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Abstract
The advances in quantum technologies became a threat to cryptosystems based on number-theoretic approach. Therefore, the
development of post-quantum algorithms is currently underway. One of the areas of research is key encapsulation mechanisms
(KEMs), which are supposed to replace the Diffie–Hellman key exchange protocol. When constructing such mechanisms, a
modular approach based on a public key cryptosystem is often used. We provide an overview of such approaches for schemes
based on error-correcting codes.We present arguments for and against the choice of each component of the modular approach.
Moreover, we propose the combinations allowing to build KEMs with most favorable characteristics and present a proof of
security for one of them.
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1 Introduction

Post-quantum cryptography is a relatively young field, which
appeared as a “counter-measure” to Shor’s algorithms [1]
solving factorization and discrete logarithm problems with
polynomial complexity on a quantum computer whereas they
are the basis of security of all modern cryptographic proto-
cols. In order for these protocols to remain secure in the era of
powerful quantum computers, it is necessary to modify them
so that their security relies on the complexity of problems
that are not covered by Shor’s algorithms. Such problems
include, for example, problems related to error-correcting
codes, lattices, multivariate polynomials and hash functions.
A large number of new schemes were spawned by the NIST
competition for the best post-quantum algorithms for further
standardization.
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NIST has claimed two main areas of research: key encap-
sulation mechanisms (KEM) and digital signature schemes.
This choice is explained by the necessity of replacement
of the main public-key cryptosystems which are subject
to quantum attacks. These include digital signatures and
encryption schemes, as well as key exchange protocols like
Diffie–Hellman one. If post-quantum signatures are obvi-
ously designed to replace classical ones, then the other two
points are closed by KEMs. Public key encryption schemes
are included in the KEM proposal as an integral part, and
the KEMs themselves are analogues of key exchange proto-
cols, where, however, the key is generated by one party and
is transferred to the second party and not created by them
jointly.

Known approaches to constructing KEMs on error-correct
-ing codes do not depend on the structure of codes as such,
but the codes affect cryptosystems’ properties and security.
A KEM is usually built on a cryptosystem in general form
but requires it to satisfy a number of properties. And it is the
refinement of this cryptosystem that sets the security level
and the performance characteristics of the final scheme. To
build such a modular KEM scheme, one needs to fix a family
of codeswith its specialized decoding algorithm, a cryptosys-
tem based on it and a transformation from this cryptosystem
to KEM.

There exist schemes based on various codes, cryptosys-
tems and transformations, but often the proposals lack design
rationale and do not explain why one approach rather than
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another is chosen. At the same time, these considerations
would be very helpful when synthesizing new schemes or for
choosing one of the already proposed options. In the present
work we aim to consolidate all the disparate discussions on
the advantages and disadvantages of various approaches, as
well as to analyze the outcomes of applying the most promis-
ing among them.

2 Results

In Sects. 4–6 we provide a detailed description of the steps
required for synthesis of an error-correcting code-basedKEM.
By selecting the best approach from a set of options at
each step, a scheme with optimal characteristics can be con-
structed. Such schemes are enumerated in Sect. 7 along with
related remarks. Finally, in Sect. 8 we give a complete proof
for one of them.

3 Preliminaries

In this section we provide definitions and facts used later in
the text.

3.1 Coding theory and problems

Definition 1 (Linear code) Let q,m, n be positive integers
such that q is prime and k < n. And let GF(qm) be a Galois
field of order qm and Vn be a linear space over the field
GF(qm) of dimension n. Then linear block code is a linear
k-dimensional subspace C of the space Vn .

Here k is called the dimension of the code, and n is its length.
One of the most important characteristics of a code is param-
eter t that corresponds to the number of errors the code can
fix. It is determined by the minimum distance of the code.

Definition 2 (Hamming weight) Hamming weight wt(x) of
vector x is the number of its nonzero elements.

Definition 3 (Hammingdistance)Hammingdistanceρ(x, y)
between vectors x and y is the number of positions at which
the corresponding bits in this vectors are different.

Definition 4 (Minimum distance) The minimum distance d
of the code C is defined as the minimum Hamming distance
between the distinct codewords of C:

d = min
x∈C, y∈C,

x �=y

ρ(x, y).

A linear code C with parameters n, k and t can be defined
either by its generator or parity-check matrix.

Definition 5 (Generator matrix) Matrix G of size k×n with
elements fromGF(qm) is called the generator matrix of code
C if its rows form a basis of C.

Definition 6 (Parity-check matrix) Full-rank matrix H of
size (n − k) × n with elements from GF(qm) is called a
parity-check matrix of code C if the equality HcT = 0 holds
if and only if c ∈ C.

Definition 7 (Syndrome decoding) The problem of finding a
vector e ∈ GF(qm)n such that wt(e) = t and HeT = sT

given as inputs a parity-check (n − k) × n-matrix H of a
code over GF(qm), a nonzero vector s ∈ GF(qm)n−k and an
integer t is called the syndrome decoding problem.

Definition 8 (Decoding) The problem of finding a pair of
vectors (x, e) ∈ GF(qm)k × GF(qm)n such that wt(e) = t
and y = xG + e given as inputs a generator (k × n)-matrix
G of a code over GF(qm), a nonzero vector y ∈ GF(qm)n

and an integer t is called the decoding problem.

The decision syndrome decoding problem isNP-complete
[2, 3]. The decoding problem is equivalent to the syndrome
decoding problem in terms of complexity and therefore
is also NP-hard. The best known algorithm named Infor-
mation Set Decoding (ISD) solves this problem requiring
O(20.0465n) bit operations [4] for t = d/2.

3.2 Cryptosystems

Henceforth we denote the message space by M, the key
space by K and the randomness space by R. We use λ for
the security parameter.

Definition 9 (PKE) A public-key cryptosystem (PKE) is a
triplet of algorithms (KGen, Enc,Dec) such that

1. KGen is a polynomial probabilistic key generation algo-
rithm such that KGen(1λ) = (pk, sk), where pk is the
public key and sk is the secret key;

2. Enc is a polynomial (probabilistic) encryption algorithm
that for an arbitrary m ∈ M returns Enc(pk,m) = c,
where c is called the ciphertext;

3. Dec is a polynomial decryption algorithm such that
Dec(sk, c) =

=
{
m ∈ M, if c is a valid ciphertext for m;

⊥ /∈ M, otherwise.

