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Abstract
This article proposes four optimizations of indifferentiable hashing onto (prime-order subgroups of) ordinary elliptic curves
over finite fields Fq . One of them is dedicated to elliptic curves E without non-trivial automorphisms provided that q ≡
2 (mod 3). The second deals with q ≡ 2, 4 (mod 7) and an elliptic curve E7 of j-invariant −3353. The corresponding section
plays a rather theoretical role, because (the quadratic twist of) E7 is not used in real-world cryptography. The other two
optimizations take place for the subgroups G1, G2 of pairing-friendly curves. The performance gain comes from the smaller
number of required exponentiations in Fq for hashing to E(Fq), E7(Fq), and G2 as well as from the absence of necessity
to hash directly onto G1 in certain settings. In particular, the last insight allows to drastically speed up verification of the
aggregate BLS signature incorporated in many blockchain technologies. The new results affect, for example, the pairing-
friendly curve BLS12-381 (the most popular in practice at the moment) and a few plain curves from the American standard
NIST SP 800-186. Among other things, a taxonomy of state-of-the-art hash functions to elliptic curves is presented. Finally,
the article discusses how to hash over highly 2-adic fields Fq .

Keywords Aggregate BLS signature · Clearing cofactor · Highly 2-adic fields · Icart-like encodings · Hashing to elliptic
curves · Klein quartic · Optimal ate pairings

1 How to hash onto pairing-friendly curves

In the last years, the author and some other researchers have
made progress in constructing novel efficient hash functions
to elliptic curves over finite fields. Today, it can be undeni-
ably said that the theory of such hash functions has become an
independent, rapidly developing subarea of elliptic cryptog-
raphy. This claim is particularly confirmed by Chávez-Saab
et al.’s article [1], which was recognized as one of the three
best papers at Asiacrypt 2022. There are also a lot of other
sources (including recent ones) on the topic. Inter alia, good
surveys are represented in [2, Section 8], [3]. So, with the
reader’s permission, a detailed introduction is not provided
in order to avoid repetition. Instead, all necessary notions and
statements will be gradually introduced or referred to in the
process.
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Let E1 be an ordinary (a.k.a. non-supersingular) pairing-
friendly elliptic curve of embedding degree k > 1 over a
finite field Fq . Besides, put d := #Aut(E1) and e := k/d.
Recall that d ∈ {2, 4, 6}, where d = 2 if and only if
j(E1) �= 0, 1728 (resp., d = 4 iff j(E1) = 1728 and d = 6
iff j(E1) = 0). Furthermore, we will assume that e ∈ N. It is
claimed (e.g., in [2, Theorem 3.3.5]) that for any prime divi-
sor r | N1 := #E1(Fq) there is always a unique non-trivial
Fqe -twist E2 (of degree d) such that r | N2 := #E2(Fqe). As
is customary, denote by G1 ⊂ E1(Fq) and G2 ↪→ E2(Fqe )

the eigenspaces of the Frobenius endomorphism on E1[r ] ⊂
E1(Fqk ), associated with the eigenvalues 1, q, respectively.
By abuse of notation, we will identify the order r subgroup
G2 ⊂ E1(Fqk ) with its image under an Fqe -isomorphism
E1 → E2. Thus, G1 = E1(Fq)[r ] and G2 = E2(Fqe )[r ].

This section explains how to hash ontoG2 more efficiently
and why we sometimes do not need to hash directly onto G1.
In the first case, we will significantly exploit the presence
of clearing the cofactor c2 := N2/r . In the second one, on
the contrary, clearing the cofactor c1 := N1/r can be fully
or partially avoided. The fact is that optimal ate pairings a :
G2 × G1 → μr ⊂ F

∗
qk [2, Theorem 3.3.4] can be painlessly
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(unlike E2(Fqe ) × G1) extended to G2 × E1(Fq) in certain
scenarios.

At the moment, due to [4, Table 1], the curve BLS12-381
is a de facto standard in pairing-based cryptography. More
generally, the Barreto–Lynn–Scott family with k = 12 and
d = 6 (see, e.g., [5, Section 3.1]) possesses the parameters

r(z) = z4 − z2 + 1, q(z) = (z − 1)2r(z)/3 + z.

Bydefinition, BLS12-381 is generated by z := −0xd201000
000010000 and hence

�log2(−z)	 = 64, �log2(r)	 = 255, �log2(q)	 = 381.

