinone diter-

penoids, including tanshinone I (G1) and tanshinone IIA

(G2) [81]. Sodium tanshinone sulfate (G3), a water-soluble

derivative of G2, exhibits strong membrane-stabilizing

effects on red blood corpuscles, and accordingly is used

clinically to treat angina pectoris and myocardial infarc-

tion. S. miltiorrhiza also contains novel seco-abietane

rearranged diterpenoids [82].

In addition to effects on the heart and blood vessels,

S. miltiorrhiza shows cytotoxic activity, and strongly

inhibits proliferation of liver cancer cells [83]. SAR studies

with tanshinones have assayed effects against several

human tumor cells, namely nasopharyngeal (KB), cervical

(Hela), colon (colon-205), and laryngeal (Hep-2) [78, 79].
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Salvia miltiorrhiza and Tanshen also contain neo-tan-

shinlactone (G4), a compound with a very unique and

different structure compared with other compounds from this

plant. In studies in the authors’ laboratories, G4 first showed

unique specific activity against the MCF-7 breast cancer cell

line, but insignificant activity against other cell lines in a

tested panel. In additional studies, it was quite active against

estrogen receptor positive (ER+) human breast cancer cell

lines (MCF-7 and ZR-75-1), but inactive against ER negative

(ER-) human breast cancer lines (MDA MB-231 and HS

587-T) [84]. Because more than 60% of breast cancer cases

in postmenopausal women are ER+, this finding was quite

significant. G4 was 10-fold more potent and 20-fold more

selective than the breast cancer drug tamoxifen against two

ER+ cell lines. It was also potent against an ER- cell line

that overexpresses HER2+, a key protein in regulating cell

growth, which affects 25–30% of breast cancer patients [84].

Therefore, G4 is an excellent candidate for further devel-

opment toward anti-breast cancer clinical trials. More recent

synthetic analog studies have ascertained certain structural

features that are critical to the anticancer activity of this

compound class and identified a compound (G5) with

comparable or better anticancer activity [85].

These new developments in the chemistry and biology

of the bioactive constituents of Tanshen have recently been

reviewed [86].

From Brucea species (Fig. 8)

The tree Brucea antidysenterica (Simaroubaceae) is used

in Ethiopia to treat cancer, and Kupchan et al. [87] iden-

tified the quassinoid bruceantin (H1) as the active

principle. In the early 1970s, H1 and related quassinoids
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showed activity against various cancer cell types, particu-

larly leukemic cells. However, in subsequent Phase I and II

clinical trials, no objective tumor regressions were

observed and clinical development was halted.

Recently, H1 has been re-investigated in various leu-

kemia, lymphoma, and myeloma cell lines, and also in

animals where it induced regression in both early and

advanced tumors. These new results indicate that H1 still

merits investigation for clinical efficacy against hemato-

logical malignancies [88].

Other quassinoids [e.g., brusatol (H2)] and quassinoid

glycosides [e.g., bruceoside B (H3)] from B. javanica have

been studied extensively for antitumor [89–92] and cancer

chemopreventive [93] effects. A recent review of biologi-

cally active quassinoids discussed their potential for drug

design [94].

In 2002, a new quassinoid, yadanziolide S (H4), and ten

known compounds were isolated from the seeds of

B. javanica [95]. Compound H4 is tetracyclic rather than

pentacyclic, and it is the first quassinoid isolated from this

plant that does not have an additional oxygenated ring. All

isolated compounds were tested for anticancer activity in

human leukemia (HL-60) cell differentiation and in a

mouse mammary model.

From Euphorbia species (Fig. 9)

In China, the dried roots of Euphorbia kansui (Euphorbi-

aceae) are known as ‘‘kansui’’ and classified as a ‘‘lower

class’’ medicine. This herbal remedy is used in China to

treat ascites (abdominal fluid accumulation) and cancer.

Ingenol diterpenoids from this plant show various bio-

activities. Kansuiphorins A–D (I1–I4) were isolated as

cytotoxic principles by the authors’ laboratories [96, 97]. I1

and I2 showed significant potency activity against P-388

leukemia in mice [98]. DBDI (I5), a related ingenol-type

diterpene, uniquely suppressed mast cell activation, which is

an inflammatory process. Thus, this compound might be used

to treat allergic diseases [99]. In addition, two ingenols iso-

lated from an immuno-enhancing E. kansui extract increased

immune activity in a dose-dependent manner [100].