Moreover, for any message m ∈ M and any key sk ←
KGen(1λ) it holds that m = Dec(sk, Enc(pk,m)).

Acryptosystemhaving deterministic algorithm Enc is also
called deterministic. Otherwise we can explicitly indicate the
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use of randomness r ∈ R by writing Enc(pk,m, r). Further
in the text, by default we assume that the cryptosystem is
non-deterministic.

In [5] several more important properties of public-key
cryptosystems were defined.

Definition 10 (Rigidity) A deterministic PKE is called rigid
if for all key pairs (pk, sk) ← KGen and all ciphertexts c, it
holds that either Dec(sk, c) = ⊥ or Enc(pk,Dec(sk, c)) =
c.

Definition 11 (γ -spreadness) PKE is said to be γ -spread if,
for every key pair (pk, sk) ← KGen, every messagem ∈ M
and every possible ciphertext c ∈ C holds

Pr←$R[c = Enc(pk,m, r)] � 2−γ .

Definition 12 (δ-correctness) PKE is called δ-correct if

E

[
max
m∈M

P[Dec(sk, Enc(pk,m)) �= m]
]

� δ,

where the expectation is taken over (pk, sk) ← KGen and
the probability is taken over internal probabilities of Enc and
Dec algorithms.

Definition 13 (OW-CPA PKE) For any adversary A in the
OW-CPA model the advantage against PKE is defined as fol-
lows:

AdvOW-CPA
PKE (A) = P[ExpOW-CPA

PKE (A) ⇒ 1],

where the experiment OW-CPA is described below:

ExpOW-CPA(A)

1 : (pk, sk) ←$ KGen(1λ)

2 : m∗ ←$ M
3 : c∗ ← Enc(pk,m∗)
4 : m′ ← A(pk, c∗)

5 : return m′ ?= m∗

Definition 14 (IND-CPA& IND-CCA PKE) For any adversary
A in model Model ∈ {IND-CPA, IND-CCA} the advantage
against PKE is defined as follows:

AdvModel
PKE (A) =

∣∣∣∣P[ExpModel
PKE (A) ⇒ 1] − 1

2

∣∣∣∣ ,
where the experiment Model is described below:

ExpModel
PKE (A)

1 : (pk, sk) ←$ KGen(1λ)

2 : b ←$ {0, 1}
3 : (m0,m1, st) ← AOModel

1 (pk)

4 : c∗ ← Enc(pk,mb)

5 : b′ ← AOModel
2 (pk, c∗, st)

6 : return b′ ?= b

Dec(c)

1 : if c = c∗ then

2 : return ⊥
3 : else

4 : m = Dec(sk, c)

5 : return m

OModel =
{

−, Model = IND-CPA,

Dec, Model = IND-CCA.

3.3 Key encapsulationmechanisms

Definition 15 (KEM) For a given key spaceK a key encapsu-
lation mechanism (KEM) is a triplet of algorithms
(KGen, Encaps,Decaps) such that

1. KGen is a polynomial probabilistic key generation algo-
rithm such that KGen(1λ) = (pk, sk), where pk is the
public key and sk is the secret key;

2. Encaps is a polynomial probabilistic encapsulation algo-
rithm such that Encaps(pk) = (K , c), where c is called
the encapsulation of the key K ∈ K;

3. Decaps is a polynomial decapsulation algorithm such
that Decaps(sk, c) =

=
{
K ∈ K, if c is a valid encapsulation of K ;

⊥ /∈ K, otherwise.

Moreover, for any key pair (pk, sk) ← KGen(1λ) and any
pair (K , c) ← Encaps(pk) it holds that K = Decaps(sk, c).

Definition 16 (IND-CPA& IND-CCAKEM) For any adversary
A in model Model ∈ {IND-CPA, IND-CCA} the advantage
against KEM is defined as follows:

AdvModel
KEM (A) =

∣∣∣∣P[ExpModel
KEM (A) ⇒ 1] − 1

2

∣∣∣∣ ,
where the experiment Model is described below:

ExpModel
KEM (A)

1 : (pk,sk)←$KGen(1λ)

2 : b ←$ {0, 1}
3 : (K ∗

0 , c∗) ← Encaps(pk)

4 : K ∗
1 ←$ K

5 : b′ ← AOModel (pk, c∗, K ∗
b )

6 : return b′ ?= b

Decaps(c)

1 : if c = c∗ then

2 : return ⊥
3 : else

4 : K = Decaps(sk, c)

5 : return K
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OModel =
{

−, Model = IND-CPA,

Dec, Model = IND-CCA.

3.4 Pseudo-random functions

Definition 17 (Advantage in PRFmodel) Let F : KF×M →
C be a family of keyed functions and Func(M, C) be a set of
all functions of the formM → C. The advantage in the PRF
model of an adversary A is defined as follows:

AdvPRFF (A) =
= P[ExpPRF-1F (A) ⇒ 1] − P[ExpPRF-0F (A) ⇒ 1],

where

ExpPRF-bF (A)

if b = 1 then

K ←$ KF

else

F ←$ Func(M, C)

b′ ←$ AFb

return b′

Fb(m)

if b = 1 then

return F(K ,m)

else

return F(m)

return b

Here Func(M, C) is the set of all functions mapping M
to C.
Definition 18 (PRF) A function F : K × M → C is called
pseudorandom if:

1. given a key K ∈ K and an input m ∈ M there is an
“efficient” algorithm to compute F(K ,m);

2. for any polynomial adversary A and a small predeter-
mined value ε holds that AdvPRFF (A) � ε.

4 Code selection

In this section, we describe the two most promising classes
of codes to use in KEM.

4.1 Goppa codes

Goppa codes were used in the original versions of the oldest
code-based cryptosystems, namely McEliece and Niederre-
iter ones (more details about them can be found in Sect. 5).
Three schemes based on these codes have been presented at
the first round of NIST competition: Classic McEliece [6],
NTS-KEM [7] and Edon-K [8]. BIG QUAKE [9] uses the
subclass of these codes called quasi-cyclic Goppa codes.