Notice that r 
 q in contrast to the Barreto–Naehrig family
[2, Example 4.2] of prime-order curves having also k = 12
and d = 6. Furthermore, as indicated in [6, Section 3.1],
there are BLS curves (as opposed to BN ones) of arbitrary
embedding degree k such that 3 | k, but 18 � k. All of them
are ordinary curves of j-invariant 0.

Recall that almost all known hash functions Hi :
{0, 1}∗ → Gi are the compositions Hi = [ci ] ◦ hi ◦ ηi .
Here, ηi : {0, 1}∗ → Si are hash functions to some finite
sets, h1 : S1 → E1(Fq) and h2 : S2 → E2(Fqe ) are just
maps traditionally called encodings, and finally [ci ] is the
scalar multiplication by ci on the curve Ei . The latter is said
to be clearing cofactor. Surprisingly, it is enough and more
efficient to multiply outputs of hi by specific scalars c′

i ∈ N

(different from ci as a rule) such that r � c′
i and c′

1 | c1 due
to [6, Section 3.2], [7, Section 3] and conversely c2 | c′

2 due
to [5, 8]. The sets Si are supposed to be pretty elementary,
hence it is easy to combine ηi from existing hash functions
{0, 1}∗ → {0, 1}� for � ∈ N. The most complicated compo-
nent of Hi is no doubt hi , because its essence is based on
high-dimensional algebraic geometry.

The majority of pairing-based protocols require a hash
function to at most one group G1 or G2. Of course, any
such protocol can be equivalently implemented for hash-
ing to the other group. Without using point compression-
decompression methods, elements of G1 (resp., G2) are
obviously represented by 2�log2(q)	 (resp., 2e�log2(q)	)
bits. Therefore, the choice often depends on whether a hash
value should be more compact than the second pairing argu-
ment or vice versa. Besides, there are rare protocols, for
exampleScott’s identity-based key agreement [9],where both
hash functionsHi are necessary. Thus, themore cumbersome
hashing to G2 cannot be exchanged for hashing to G1 in all
situations.

1.1 How not to hash ontoG1

As far as the author knows, (non-degenerate) optimal ate
pairings a : G2 × G1 → μr ⊂ F

∗
qk are the most used in

today’s real-world cryptography. The fact is that the corre-
sponding Miller loop has the hypothetically smallest length
≈ log2(r)/ϕ(k), where ϕ is Euler’s totient function. How-
ever, it is more practical to take the whole group E1(Fq)

instead ofG1. In this case, the pairing a : G2×E1(Fq) → μr

becomes degenerate, but this is not important. A similar trick
is done in [10, Section 5] for the Tate pairing [2, Section
3.2.2] in the context of isogeny-based cryptography, where,
on the contrary, G2 is replaced by E1(Fqk ) in our notation.

First, the length of the Miller loop depends only on
the order of G2. Second, if for points P ∈ E1(Fq) and
Q ∈ G2 we have a(Q, P) = 1, then a fortiori a(Q, c′

1P) =
a(Q, P)c′

1 = 1. Further, many popular protocols (such as the
aggregate BLS signature [11–13])work correctlywhether the
order of P equals r or not. It should be borne in mind that the
strong unforgeability property (unlike the usual existential
one) is not satisfied anymore for this signature as emphasized
in [11, Section 5.2]. Nevertheless, in the opinion of [14, Sec-
tion 7], the existential unforgeability is sufficient in practice.
Finally, the complexity of computing a(Q, P) remains the
same as that of computing a(Q, c′

1P), because P , c′
1P are

equally defined over Fq .
Often, multiplication by a cofactor c ∈ N (on any elliptic

curve of order cr ) also serves as a kind of protection against
the so-called small-subgroup attack [15] exploiting divisors
of c smaller than r . In the absence of such divisors, the curve
is called subgroup secure [16]. Such curves with c > 1 nec-
essarily possess the value ρ := log2(cr)/ log2(r) ≥ 2 or,
equivalently, c ≥ r . In fact, applying [c] in some situations
is fraught with appearance of critical bugs such as double
spending noticed at one time inCryptoNote cryptocurrencies
[17]. Nonetheless, for simple protocols the given solution is
quite appropriate whenever c 
 r , which is frequently the
case for c1 as opposed to c2. For instance, clearing cofactor
is authorized in the NIST specification [18] of the classical
Diffie–Hellman key exchange. By the way, state-of-the-art
true subgroup membership tests for pairing-friendly curves
are discussed in [7, Section 4], [19].