The species E. ebracteolata yielded three new cytotoxic

diterpenoids, yuexiandajisus D–F (I6–I8) [101], with I6

showing moderate cytotoxicity against HCT-8 and Bel-

7402 cell lines [102]. Euphorbia lagascae is the source of

the new macrocyclic lathyrane diterpenes latilagascens A–

C (I9-I11), which inhibit replication of multidrug-resistant

tumor cells [102].

From Rubia species (Fig. 10)

Rubiae Radix is a common Rubiaceous plant, found

as Rubia akane in Japan, R. cordifolia in China and

R. tinctorum in Europe. The former two show antineo-

plastic activity, but the latter does not. The cytotoxic active

principles were named RAs named after R. akane. Sixteen

RA series, from RA-I to RA-XVI, were isolated from

R. akane and R. cordifolia [103–107].
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Among them, RA-VII (J1) showed the greatest potency

against KB, P388 lymphocytic leukemia, and MM2

mammary carcinoma cells. RA-V (J2) possesses a reactive

phenolic hydroxyl group on the Tyr-6 residue, and its

modification has been extensively studied by introducing

many different alkyl and acyl groups at this position.

Analogs that had longer alkyl or acyl groups retained

potent antitumor activity, with the n-hexyl derivatives

showing the strongest in vitro activity [108–110]. In

continuing modification studies [103–107], the synthetic

TI-356 (J-3) was developed as a more potent compound

[106, 107]. Hitotsuyanagi et al. also synthesized glycine-

containing analogs of RA-VII [111–114].

From Cocculus trilobus (Fig. 11)

Cocculus trilobus DC. (Menispermaceae) is used as a

diuretic, analgesic, and anti-inflammatory folkloric drug in

East Asia. Cytotoxicity-guided isolation yielded sinococ-

culine (K1) as an antitumor principle from the stems and

rhizomes [115]. This compound is active in vitro against

P388 leukemia, but is most likely a general cytotoxic rather

a cell-specific agent [116]. Isosinococuline (K2), isolated

from the same plant, also shows cytotoxic activity [117].

From Curcuma (turmeric) species (Fig. 12)

Curcuma species (Zingiberaceae) have folkloric uses in

India to treat biliary disorders, anorexia, cough, diabetic

wounds, liver disorders, rheumatism, and sinusitis, and in

China for abdominal pain and jaundice. Turmeric stimu-

lates bile secretion in animals and has a protective effect on

the liver.

However, this herb is most well known as a main

ingredient of curry powder. It gives color and flavor to food

and has aromatic, stimulant, and carminative properties.

The yellow phenolic diarylheptanoid curcumin (L1) is the

major pigment in the turmeric rhizome.

Pharmacologically, L1 shows potent anti-oxidative and

anti-inflammatory effects, cytotoxicity against tumor cells,

and antitumor-promoting activity [118]. These effects and

targets as well as possible roles for L1 in cancer prevention

and therapy have been recently reviewed [119, 120].

In the authors’ laboratories, several synthetic curcumin

analogs, including L2, showed potent antiandrogenic

activities against PC-3 and DU-145 human prostate cancer

cell lines [121], and subsequently showed anti-prostate

cancer activity superior to that of hydroxyflutamide, the

currently available and preferred anti-androgen for treating

prostate cancer [122]. From additional anti-androgenic

studies, dimethoxy-4-ethoxycarbonylethylenyl-curcumin

(L3) has emerged as a promising prostate cancer drug

candidate [123, 124]. This work on the design and
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development of curcumin analogs as prostate cancer agents

has been reviewed recently [125].

In addition, curcumol (L4), a sesquiterpene obtained from

C. aromatica, was effective against cervical cancer [4].

From Maytenus species (Fig. 13)

In South America, Maytenus illicifolia Mart ex Reiss.

(Celastraceae), more commonly known as ‘‘Cangorosa,’’ is

used for its analgesic, antipyretic, antiseptic, and anticancer

properties. In Paraguay, it is also used for birth control.

M. illicifolia is the source of cytotoxic triterpenes, including

pristimerin (M1) and isotingenone III (M2) [126], triter-

pene dimers dihydroisocangorosin A (M3) and cangorosin

B (M4) [127, 128], and other new compounds [129].