The complex structure of Goppa codes keeps these
schemes secure whereas changing the code often results in
a vulnerability. The codes are considered indistinguishable
from random despite the existence of a distinguisher [10] for
a particular subclass of these codes. Both decoding and syn-
drome decoding problems on Goppa codes traditionally are
treated as NP-hard similar to random linear codes (despite of
the fact it was never proven).

However, the structure of these codes is also one of their
shortcomings. The public key of the cryptosystem cannot
be represented compactly, therefore it has a huge size. This
property critically restricts the applicability of such schemes.
In addition, PKEs on Goppa codes did not avoid side-channel
attacks. Still, all these attacks are based on strong assump-
tions about the adversary capabilities.

A large class of timing attacks exploited the fact Pat-
terson algorithm works non-constant time [11–15]. Later
a power attack of this kind also appeared [16]. As coun-
termeasures, modifications were proposed that introduced
additional operations to compensate for optimizations and
ensure consistent time complexity in all cases. Another coun-
termeasure is masking [17]. But although it straightforward
to prevent the attacks of this class, the modifications slowed
down the decoding algorithm. Furthermore, as soon as one
vulnerability was fixed, another was found almost imme-
diately. Ultimately, the Patterson algorithm was completely
abandoned in favor of the constant-time Berlekamp-Massey
algorithm.

A more serious threat is a fault-injection attack from [18]
that makes it possible to attack the scheme with the NIST
highest security level in several seconds. Although no spe-
cific countermeasures are known for the attack, one should
keep inmind that it uses laser fault injection, that is, the adver-
sary needs to have access to the device. Another attack [19]
becoming possible for the FPGA implementations when the
attacker is in possession of the device, uses the leakage of
electromagnetic radiation. The attack allows to reveal the
secret key even when using the Berlekamp-Massey algo-
rithm.

A generalization of Goppa codes is Srivastava codes (used
inDAGS [20] fromNIST competition)which, in turn, belong
to the class of alternant codes which are a special case of
algebraic geometry codes. Another subclass of algebraic
geometry codes is generalized Reed-Solomon codes. Since
the extension of the code class makes its instances more
random-looking it is possible to consider transitioning from
schemes based on Goppa codes to schemes based on their
generalization or another subclass of algebraic geometry
codes. Moreover, both alternate and Reed-Solomon codes
have efficient decoding algorithms.

There is a variant of KEM based on generalized Srivastava
codes [21]. There have also been two unsuccessful attempts.
One is based on generalizedReed-Solomon codes (theRLCE
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scheme was proposed in the NIST competition [22] and
attacked in [23]). The other one is presented in [24] together
with an attack on itself. This scheme is based on another spe-
cific subclass of algebraic geometry code. Attacks on PKE
schemes based on generalized Reed-Solomon codes are also
known, see [25, 26].

Thus, the alternatives to Goppa codes mentioned above
are promising but poorly studied in terms of their application
in cryptography. More research should precede their usage
in schemes that are subject to further standardization.

4.2 Quasi-cyclic codes

Cyclic codes are generated by cyclic matrices, i.e. wherein
each row is a cyclic shift of the previous row by one posi-
tion. This particular property enables a cyclic matrix to be
described using only n bits, rather than n2 bits, rendering
it highly efficient for storage purposes. A generalization
of this concept is seen in quasi-cyclic matrices, which are
block matrices consisting of cyclic matrix blocks. Although
quasi-cyclic matrices are also storage-optimized, they lack
the explicit structure exhibited by cyclic matrices.

In the realm of coding theory literature, codes based on
specific subclasses of cyclic matrices, such as QC-LDPC
(Quasi-Cyclic Low-Density Parity-Check) and QC-MDPC
(Quasi-Cyclic Moderate-Density Parity-Check) codes, are
frequently employed. Rows of the cyclic submatrices that
comprise the generating matrices of these codes have con-
stant weight (O(1)) in the former case and weight bounded
by O(

√
n log2 n) in the latter. Each of these types of codes

is represented in the NIST competition. HQC [27] and
RQC [28] are based, among others, on a quasi-cyclic code
(in Hamming and rank metric respectively). BIKE [29] and
QC-MDPC [30] use QC-MDPC codes, LEDAkem [31] uses
QC-LDPC codes and Lepton [32] uses repetition BCH code
that is also quasi-cyclic due to the cyclicality of BCH codes.

Similar to Goppa codes, non-constant decoding time
exposes vulnerabilities to timing attacks, such as those
observed in schemes on QC-MDPC codes [33, 34], notably
the HQC scheme from the first round of the NIST competi-
tion [35, 36] and the final versions of HQC and BIKE [37].
Fending off these attacks necessitates the adoption of fully
constant-time implementations. Additionally, it is impera-
tive to keep the generation time of a random vector in the
encryption algorithm constant.

However, when using quasi-cyclic codes, ensuring con-
stant execution time of the decapsulation algorithm is not
enough to ensure security. Another critical concern arises in
the form of power analysis and differential power analysis
(DPA) attacks, which exploit the analysis of power traces.
The proposed cryptanalysis method effectively recovers the
complete secret key through a limited number of decryption
observations. These attacks consist of a combination of a

differential leakage analysis during the syndrome computa-
tion followed by an algebraic step that exploits the relation
between the public and private key. The applicability of these
attacks extends to schemes based on QC-MDPC codes [38–
40], as well as second-round NIST competition schemes,
specifically QC-MDPC KEM (utilizing QC-MDPC codes)
and LEDA (using QC-LDPC codes) [41]. However, employ-
ing countermeasures such as noise introduction and useless
operation incorporation, along with decoding randomization
and masking techniques, effectively mitigates all attacks of
this this class.

A vulnerability was discovered in the NIST competition
Round 2 variant of HQC KEM, wherein an attacker could
exploit the power consumption patterns of the decoder to
expose the secret key [42]. The principle of the attack was
to observe and differentiate the power consumption of the
decoder depending onwhether it corrected an error for a cho-
sen ciphertext. For rare cases when the described approach
did not succeed, the authors proposed an adjusted decod-
ing algorithm that incorporated an ISD variant based on
side-channel information. It is important to note that the
effectiveness of this attack relied on the specific characteris-
tics of BCH codes, which were subsequently replaced within
the proposal. However, even for the Round 3 version of HQC
a vulnerability of this nature was still present [43]. By lever-
aging power analysis, an attacker could recover the secret
key with an acceptable number of measurements even for
the parameter set supposed to provide 256 bits of security.