Assume that we continue dealing with the pairing a :
G2 × E1(Fq) → μr , not clearing the cofactor c1. In this
scenario, the BLS signature of a message m ∈ {0, 1}∗ (up to
the swap of the pairing groups) is the point s P ∈ E1(Fq),
where s ∈ Z/r and P := (h1 ◦ η1)(m). Since s is a secret
key, the curve E1 has to be G1-strong, i.e., subgroup secure
with respect to G1. Typically, the BLS signature scheme is
deployed on BLS12 curves (mostly on BLS12-381) whose
value ρ ≈ 1.5. As a consequence, at least for this curve
family one is obliged to return as the signature the point
c′
1s P = sH1(m) ∈ G1.Yet,we are really able to benefit from
the circumstance that a is efficiently defined onG2×E1(Fq).
Let’s demonstrate this advantage for the verificator whose
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computational load is incomparably larger than for each of
signers.

Let G2 be a fixed generator of the group G2. For 1 ≤
i ≤ n ∈ N there are arrays of secret keys si ∈ Z/r , public
keys pki := si G2, messages mi ∈ {0, 1}∗, and signatures
σi := siH1(mi ). The signatures are aggregated into the short
one σ := ∑n

i=1 σi . Recall that verifying σ (in a simplified
version of the scheme) consists in doing the equality

a(G2, σ ) =
n∏

i=1

a
(

pki ,H1(mi )
)
, that is,

a(G2, σ ) =
(

n∏

i=1

a
(

pki , (h1 ◦ η1)(mi )
)
)c′

1

.

The scalar multiplication [c′
1] in E1(Fq) is itself cheaper than

the exponentiation to c′
1 in Fqk , unless k is a tiny number

(say, k ≤ 4). Such embedding degrees are beyond prac-
tical use. However, starting from a certain moderate value
of n, the second equality clearly becomes less expensive to
check. The given value heavily depends on many factors,
albeit it is readily determined in each concrete case. Mean-
time, the aggregate BLS signature is mainly employed in
systems intended for huge n, otherwise it makes little sense
to abandon more traditional pairing-free signatures such as
ECDSA.

Notice that the described trick resembles batching the
final exponentiation of multi-pairing (see, e.g., [20]). Inci-
dentally, when all the messages coincide (m := m1 =
· · · = mn), the verification process reduces to the quicker
test a(G2, σ ) = a

(
pk,H1(m)

)
, where pk := ∑n

i=1 pki . In
this setting, σ is said to be a multi-signature, while the pro-
posed trick does not yield any performance gain, since the
hash-to-curve function arises in a single copy. It is also worth
saying that the trick holds valid for various modifications of
the scheme thwarting the rogue public-key attack [12, Section
1.1]. Lastly, it is evident that the trick can be safely tailored
to totally other cryptographic protocols involving simultane-
ously multi-pairing and hashing to E1.

To be honest, pairing-friendly curves with ρ ≥ 2 are
niche, although they are actually used in (one layer) proof
compositions [6, 21], not for the BLS signature scheme. The
author does not know if it is possible to (efficiently) gener-
ate G1-strong elliptic curves with ρ ≈ 2 suitable for such
compositions. As seen from [19, Table 1], the Cocks–Pinch
curve CP6-782 and Brezing–Weng curve BW6-761 (on top
of the curve BLS12-377 [22]) are not G1-strong. Note that
BW6-761 was found in [21] to replace CP6-782, an order
of magnitude slower curve: The former is of j-invariant 0
(not to mention the smaller q) in contrast to the latter. So,
CP6-782 is most likely not applied anymore.

It is clear that for ρ ≈ 2 there is maximum one prime
divisor � | c1 such that � ≥ r . Let’s imagine that such a divi-

sor occurs, albeit this still has nothing to do with the curves
CP6-782, BW6-761. For compactness, put c̃1 := c1/� ∈ N.
No doubt, one can securely work in the intermediate group
G̃1 := [̃c1]E1(Fq) of order r�. It is seemingly much eas-
ier to construct a curve E1 on top of BLS12-377 with the
given weaker property than with the G1-strongness. At the
same time, we have the substantially faster hash function
H̃1 := [̃c1] ◦ h1 ◦ η1 : {0, 1}∗ → G̃1. Indeed, the number
c̃1 is close to 1 (ideally, c̃1 = 1), hence the component h1 is
the unique bottleneck for evaluating H̃1. One more time, the
pairing a : G2 × G̃1 → μr and its restriction on G2 ×G1 (as
well as the group operations in G1, G̃1) are equivalent in the
computational aspect. Thus, the group G̃1 is unambiguously
better than G1.