Other Maytenus species have yielded compounds with

various biological properties. The African plant M. ovatus

(later renamed M. serrata) yielded the antileukemic may-

tansinoids [e.g., maytansine (M5)] [130, 131]. This

compound progressed to Phase II clinical trials, but testing

was suspended due neurotoxic side effects. M. diversifolia

contains the related maytanprine (M6), which shows

growth-inhibiting and apoptosis-inducing activities in
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K562 leukemia cells [132]. The authors also identified

cytotoxic sesquiterpene pyridine alkaloids, including

emargintines B (M7) and F (M8), from M. emarginata

[133, 134]. Recently, M. chuchuhuasca yielded new tri-

terpenes [135] and sesquiterpenes [136], and antitumor

promoting sesquiterpenes were also isolated from M. cu-

zooina [137].

Anti-HIV compounds

The human immunodeficiency virus (HIV) is the causative

agent of acquired immunodeficiency syndrome (AIDS), a

degenerative disease of the immune system that results in

life-threatening opportunistic infections and malignancies.

Natural products with antiviral and immunomodulating

effects are viewed as possible sources of new compounds

to inhibit HIV and treat AIDS [138].

From Lomatium suksdorfii (coumarin derivatives)

(Fig. 14)

BDF1 of Lomatium suksdorfii (Apiaceae) yielded suksdor-

fin (N1), a dihydroseselin-type angular pyranocoumarin, as

a lead anti-HIV natural product [139]. SAR studies then

yielded the more potent lead compound 30R,40R-di-O-(-)-

camphanoyl-(+)-cis-khellactone (DCK) (N2), which has

two camphanoyl esters rather than the acetate and iso-

valeroyl esters found in N1 [140]. Additional synthetic

modification yielded 4-methyl DCK (N3) then 3-

hydroxymethyl-4-methyl DCK (N4). N4 has been selected

as a clinical trial candidate [141].

Dihydropyrano[2,3-f]chromones are positional isomers

of khellactones. The carbonyl is at position 4 in the former

compound class, rather than at position 2 in the latter class.

30R, 40R-di-O-(-)-camphanoyl-20,20-dimethyldihydropyr-

ano[2,3-f]chromone (DCP) (N5), and other DCP analogs are

active against drug-resistant HIV strains, while DCK analogs

are not. 2-Ethyl DCP (N6), with an ethyl group at the 2

position of DCP, is less cytotoxic, making it the most likely

clinical trials candidate in the DCP series thus far [141, 142].

DCK and DCP compounds inhibit HIV reverse trans-

criptase (RT), but at a later step than that affected by AZT

and other clinically approved RT inhibitors. The novel

mechanism of action of DCK and DCP compounds (known

as strand transfer inhibitors) in comparison to current drugs

merits further investigation of their possible usefulness in

the treatment of AIDS [143].

From Syzigium claviflorum (triterpene, betulinic

acid derivatives) (Fig. 15)

Syzigium claviflorum (Myrtaceae) is the plant source of two

naturally occurring anti-HIV lupane triterpenes, betulinic

acid (O1) and platanic acid (O2) [144, 145]. SAR studies

produced dimethyl succinyl betulinic acid (DSB, O3),

which has successfully progressed to anti-AIDS clinical

trials [146, 147]. To date, O3 has completed seven clinical

trials in over 300 patients (noninfected and infected).

O3 disrupts the late stage viral maturation processes of

HIV, making it unlike any currently approved anti-AIDS

drug. The viral core structure of new HIV particles pro-

duced from infected DSB-treated cells is defective and

noninfectious [148]. O3 is the first in a new class of anti-

AIDS drugs with a novel target of viral maturation.

O3 was discovered in the author’s Natural Products

Research Laboratories (NPRL) [146]. It has been licensed

and is being developed as a drug by Panacos
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Pharmaceuticals. It is the company’s lead antiviral product

and is now known as Bevirimat. Details on its clinical

progress thus far are given below.