Subsequently, an efficient reaction attack was built on the
QC-MDPC KEM [44] and later a similar attack was devised
for the LEDA [45]. In recent theoretical work [46], it was
demonstrated that unlike bounded-distance decoders used for
algebraic codes such as Goppa ones, iterative decoders used
for sparse codes do not have a deterministic decoding radius,
and thus the decoding may fail with some probability that
is called the decoding failure rate (DFR). Consequently, this
parameter is now considered crucial for the code selection
and is required not to exceed 2−λ.

Additionally, a notable characteristic of schemes based
on quasi-cyclic codes is the reduced complexity of the ISD
algorithm. Extensive studies [47] have demonstrated that the
work factor of a quasi-cyclic code is equal to the work factor
of a random code with equivalent parameters, multiplied by
a factor of 1/

√
N . Here, N corresponds to the number of

rows in the internal quasi-cyclic submatrix, which denotes
the number of repetitions of the same row.

5 Cryptosystems

To of the oldest error-correcting code-based cryptosystems
are McEliece [48] and Niederreiter [49] ones. They can be
considered fundamental in a sense, as all subsequent vari-
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ants can be viewed as modifications of either one of these
cryptosystems or a combination thereof. That is, Classic
McEliece [6] and LEDAkem [31] are built on the original
Niederreiter cryptosystem, BIKE [29] and LOCKER [50]
use randomized version of this scheme while HQC [27]
and RQC [28] use it as one of two basic cryptosystems.
At the same time QC-MDPC [30] and Edon-K [8] are built
on the McEliece cryptosystem whereas NTS-KEM [7] and
DAGS [20] are constructed based on its modification.

The most common alteration is changing the key gen-
eration algorithm. It is usually chosen to ensure that the
corresponding trapdoor one-way function is difficult for the
selected class of codes. Therefore, below we provide only
the encryption algorithms of the aforementioned McEliece
and Niederreiter cryptosystems, which are more versatile.
And we omit the decryption algorithms since they also sig-
nificantly depend on the chosen code and key generation
algorithm.

Both cryptosystems utilize an error vector, which is a
vector of length n with a fixed Hamming weight t , where
parameter t is small. However, while in the McEliece cryp-
tosystem this vector is chosen uniformly at random from the
set of all such vectors Hn,t , the Niederreiter cryptosystem
employs a specific transformation φ that maps the message
to the error vector. Consequently, the latter cryptosystem is
deterministic.

EncMcEl(pk = G,m)

e ←$ Hn,t

c ← mG + e

return c

EncNieder(pk = H ,m)

c ← HmT

return c

From the above the encryption algorithm of the McEliece
cryptosystem transforms a message of length k into a cipher-
text of length n (that is |M| = 2k), while the Niederreiter
encryption allows obtaining a ciphertext of length n−k from
a modified message of length n (and |M| = (n

t

)
).

The mapping φ can be defined in any way, which is usu-
ally chosen for best performance characteristics. One way is
the following. We divide the original message M into t parts
of length |Mi |. Then consider each part as the binary repre-
sentation of the position of “1” in the corresponding block
of m. So it is necessary that |M | � t log2(n/t).

Moving on to additional properties of PKEwe should note
that both cryptosystems are δ-correct and δ is defined by
underlying code. For quasi-cyclic codes parameter choices
canmake this value less than2−λ. Bounded-distancedecoders
of Goppa codes provide δ = 0. Such schemes are also called
perfectly correct.

Rigidity also depends on the code and, moreover, on
the specific decoding algorithm. For example, the Nieder-
reiter cryptosystem based on Goppa codes, in which the

Berlekamp-Massey algorithm is used for decoding [51], is
rigid. This is due to the ability of the decoding algorithm to
detect incorrect inputs, i.e. ciphertexts that were not obtained
as a result of the encoding algorithm. Such inputs can be
decoded into ⊥, and on the rest the decoding algorithm
Dec(sk, c) can have the only output. And then from the deter-
minism of the encryption algorithm for this output m holds
that Enc(pk,m) = c.

However, it is impossible to claim rigidity for the Nieder-
reiter cryptosystem in the general case, even when Goppa
codes are used. The same is true for the cryptosystem based
on quasi-cyclic codes.

For the McEliece cryptosystem, the property is not ful-
filled naturally due to the non-determinism of the encryption
algorithm.

However, for its deterministic variant (achieved by using
the transformation T described further in Sect. 6.2) is proven
to be rigid.

Finally theMcEliece cryptosystem is 1/
(n
t

)
-spread and for

the Niederreiter cryptosystem the definition is undefined.

6 Construction of KEM

KEM schemes are typically built upon PKE schemes. In these
constructions, KGen algorithms usually coincide, except for
possibly generating an additional value. Algorithm Encaps
incorporates algorithm Enc and algorithm Decaps relies on
Dec (see Fig. 1).

All PKE-to-KEM transformations can be divided into
two main classes: security-preserving transformations and
security-amplifying transformations. We consider both of
them further.

6.1 Security-preserving transformations

Let us introduce here an intuitive way of building
KEM = (KGen, Encaps,Decaps) scheme based on PKE =
(KGen, Enc,Dec). Note that key generation algorithms are
identical.

Encaps(pk) :
1 : K ←$ M
2 : c ← Enc(pk, K )

3 : return (K , c)

Decaps(sk, c):

1 : K ← Dec(sk, c)

2 : return K

Below is the proof of the result, which can be considered
folklore.

Theorem 1 Forany IND-CPA (IND-CCA)adversaryAagainst
the resulting KEM there exists an IND-CPA (IND-CCA) adver-
sary B against the original PKE, running in about the same
time, such that
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Fig. 1 Transformation from PKE to KEM

AdvIND-CPAKEM (A) = AdvIND-CPAPKE (B),

AdvIND-CCAKEM (A) = AdvIND-CCAPKE (B).