1.1.1 How to hash onto E1 : y2 = x3 + b provided that√
b ∈ Fq

The previous section demonstrates several scenarios when
the scalar multiplication [c′

1] on the curve E1 is not required,
while the corner map h1 : S1 → E1(Fq) is inevitable. That
is why its acceleration is an important task despite the fact
that [c′

1] may be a (drastically) slower map.
In [23] an encoding h1 : F

2
q → E1(Fq) is constructed for

elliptic curves E1 as in the title of the present section. There,
it is proved that h1 is admissible in the sense of [24, Defini-
tion 4], which leads (in compliance with [24, Theorem 1])
to the indifferentiable hash function h1 ◦ η1. It is worth clar-
ifying that indifferentiable (from a random oracle) hashing
is meant as in [24, Section 2.2]. Moreover, the only bottle-
neck of h1 consists in extracting one cubic root in Fq . For
q �≡ 1 (mod 27) the latter can be implemented in constant
time of raising to some power n1 ∈ N in the field Fq .

Lemma 1 Each BLS curve E1 fits the title condition.

Proof It is suggested to borrow and properly complete the
proof of [6, Proposition 2]. As said in it, always 3 | c1,
i.e., there is a point (x0, y0) ∈ E1(Fq)[3]. As a result, x0 is
a root of the 3-division polynomial ψ3(x) = 3x(x3 + 4b)

of the curve E1. If x0 = 0, then y0 = √
b. Otherwise, x0 =

− 3
√
4b and hence y0 = √−3b. Since E1 is an ordinary curve,√−3 ∈ Fq as is known and thus

√
b ∈ Fq . The lemma is

proved. ��

In particular, the aforementioned encoding h1 is appli-
cable to the curve BLS12-381 for which b = 4 and n1 =
(q − 10)/27. Recall that famous (indirect) Wahby–Boneh’s
encoding hW B [25, Section 4] (based on the simplified SWU
one [24, Section 7]) is also valid for BLS12-381. It requires
to extract one square root inFq , which for that curve is equiv-
alent to raising in Fq to the power n2 := (q − 3)/4 ∈ N. The
hash function H2 from [25, Section 5] twice applies hW B in
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order to act as a random oracle. By the way, the other indif-
ferentiable hash function H3 is even less performant than H2

by virtue of [25, Figure 1].
To be exact, the Hamming weight w(n1) = 192 and

w(n2) = 228. Denote by �(ni ) the length of a shortest addi-
tion chain for ni . In accordance with [26, Section 9.2.1], we
establish the inequalities

382 ≤ �(n1) � 419, 385 ≤ �(n2) � 422.

One cannot claim that these upper bounds aremathematically
correct, because o(1) is omitted in contrast to the original
inequality. However, in any case, the sought bounds are very
close (probably equal) to ours.

On the other hand, following the sliding window method
[26, Section 9.1.3] (with k = 5), the author explicitly derives
in Magma [27] an addition chain for n1 (resp., n2) whose
length equals 449 (resp., 458). Curiously, a similar chain
for n2 of the same length 458, obtained by means of more
advanced methods, appears in the optimized library blst,
namely in [28]. Thus, the encoding hW B applied twice is
much slower than the encoding h1 applied once. Indeed,
2 · 458 − 449 = 467 is a significant amount of multipli-
cations in Fq that can be eliminated by giving priority to h1

rather than two copies of hW B .
The author provides in [29] a general reference implemen-

tation of h1 in Sage. The corresponding Rust implementation
and benchmarks for BLS12-381 (and BLS12-377) are given
in [30] by Zhang who uses the famous library arkworks as a
base. His low-level comparison of running time shows that
the new encoding is actually more efficient than hW B .

1.2 How to hash ontoG2

To the author’s knowledge, optimal ate pairings do not have
a natural extension to E2(Fqe ) × G1. Conversely, (non-
degenerate) twisted optimal ate pairings [2, Theorem 3.3.8]
of the form G1 × G2 → μr are readily extended to
G1 × E2(Fqe ). But for them the Miller loop is mostly of a
larger length than for (usual) optimal ate pairings. It is widely
recognized that a pairing is a more laborious operation than
an elliptic curve scalar multiplication. Therefore, reducing
the Miller loop seems a better solution than avoiding the
multiplication by c′

2.
For the sake of convenience, introduce so-called tensor

multiplication of any two maps h : S → G, g : T → G
from sets S, T to the same group (G,+):

h ⊗ g : S × T → G (s, t) �→ h(s) + g(t).