Two Phase I studies and a Phase I/II study of O3 were

completed during 2004. The drug was well tolerated and

showed good anti-HIV levels in the body. It also showed

activity in HIV-infected patients and significantly reduced

viral blood levels (known as viral load) [information from

the results of the Phase IIa study presented as an oral late

breaker presentation at the 45th Interscience Conference on

Antimicrobial Agents and Chemotherapy, Washington,

DC, 16–19 Dec 2005, and from Triangle Business Journal

9 Sept 2005]. Based on these good results, O3 was given

Fast Track Status by the US Food and Drug Administration

(FDA) in 2004. In a Phase IIa study, O3 reduced viral load

significantly (median reduction at a 200 mg dose was 91%

decrease compared to placebo on day 11 after complete

dosing) and showed antiviral potency with once-a-day oral

dosing for 10 days in HIV-infected subjects not on other

antiretroviral therapy. O3 was well tolerated with only

mild or moderate side effects without dose-limiting toxicity

[information from the results of the Phase IIa study pre-

sented as an oral late breaker presentation at the 45th

Interscience Conference on Antimicrobial Agents and

Chemotherapy, Washington, DC, 16–19 Dec 2005, and

from Triangle Business Journal 9 Sept 2005]. O3 was also

successfully administered in tablet form rather than by oral

solution. When O3 was administered together with the

approved HIV drugs ritonavir and atazanavir, no significant

adverse drug–drug interactions were seen, making it suit-

able for combination therapy (information provided by

Panacos Inc.). Phase IIb clinical trials, which began in

2006, are still ongoing. An optimal dose of O3 will be

determined in these randomized, blinded, and placebo-

controlled trials in HIV-infected patients failing current

therapy (information provided by Panacos Inc.). Phase III

clinical trials are targeted for 2007/2008, and will be per-

formed with combination therapy in a total of 300–500

patients at commercial dose. The target for the New Drug

Application (NDA) is 2008/2009 (information provided by

Panacos Inc.). Panacos continues to mark O3 as a leading

new treatment for AIDS based on its excellent progress in

clinical trials.

In summary, O3 significantly reduced viral load, has a

strong safety profile (with no evidence of organ toxicity or

clinical intolerance), and shows no evidence of rapid

resistance development, which is a primary cause of anti-

retroviral treatment failure [149, 150]. Recently, studies on

DSB have been reviewed [151], together with IC9564

(O4), a new related active betulinic acid derivative [152].

Antimalarial compounds

From Artemisia annua (Qinghao, artemisinin

derivatives) (Fig. 16)

The dried aerial parts of the herb Artemisia annua (As-

teraceae) have been used in China for centuries to treat

fever and malaria. The name of this Chinese prescription is

Qinghau (sweet wormwood), and the active principle is

artemisinin (P1) (Qing Hao Su) [153]. This clinically

effective antimalarial compound rapidly kills Plasmodium

falciparum, the malaria parasites, without being harming

humans or animals [154, 155]. The novel endo-peroxide

linkage in P1 is needed for its antimalarial activity.

The synthetic derivatives artemether (P2) and arteether

(P3) are widely used in malaria-prone regions, particularly

India [156], and the World Health Organization lists ar-

temether and sodium artesunate (a hemisuccinate

derivative of dihydroartemisinin) (P4) in its Model List of

Essential Medicines [157].

Other analogs, including ones from the authors’ labo-

ratory, have been synthesized [158]. OZ-277 (P5, also

known as RBx11160) [159] has progressed to Phase II
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clinical trials in India, Thailand, and Africa. Modification

and pharmacological studies of this synthetic trioxolane are

ongoing [160–162]. Moreover, a novel artemisinin–quinine

hybrid (P6) was reported to have potent antimalarial

activity [163]. Posner et al. [164] reported a new generation

of trioxane dimers (P7), designed logically and prepared

easily from the natural trioxane P1.

A recent review discusses artemisinin and related anti-

malarials [165].

Conclusion

As discussed in this review, plants are good sources for the

discovery of potential medicines. Natural products and

their analogs can be developed into useful drug candidates

by the processes of highly efficient bioactivity-directed

fractionation and isolation followed by analog synthesis

through modern medicinal chemistry-based molecular

modification. Continual improvements in bioassay tech-

nology coupled with the discovery of new biological

targets will also benefit the drug discovery process. Thus,

medicinal plants have long been appreciated for treating

illness, and continue to be one of the best and most

effective sources used to develop new plant-derived com-

pounds as clinical candidates for new world-class

medicines.
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