Moreover, if IND-CCA adversaryAwas issuing qD queries to
the decapsulation oracle Decaps then IND-CCA adversary
B issues qD queries to the decryption oracle Dec.

Proof For the adversary A that attacks KEM in Model
(IND-CPA or IND-CCA) the experiment Exp0 coincides with
the classical experiment in this model, i.e.

AdvModel
KEM (A) =

∣∣∣∣P[Exp0(A) ⇒ 1] − 1

2

∣∣∣∣ .

Exp0(A)

1 : (pk, sk) ←$ KGen(1λ)

2 : b ←$ {0, 1}
3 : K ∗

0 ←$ M
4 : c∗ ← Enc(pk, K ∗

0 )

5 : K ∗
1 ←$ M

6 : b′ ← AO1 (pk, c∗, K ∗
b )

7 : return b′ ?= b

Decaps(c) (Exp0,Exp1)

1 : if c = c∗ then

2 : return ⊥
3 : else

4 : K ← Dec(sk, c)

5 : return K

O1 :=
{

− for IND-CPA

Decaps for IND-CCA

In the experiment Exp1 the adversary B = (B1,B2)

attacks PKE encryption schemes in Model (IND-CPA or
IND-CCA). B1 chooses a pair of messages at random, sends
it to B2 and B2 calls the adversary A against KEM in the
corresponding model. Then

AdvModel
KEM (A) =

∣∣∣∣P[Exp1(B) ⇒ 1] − 1

2

∣∣∣∣ .
Exp1(B = (B1,B2)) :
1 : (pk, sk) ←$ KGen(1λ)

2 : b ←$ {0, 1}
3 : (m0,m1, st) ← B1(pk)

4 : c∗ ← Enc(pk,mb)

5 : b′ ← BO2
2 (pk, c∗, st)

6 : return b′ ?= b

B1(pk)

1 : (m0,m1) ←$ M2

2 : st ← (m0,m1)

3 : return (m0,m1, st)

BO2
2 (pk, c∗, st):
1 : (m0,m1) ← st

2 : b1 ← AO2 (pk, c∗,m0)

3 : return b1

O2 :=
{

− for IND-CPA

Dec for IND-CCA
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If b = 1 then in Exp0 the adversary A receives the pair
(c0, K ∗

1 ), where c0 = Enc(pk, K ∗
0 ), and in Exp1 the adver-

sary A is given the pair (c1,m0), where c1 = Enc(pk,m1).
These pairs are identical up to renaming, that is, the proba-
bility of correctly guessing b′ = b in these cases are equal.

Alternatively, if b = 0 in Exp0, the adversary A is pro-
vided with the pair (c0, K ∗

0 ), where c0 = Enc(pk, K ∗
0 ). And

in Exp1 when b = 0, the adversary A receives the pair
(c0,m0), with c0 = Enc(pk,m0). Again probabilities coin-
cide.

Hence

P[Exp0(A) ⇒ 1] = P[Exp1(B) ⇒ 1],

which implies the condition of the theorem. ��
It can be easily shown that bothMcEliece andNiederreiter

cryptosystems provide security only in OW-CPA model, but
not in IND-CPA or IND-CCA ones. Let us show their insecurity
in IND-CPAmodel and then insecurity in IND-CCAmodelwill
follow automatically.

So the fact under consideration is obvious for the Nieder-
reiter cryptosystem as it is deterministic and the test can be
easily done by recounting both ciphertexts.

In case of McEliece cryptosystem the adversary aims at
distinguishing betweenmessagesmb, b ∈ {0, 1} after getting
the ciphertext c′. Then for each b′ ∈ {0, 1} it can compute
the value e′ = mb′G + c′ = mb′G +mbG + eb, where eb for
b ∈ {0, 1} denotes error vectors added in the encryption algo-
rithm of theMcEliece cryptosystem. The last step is to check
whether wt(e′) = t . The condition will be obviously fulfilled
in case b = b′ and with high probability fails otherwise.

That is, in order to obtain an IND-CCA secure KEM by
applying a security-preserving transformation it is neces-
sary to apply another preliminary transformation that firstly
increases the PKE security to IND-CCA.

Notmany transformations of this type are known, and even
fewer of them can be applied to cryptosystems of interest to
us. Some can only be applied to cryptosystems whose Enc
function is a permutation [52] and some others are applicable
to IND-CPA secure PKEs [53]. But the most suitable ones are
based just on an OW-CPA secure cryptosystem [54, 55]. One
more transformation additionally requires underlying PKE to
be not only OW-CPA secure, but also γ -spread [56].

Transformation from IND-CPA to IND-CCA secure PKE
consists mainly in binding the error vector to the message
via hashing. All cryptosystems after transformation from an
OW-CPA secure one have extended ciphertexts: some addi-
tional information depending on message and randomness is
added. The first variant [56] is to encrypt random r and con-
catenate the result with c′ = G(r)+m where G is a generator
of a cryptographically secure pseudo random sequences. One
more random value can be used additionally [54], in this

case c′ = G(r) + (m‖r1), where ‖ denotes concatenation.
To decrease the ciphertext size only some part of c′ may be
added [55].

Unfortunately, all aforementioned transformations have
only asymptotic estimates which makes it impossible to
select parameters for real applications. There are also no
examples of such transformations usage among NIST pro-
posals.

6.2 Security-amplifying transformations

Security-amplifying transformations can be represented by
a family of so-called Fujisaki-Okamoto (FO) ones. Though
original transformations [53, 57] aimed at conversion from
weak PKE to ones secure in IND-CCA model, this idea was
lately developed at conversions from PKE to KEM.

The first transformation T determines the scheme and
raises security either from OW-CPA or from IND-CPA to
OW-PCVA (a stronger version of the OW-CPA model [5]).
In the first case a rigid cryptosystem is obtained, but in the
second one the reduction is tight. The idea is to bind the ran-
domness to the messagem by replacing it with its hash value.
So, e.g. in McEliece cryptosystem we can use e = G(m) for
some special hash-function G with output of certain weight.
Note that for Niederreiter cryptosystem, that is deterministic
and not γ -spread, the reduction is trivial.