We know (e.g., from [2, Theorem 2.11]) that E2(Fqe ) �
Z/(mr)×Z/�, where � | m and m� = c2. Pick any indepen-
dent points P0, P1 ∈ E2(Fqe ) of ordersm and �, respectively.

The independency is in the sense that P1 ∈ E2(Fqe )\〈P0〉 if
� > 1, and P1 = (0 : 1 : 0) if � = 1. Consider the set
V := Z/m × Z/� and the maps

g : V → 〈P0, P1〉= E2(Fqe )/G2 (v0, v1) �→ v0P0+v1P1,
F : Fqe × V → G2 F := [c′

2] ◦ (h2 ⊗ g).

These maps resemble those of [24, Sections 1, 5, 6.1] except
for the principal fact that therein g : V ×Z/r → E2(Fqe ) or
g : Z/r → G2 in our notation.

Below,we need the notions of (B-)well-distributed encod-
ing [31, Definitions 5] and (ε-)regular map [31, Definition
3] with respect to the uniform distribution on its domain. It
is also worth clarifying what exactly a “negligible” quantity
ε ∈ R≥0 will mean for us. Apart from the slow construc-
tion from [24, Section 5], all known regular encodings (to an
ordinary elliptic Fq -curve E) are of the form F

2
q → E(Fq).

For all of them ε = cq−1/2 + O(q−1) (cf. [24, Theorem
3]) with a small positive constant c. As a confirmation of
the given words, see [1, Lemma 4], [23, Corollary 2], [32,
Corollary 4], [33, Corollary 2], and Lemma 2. Since, in turn,
log2(q)/2 � λ for a desirable security level λ (typically,
≈ 128), we will count ε negligible when log2(ε) � −λ.

This definition does not fit the alternative one accepted in
[31] and some other sources on the topic in accordance with
which negligibility takes place if ε = o(log(q)−n) for all n ∈
N. As usual, the disadvantage of the asymptotic definition is
in supposing that q tends to infinity, although in life q is
always a concrete number. That is why it is necessary to
be prudent in utilizing the contributions of [31, Section 2.3]
despite their attractiveness.

Theorem 1 Assume that h2 : Fqe → E2(Fqe) is a B-well-
distributed encoding (for B ∈ R≥0). Then, the map F is
ε-regular, where ε := B

√
r/qe. As a result, ε is negligi-

ble whenever log2(B) � 0 and log2(c2) � log2(r), which
includes the case e ≥ 2.

Proof The indicated value ε is immediately derived from [31,
Corollary 1] and [24, Lemma 13]. Besides,

log2(ε) � log2
(√

r/qe
) = log2(r/qe)

2
≈ − log2(c2)

2

� − log2(r)

2
� −λ.

Lastly,

log2(c2) ≈ log2(q
e/r) = e log2(q) − log2(r)

� (e − 1) log2(r),

which is ≥ log2(r) once e ≥ 2. The theorem is proved. ��
This theorem can be in principle reformulated with an

abstract elliptic Fq -curve E and a well-distributed encoding
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Fq → E(Fq). However, the author decided to emphasize its
relevance solely for curves E2. Truly, all real-world pairing-
friendly curves E1 (not to mention plain ones) have the value
ρ � 2, that is, log2(c1) � log2(r). Thereby, the theorem’s
premise is fulfilled exclusively in the borderline case ρ ≈ 2.
As remarked in Sect. 1.1, this happens for niche curves with
the parameters k = d = 6 such as BW6-761 or other BW6
curves from [6, Sections 4, 5]. For them E2 is a sextic twist
equally defined over Fq . Thus, the pairing groups G1, G2

can be interpreted in a dual way. In other words, the results
of Sect. 1.1 and of the current one are applicable to both of
them. In particular, we do not lose the generality in the above
theorem.

Note that F is a samplable map (in the sense of [24, Defi-
nition 4]) if, as is often the case, h2 enjoys a large image, that
is, #Im(h2) = �(qe). Indeed, this property follows from [24,
Lemma 13] and [31, Algorithm 1]. Eventually, we establish
a series of corollaries.

Corollary 1 The map F is admissible.

Corollary 2 If a hash function η : {0, 1}∗ → Fqe is indiffer-
entiable from a random oracle, then so is the hash function
[c′

2] ◦ h2 ◦ η : {0, 1}∗ → G2 (denoted by H4 in [25, Section
5]).