Next step can be performed by one of the transformations
fromFig. 2. They can be grouped according to different prop-
erties. First, subscriptm indicates that the output key depends
only on the message (K = H(m)), while its absence means
that the key is obtained with additional use of the cipher-
text (K = H(m, c)) for some hash H with output length �.
Next, schemes marked as ⊥ are ones with explicit rejection:
in case of appearance of symbol ⊥ inside the Dec algorithm,
these algorithms transfer it to the output ofDecaps algorithm.
Schemes with implicit rejection (marked as �⊥) preventively
generate additional randomness in KGen algorithm and use
it have a key-like output in Decaps. However, in case of the
event ⊥ keys on the two sides will not match. Finally, pre-
fix Q means that additional hash-value H′(m) is counted in
Encaps and checked in Decaps. Note that the superposition
of transformation T and one of transformations from Fig. 2
is usually denoted by FO with the appropriate subscripts.

Some of these transformations (namely, U⊥,QU⊥
m and

FO⊥
m)were proposedbyA.Dent in [58].AfterwordsHofheinz

et al. [5] systematized and generalized this approach and pro-
vided description of transformations T,U⊥,U�⊥,U⊥

m and U�⊥
m .

Both articles present the corresponding security proofs in
ROM model (except for transformation U�⊥

m , for which only
the concept of proof is given). Further research on the security
of transformations U�⊥ and U�⊥

m in ROMmodel was presented
byD. J.Bernstein and E.Persichetti in [59]. Security of trans-
formation QU�⊥

m in ROM model has never been studied.
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Fig. 2 Overview of FO transformations

We don’t know anything about the security of transforma-
tionsQU⊥ andQU �⊥ inQROMmodel.However post-quantum
security of other transformations was studied in several arti-
cles [5, 60–63]. Additionally, article [63] establishes the
equivalence between transformations U⊥ and U⊥

m , as well

as between transformations U�⊥ and U�⊥
m .

Below we present Tables 1 and 2, which compare the
bounds of various FO transformations for Niederreiter and

McEliece PKEs basing on known results. These comparisons
aim to illustrate the process of transforming an OW-CPA
PKE into an IND-CCA KEM. The tables focus on cryp-
tosystems based on Goppa codes and consider the specific
characteristics of both the selected codes and cryptosystems.
Consequently, usage of Goppa codes results in δ = 0. In
addition to that, when the Niederreiter PKE is used, the deter-
mining transformation T can often be excluded. It makes the
estimates tighter. Nevertheless, the inclusion of this transfor-
mation is sometimes imperative to facilitate reduction to an
OW-CPA PKE.

We wish to highlight that according to the remark before
Theorem 3.1 in [5] transformation T may result in OW-PCA
PKE instead of OW-PCVA. In this case number of queries to
Cvo oracle (introduced in the above article) is qV = 0. This
fact establishes the estimate for FO �⊥ transformation below:
firstly an IND-CCA secure KEM is reduced to an OW-PCA
securePKE that is subsequently reduced to anOW-CPA secure
PKE.

The theorem producing reduction for FO �⊥
m transforma-

tion connects IND-CCA secure KEM and deterministic rigid
OW-CPA secure PKE. But since the adversary’s advantage
in OW-CPAmodel doesn’t exceed it’s advantage inOW-PCA
model, further a known result can be applied that connects an
OW-PCA secure deterministic rigid PKE and a general-type
OW-CPA secure PKE.

Wewill upper-bound the security ofQFO⊥
m transformation

applied toMcEliece cryptosystem andQFO �⊥
m transformation

applied to both McEliece and Niederreiter cryptosystems
in ROM model by the security of these transformations in
QROM. Moreover, we will also upper-bound the security of
transformationQU⊥

m inQROMmodel by the security of trans-
formation QFO⊥

m in the same model.
Note that transformations QU⊥ and QU�⊥ are excluded

from the tables as lacking security in QROM model. Trans-
formationsU⊥ andU⊥

m are also not presented as no reductions
to OW-CPA PKE were obtained for them in QROM.

Everywhere in the tables q means the total number of the
adversary’s queries to various oracles and ε is the success
probability of another adversary against the OW-CPA secu-
rity of the underlying PKE. Let us note additionally that some
transformations require the underlying PKE to be rigid. Also
someproofs aremade formodified transformationswhere the
hash-function is replaced with PRF at the implicit rejection
step. The results are given up to constants.

Those transformations are widely presented at NIST com-
petition. Thus, ClassicMcEliece [6] usesU�⊥, BIKE [29] uses
FO �⊥, DAGS [64] uses QFO⊥

m and HQC, BIG QUAKE [9],
RQC [28] and LOCKER [50] use QFO⊥ transformation.
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Table 1 FO transformations applied to Niederreiter PKE on Goppa codes and resulting in an IND-CCA secure KEM

Transform Security bound (ROM) Security bound (QROM)

U �⊥ ε + q
|M| [59, Thm. 14.3] (requires rigidity)

√
ε [63, Thm. 2] (requires secure PRF)

U�⊥
m ε + q

|M| [5, Thm. 3.6] (requires rigidity)
√

ε [63, Thm. 2,5] (requires secure PRF)

QU⊥
m ε + q

2� [58, Thm. 4] q
√
q
√

ε [5, Thm. 4.4, 4.5]

QFO �⊥
m q

√
q
√

ε [5, Thm. 4.4, 4.6] q
√
q
√

ε [5, Thm. 4.4, 4.6]

Table 2 FO transformations
applied to McEliece PKE on
Goppa codes and resulting in an
IND-CCA secure KEM

Transform Security bound (ROM) Security bound (QROM)

FO�⊥ qε + q
|M| [5, Thm. 3.1, 3.4] q

√
ε + q√|M| [60, Thm. 1]

FO�⊥
m qε + q

|M| [5, Thm. 3.1, 3.6] q
√

ε [60, Thm. 2] (requires secure PRF)

QFO⊥
m q

√
q
√

ε [5, Thm. 4.4, 4.6] q
√
q
√

ε [5, Thm. 4.4, 4.6]

QFO�⊥
m q

√
q
√

ε [5, Thm. 4.4, 4.6] q
√
q
√

ε [5, Thm. 4.4, 4.6]

7 Notes on best approaches

It can be seen from Tables 1 and 2 that the best security
estimates are obtained by the combination of Niederreiter
cryptosystem and one of transformations U�⊥ and U�⊥

m . On
the whole a rigid Niederreiter PKE provides estimates better
than a McEliece one as it doesn’t require additional trans-
formations to be deterministic. That’s why it is possible to
avoid accuracy loss associated with using the determining
transformation T.

As a result, Niederreiter-based schemes require smaller
code parameters to achieve the same security level, as the
complexity of decodingproblems is directly dependent on the
code’s length, dimension, and distance. Moreover, Niederre-
iter PKE has shorter ciphertexts.

Additionally, Sect. 6.1 discusses the advantage of security-
amplifying transformations over security-preserving ones.
Thus, the two schemes are the most promising among all
known variants.

It worth noting that all proofs for transformations U�⊥
m and

FO �⊥
m and some proofs for U�⊥ inQROMmodel in articles [60,

62, 63] require the replacement of the function call H(s, c)
in the implicit rejection with the output of a pseudorandom
function F(s, c). At the same time all proofs that are known
for transformation U�⊥

m in ROM model (see [5, 59]) are given
for the basic version presented in Fig. 2.

In article [59] the authors bring up an important prob-
lem: theorems are often presented with incomplete or non-
rigorous proofs, or sometimes without any at all. We agree
that the security notions must be checked as carefully as pos-
sible. That’s why we decided to close the gap between proofs
in classic and quantum models for the transformation U�⊥

m .
The modified KEM obtained by the application of transfor-

mation U�⊥
m to Niederreiter PKE along with its security proof

can be found in the next section.

8 Security of U �⊥
m applied to Niederreiter PKE

The goal of the section is to unify the specification of
the transformation U�⊥

m by using a pseudorandom function
F : KF × C → K for the implicit rejection. Here C is the set
of all possible outputs of function Enc.

Note that from this approach it follows that the secret s is
chosen from the set KF.

The listing of the obtained scheme, that is further referred
as K̃EM, can be found below.HereKGen′ is the key generation
algorithm of the underlying Niederreiter cryptosystem.

KGen(1λ)

1 : (pk, sk) ← KGen′(1λ)

2 : s ←$ KF

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m ←$ M
2 : c := Enc(pk,m)

3 : K := H(m)

4 : return (K , c)

Decaps(sk, c)

1 : parse sk′ = (sk, s)

2 : m′ := Dec(sk, c)

3 : if m′ �= ⊥ then

4 : return K := H(m′)
5 : else return K := F(s, c)

We now present the security notions for our KEM both in
ROM and QROM models.
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The first one follows the approach of the paper [5], which
however lacks the proof of security of transformation U�⊥

m .
Additional changes arise from the properties of the chosen
cryptosystem as well as the introduction of a pseudorandom
function F. So it is the first complete proof for the proposed
scheme.

Theorem 2 Assume Niederreiter PKE to be rigid. For any
IND-CCA adversary B against K̃EM issuing at most qD
queries to the decapsulation oracle Decaps, and at most
qH queries to the random oracle H, there exist an OW-CPA
adversary A against Niederreiter PKE and an adversary A′
against the security of PRF Fwith at most qD quires such that

AdvIND-CCA
˜KEM

(B) � AdvOW-CPA
Nieder (A) + AdvPRFF (A′)

and adversaries A and A′ are running in about the same
time and resources as B.

Proof Let B be an adversary against the IND-CCA security of
K̃EM, issuing at most qD queries to the oracle Decaps.

Exp0(B)

1 : (pk, sk) ←$ KGen(1λ)

2 : s ←$ KF

3 : sk′ := (sk, s)

4 : m∗ ←$ MK ∗
0 := H(m∗)

5 : K ∗
1 ←$ K

6 : c∗ ← Enc(pk,m∗)
7 : b ←$ {0, 1}
8 : b′ ← BDecaps,H(pk, c∗, K ∗

b )

9 : return b′ ?= b

H(m) (Exp0,Exp1)

1 : if ∃K : (m, K ) ∈ 	H then

2 : return K

3 : K ←$ K
4 : 	H := 	H ∪ {(m, K )}
5 : return K

Decaps(c �= c∗) (Exp0)

1 : m′ := Dec(sk, c)

2 : if m′ = ⊥ then

3 : return K := F(s, c)

4 : return K := H(m′)

The experiment Exp0 is the original IND-CCA experiment
with so-called lazy sampling technique. The idea is to explic-
itly reflect the nature of the random oracle H: on a new query
it outputs a random value, but on a repeated one it outputs
the same value as before. To achieve this, the set 	H is

introduced to store the requests and answers for all previ-
ous queries made to H so far.

Thus for Exp0 holds that∣∣∣∣P[Exp0(B) ⇒ 1] − 1

2

∣∣∣∣ = AdvIND-CCA
˜KEM

(B).

In Exp1 pseudorandom function F(s, c) is replaced by
H′(c), whereH′ is an independent internal random oracle that
cannot be accessed by B. This changes the Decaps oracle,
but the rest of the experiment remains unchanged.

Decaps(c �= c∗) (Exp1)

1 : m′ := Dec(sk, c)

2 : if m′ = ⊥ then

3 : return K := H′(c)
4 : return K := H(m′)

We construct a PRF-adversary A′ which replaces its calls
to F by calls to its oracle, runs B, and outputs 1 if B wins
and 0 otherwise. Now the task of distinguishing experiments
Exp0 and Exp1 precisely coincides with the experiment PRF
of the adversary A′ with qD queries, that is,∣∣∣P[Exp1(B) ⇒ 1] − P[Exp0(B) ⇒ 1]

∣∣∣ � AdvPRFF (A′).

In Exp2 the set 	D is introduced. It contains the requests
and answers of the oracle Decaps. Also oracles H and
Decaps are modified such that theymake no use of the secret
key any longer.