Proof Take another random oracle θ : {0, 1}∗ → V . There-
fore, the functions (η, θ)(s) := (

η(s), θ(s)
)
and hence

F ◦ (η, θ) : {0, 1}∗ → G2 also act as a random oracle
(the second fact is [24, Theorem 1]). Finally, obviously,
H4 = F ◦ (η, θ). ��

For the BLS12-381 curve E2 : y2 = x3 +4(1+ i) (where
i := √−1 /∈ Fq ) in the role of h2 the article [25, Section
5] proposesWahby–Boneh’s encoding. However, that article
does not notice the indifferentiability of H4. By the way, the
other (indifferentiable) hash functionsH5,H6 are even slower
than H4 by virtue of [25, Figure 1].

2 Batching two “relatively prime” encodings

Hash functions to classical (i.e., non-pairing-friendly) ellip-
tic curves have become more and more in demand as well.
Indeed, according to [34, Table I], they are actively used in
many PAKE (Password-Authenticated Key Exchange) pro-
tocols. Incidentally, several years ago CFRG (Crypto Forum
Research Group) conducted the PAKE selection process [35]
in which the protocols CPace [36] and OPAQUE [37] won.
Besides, such hash functions are necessary for some blind
signatures (e.g., from [38, Section 3.3], [39, Section 6]),
which serve as a basis of modern electronic voting systems.
It is also worth mentioning that hashing to elliptic curves
is applied in OPRFs (Oblivious Pseudorandom Functions)

[40], among others, in the 2HashDH scheme [41, Section
3.1], [42, Section 3].

2.1 How to hash onto E(Fq) provided that
q ≡ 2 (mod3) and j(E) �= 0, 1728

Consider an elliptic curve E : y2 = x3 + ax + b defined
over a finite field Fq . Under the condition q ≡ 2 (mod 3)
(resp., j(E) �= 0, 1728), Icart’s encoding hI [43] (resp.,
the simplified SWU one hsSWU ) is available. In accordance
with [43, Lemma 4], [24, Lemma 6], for any P ∈ E(Fq)

we have #h−1
I (P) ≤ 4 and #h−1

sSWU (P) ≤ 8. In fact, if an
implementation of hsSWU takes into account the sign of the
y-coordinate, then #h−1

sSWU (P) ≤ 4. At the same time, by
virtue of [32, Section 5], the encoding hI (resp., hsSWU ) is
B-well-distributed with B = 13 (resp., B = 53) at least for q
of a cryptographic size. Applying [31, Corollary 1], we thus
get the next statement.

Lemma 2 The map F := hI ⊗ hsSWU : F
2
q → E(Fq) is ε-

regular for the negligible value ε := 26
√

N/q, where N :=
#E(Fq).

From now on, we assume in addition that q ≡ 3 (mod 4).
Obviously,

q ≡ 2 (mod 3), q ≡ 3 (mod 4) ⇔ q ≡ 11 (mod 12).

For the sake of compactness, introduce the naturals

� := 2q − 1

3
, e := q + 1

4
,

k := q + 1

12
= �e

(
mod

q − 1

2

)
.

Given Z = n/d such that n, d ∈ F
∗
q , we obtain:

z := Zk = nk · dq−1−k = nk · d(11q−13)/12

= nd9 · (nd11)(q−11)/12,

z6 = Z (q+1)/2 =
(

Z

q

)

Z ,

where
(

Z
q

)
is the Legendre symbol. In particular, z = 6

√
Z

whenever Z is a quadratic residue in Fq .
Given (t, s) ∈ F

2
q , we need to evaluate hI (t) and

hsSWU (s). As is known, separately each of these points can
be computed in constant time of one exponentiation in Fq

(see the case of hsSWU in [25, Section 4.2]). Let’s show that
this is also possible simultaneously for the two points (and
hence for F(t, s)). The only cumbersome part of hI (resp.,
hsSWU ) consists in the exponentiation 3

√
f = f � (resp.,±ge
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such that (ge)2 =
(

g
q

)
g), where

f :=
(
3a − t4

6t

)2

− b − t6

27
, g := −b

a

(

1 + 1

s4 − s2

)

.

Evidently, f � is the unique cubic root of f in Fq and for our
purpose it is sufficient to find ge up to a sign. For the sake
of simplicity, we exclude from consideration the zeros and
poles of the functions f , g. As usual, they can be processed
individually.

It is suggested to act in a similar way as in [44, Section
3], that is, for Z := f 2g3 to compute z = Zk (almost 6

√
Z )

instead of computing separately 3
√

f and ±ge (almost
√

g).
Note that

z = f (q+1)/6 · ge =
(

f

q

)
3
√

f · ge, z2 = 3
√

f 2 ·
(

g

q

)

g.

Introducing the auxiliary notation θ := f g/z2, we get the
equalities

3
√

f =
(

g
q

)
f g

z2
=

(
g

q

)

θ, ge = z
(

f
q

)
3
√

f
= z

(
f g
q

)
θ
.

We see that θ3 =
(

g
q

)
f and z6 =

(
g
q

)
Z . Therefore, the

symbol
(

g
q

)
can be determined for free. More formally,

(
3
√

f , ±ge) =
{(

θ, z/θ
)

if θ3 = f , i.e., z6 = Z ,
( − θ, z/θ

)
otherwise.

Bearing in mind the formula above for (n/d)k without the
inversion operation, we completely justify the next remark.

Remark 1 The map F (in contrast to h⊗2
I and h⊗2

sSWU ) can be
computed in constant time of one exponentiation in Fq .

By analogy with [27], given q, it is of course not difficult to
derive explicit short addition chains for raising to the power
k. Besides, F is a samplable map due to [31, Algorithm 1],
which eventually leads to the following result.

Corollary 3 The map F : F
2
q → E(Fq) is admissible.

Remark 1 holds valid when hI (resp., hsSWU ) is replaced
by any encoding implementable with the cost of extracting
one cubic (resp., square) root in Fq . It is logical to choose
hI and hsSWU , because they are the most universal among
such encodings known in the literature. In particular, these
encodings are relevant even if N is a prime (that is, the cofac-
tor equals 1), which is the case for many widespread elliptic
curves. Note that for q ≡ 11 (mod 12) curves of j-invariants

0, 1728 are supersingular in compliance with [26, Section
24.2.1.c]. Since such curves pose special challenges for secu-
rity by virtue of [2, Remark 2.22], the map hsSWU does not
have restrictions in the current context.

There are a lot of standardized elliptic curves over fields
Fq such that q ≡ 11 (mod 12). It is readily checked that
this condition is fulfilled, e.g., for the (unique) French curve
FRP256v1 [45], for the curves P-192, P-384, and Curve448-
Goldilocks from NIST SP 800-186 [46, Section 4.2.1] as
well as for all Russian curves [47, Appendix B] except
for id-GostR3410-2001-CryptoPro-B-ParamSet. Remark 1
remains true in the case q ≡ 2 (mod 3), q ≡ 5 (mod 8)
when a square root is still expressed via one exponentia-
tion (see, e.g., [3, Appendix I.2]). However, the author has
not encountered standardized curves over such fields, hence
it was decided to stop at this moment in order not to inflate
the text length. If required, the reader can easily repeat the
conducted reasoning.

It is worth separate mentioning that unlike q ≡ 3 (mod 4),
the remainder q ≡ 5 (mod 8) can arise when the j-invariant
1728 is ordinary,while the second assumptionq ≡ 2 (mod 3)
has nothing to do with the ordinariness of 1728. One might
wonder if it is feasible to carry over the tensor-multiplication
map F to this important case by changing hsSWU to a suit-
able square-root encoding Fq → E(Fq), e.g., from [50].
This turns out to be meaningless, because the work [33] con-
structs an admissible map F

2
q → E(Fq) to all curves E of

j-invariant 1728 regardless of the remainder of q modulo 3.
The point is that the latter map needs to find a quartic root in
Fq rather than a sextic one. In addition, it is shown there that
4
√· ∈ Fq is really represented via one exponentiation in Fq

once q ≡ 5 (mod 8).

2.2 Generalization of Icart’s encoding

The given section answers the following curious question.

Question 1 Do we know an example of a superelliptic Fq -
curve C : ym = f (x) and an Fq-cover χ : C → E (of small
degree) onto some ordinary elliptic Fq-curve E provided that
m ∈ N is relatively prime with 3(q − 1)?