H(m) (Exp2)

1 : if ∃K : (m, K ) ∈ 	H then

2 : return K

3 : K ←$ K
4 : c′ := Enc(pk,m)

5 : if ∃K ′ : (c′, K ′) ∈ 	D then

6 : K := K ′

7 : else

8 : 	D := 	D ∪ {(c′, K )}
9 : 	H := 	H ∪ {(m, K )}
10 : return K

Decaps(c �= c∗) (Exp2,Exp3)

1 : if ∃K : (c, K ) ∈ 	D then

2 : return K

3 : else

4 : K ←$ K
5 : 	D := 	D ∪ {(c, K )}
6 : return K
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In Exp1 for all correct ciphertexts c holds thatDecaps(c)
= H(Dec(sk, c)). Now we show that the changes did not
spoil this rule. First, note that both experiments return some
random value if Dec(sk, c) = ⊥. Another note is that that
there couldn’t be the pair (c, K ) in the set 	D before either
the first query on c to the oracle Decaps or the query on
m′ := Dec(sk, c) to the oracle H.

Now let us analyze two cases separately: in the first one the
adversary B first queries H on m′ and then queries Decaps
on c, in the second one it reverses the queries. If H is
queried on m′ first, at the very moment the pair (m′, K ) for
K ←$ K is added to	H and the pair (c′ := Enc(pk,m′), K )

is added to	D . As PKE is rigid it holds that c′ = c and hence
Decaps(c) = K = H(m′). If Decaps is queried on c first,
the pair (c, K ) for K ←$ K is added to 	D and this sets
Decaps(c) = K . Thus, when H is queried on m′ afterwards,
the condition on the line 5 of listing of H will be satisfied
and then the pair (m′, K ) will be added to 	H wherefore
K = H(m′).

Consequently we have

P[Exp2(B) ⇒ 1] = P[Exp1(B) ⇒ 1].

Finally, the experiment Exp3 differs from experiment
Exp2 in that it immediately aborts (with uniformly random
output) after B’s query to H on m∗.

H(m) (Exp3)

1 : if (m = m∗) ∧ (c∗ is defined) then

2 : abort

3 : if ∃K : (m, K ) ∈ 	H then

4 : return K

5 : K ←$ K
6 : c′ := Enc(pk,m)

7 : if ∃K ′ : (c′, K ′) ∈ 	D then

8 : K := K ′

9 : else

10 : 	D := 	D ∪ {(c′, K )}
11 : 	H := 	H ∪ {(m, K )}
12 : return K
Wedenote the event that the corresponding condition from

the line 1 of listing of H is fulfilled by CHAL. Then

∣∣∣P[Exp3(B) ⇒ 1] − P[Exp2(B) ⇒ 1]
∣∣∣ � P[CHAL].

So in Exp3 we avoid the adversary from asking the oracle
H queries on m∗. As queries to Decaps on c∗ are excluded
by definition, B has no ability to get any information about
H(m∗) and we can claim bit b is independent from B’s view.
This gives us

P[Exp3(B) ⇒ 1] = 1

2
.

Let us construct the adversaryA againstNiederreiter cryp-
tosystem in the OW-CPA model that simulates Exp3 for the
adversary B.

A(pk, c∗)
1 : K ∗ ←$ K
2 : b′ ← BDecaps,H(pk, c∗, K ∗)
3 : if ∃(m′, K ′) ∈ 	H :
4 : Enc(pk,m′) = c∗ then

5 : return m′

6 : else

7 : abort

This simulation is perfect if CHAL doesn’t occur. If it
does, then themessagem∗, corresponding to the ciphertet c∗,
is correctly processed and holds (m∗, K ′) ∈ 	H for some
K ′. Note that, since PKE is deterministic, m∗ always follows
Enc(pk,m∗) = c∗ that is condition on the line 4 of listing of
A is fulfilled. Hence,

P[CHAL] = AdvOW-CPA
Nieder (A).

The statement of the theorem is obtained by collecting the
probabilities. ��

Further we state the theorem on the security of K̃EM
in QROM without proof, since it follows right from Theo-
rem 2 (the bound for U�⊥ transformation) and Theorem 5
(the equivalence of bounds for U�⊥ and U�⊥

m transformations)
from the article [63]. It is also useful to mention that the
perfect correctness implies zero advantage in “finding fail-
ing ciphertexts” experiment set in [63, Definition 3]. And,
finally, being deterministic the Niederreiter cryptosystem is
0-injective [63, Definition 6]. Putting together all the com-
ments we claim Theorem 3.

Theorem 3 Assume Niederreiter PKE to be perfectly correct.
For any IND-CCA adversary B against K̃EM, issuing at most
qD queries to the decapsulation oracle Decaps and at most
qH quantum queries to the random oracle H, there exist
an OW-CPA adversary A against Niederreiter PKE and an
adversary A′ against the security of PRF F with at most qD
quires such that

AdvIND-CCA
˜KEM

(B) � 2
√
AdvOW-CPA

Nieder (A) + 2AdvPRFF (A′)

and adversaries A and A′ are running in about the same
time and resources as B.
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9 Discussion

Further investigation is required to determine the most suit-
able code for the proposed scheme. Despite the fact that,
based on a preliminary analysis, we have so far proposed
using Goppa codes known to be the basis of secure and per-
fectly correct cryptosystems, this option may not be final.
Alternative variants such as quasi-cyclic Goppa codes or
subcodes of algebraic geometry codes should also be consid-
ered. However, a thorough assessment of the security of these
codes is necessary. It is important to note that the selection of
the codewill have a direct impact on the scheme’s parameters
and performance characteristics in future applications.

10 Conclusion

In this article,wegathered fundamental questions that need to
be addressed by anyone considering synthesizing KEM based
on error-correcting codes.Wedescribed themostwell-known
code-based cryptosystems, along with their advantages and
disadvantages, and discussed approaches that enable to trans-
form these cryptosystems into secure KEMs. Furthermore,
we explored the features of schemes depending on different
classes of codes. Additionally, we specified two best options
to construct a scheme with the best security estimates and for
one of them provided a proof of security in ROM model and
a statement of security in QROM model.

This work was driven by the observation that there is cur-
rently a significant number of proposals emergingworldwide
due to the ongoing standardization process of KEMs. How-
ever, these proposals often lack the rationale of choosing one
solution over another. We believe it is valuable to consoli-
date all the discussions on this topic into a single resource,
allowing researchers to use this article as a reference for syn-
thesizing such schemes. In addition, this work can serve as a
foundation for a code-based KEM standard in Russia.
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