The case m = 2 is obviously impossible for odd q we
deal with in this article. In turn, the case m = 3 is delib-
erately excluded, because it is treated by Icart to the full
extent. If the question has a positive answer, then we have
yet another encoding hχ := χ ◦ pr−1

x : Fq → E(Fq), where
prx is the projection from C to the x-coordinate. Truly, since
GCD(m, q − 1) = 1, for every x ∈ Fq there is a unique Fq -

root y = m
√

f (x) = f (x)m−1 (mod q−1). Of course, from the
practical point of view, hχ is only useful if Icart’s encoding
is not applicable, that is, q ≡ 1 (mod 3). However, in this
section the remainder of q modulo 3 is insignificant.
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By analogy with Sect. 2.1, we also possess the map Fχ :=
hχ ⊗ hsSWU : F

2
q → E(Fq). Note that #h−1

χ (P) ≤ deg(χ)

for each point P ∈ E(Fq). This property is sufficient for
Fχ to be regular (and hence admissible), because hsSWU is
already well-distributed. Moreover, since m is odd, we can
extract the roots m

√
f and

√
g at the cost of extracting the root

z := 2m
√

Z , where Z := f 2gm . Indeed, z = m
√

f
√

g, hence
m
√

f = f g(m−1)/2/zm−1 and
√

g = z/ m
√

f . Furthermore,
z is expressed via one exponentiation in Fq whenever this
is true for

√
g, e.g., in the case q ≡ 3 (mod 4), because

z =
√

m
√

Z . As well as for m = 3, the reasoning is readily

extended, taking into account the sign
(

Z
q

)
=

(
g
q

)
in the

equality z2m =
(

g
q

)
Z .

Denote by C ⊂ P
2 and prx : C → P

1 the projective
closure ofC and prx , respectively. It is quite evident that prx

(resp., C) fits the definition of an exceptional cover (resp.,
median value curve) in the sense of [48] no matter m ≥
deg( f ) or not. By definition, prx : C(Fq) → P

1(Fq) is a
bijection and #C(Fq) = q +1. As a result, hχ is an Icart-like
encoding in the terminology of [49]. So, hχ is not “almost
surjective”, that is, #hχ (Fq) �= q + o(q). Therefore, this
encoding itself cannot be admissible. Nevertheless, it is not
required due to the availability of Fχ . Incidentally, another
type of Icart-like encodings is studied in [50] for elliptic
curves of j-invariants 0, 1728 whose Frobenius trace has
a small divisor.

Interestingly, the author found only one desired example
(with m = 7) in the existing literature on elliptic curves.
Consider the Klein quartic K := X3Y + Y 3Z + Z3X on the
projective plane P

2
(X :Y :Z). It is clearly a non-singular curve

of genus 3. The detailed information about the Klein quartic
is represented in the book [51] and especially in its chapter
“The Klein quartic in number theory”. In particular, there is a
birational isomorphism between K and C7 : y7 = x2(x +1)
of the form

τ : K ��� C7 (X : Y : Z) �→
(

Y 3

Z2X
,−Y

Z

)

,

τ−1 : C7 ��� K (x, y) �→
(

− y3

x
: −y : 1

)

.

Furthermore, we have a cover

χ : C7 → E7 (x, y) �→
(numx

den
,
numy

den

)

onto the elliptic curve E7 : y2 = x3 + (21/4)x2 +7x , where

numx := 2y
(
x2(−y7 − y5 − y2 + y + 1)

+ x(−y2 + y + 1)y7 + (y5 + y2 − y − 1)y7
)
,

numy := x2(3y8 + 2y7 + 3y6 + 2y5 + 2y4 − y3 − 3y2

− 3y − 2) + x(2y4 − y3 − 3y2 − 3y − 2)y7

+ (−3y6 − 2y5 − 2y4 + y3 + 3y2 + 3y + 2)y7,

den := 2y3(x2 + xy7 − y7).

The correctness of these formulas is checked inMagma [27].
Similar formulas (with respect to another model of E7) are
given in [52]. The cover χ is nothing but the composition of
τ−1 and the canonical map K → K/φ � E7, where φ is the
cyclic shift (X : Y : Z) �→ (Y : Z : X) on K . Inter alia,
deg(χ) = 3. Finally, it does not seem that χ can be easily
modified to cover over Fq the quadratic twist of E7/Fq .

Put ζ to be a fixed primitive 7-th root of unity and α :=
(−1 + √−7)/2 = ζ 4 + ζ 2 + ζ . It is known that j(E7) =
−3375 = −3353 and the natural lift E7/Q has complex
multiplication by Z[α] in the sense of [26, Section 18.1.1].
By the way, such pairing-friendly elliptic curves occur in the
fresh paper [53]. The curve E7/Fq is ordinary if and only if(−7

p

)
= 1 (see, e.g., [2, Section 4.3]), where p > 7 denotes

the characteristic of the field Fq . According to the quadratic
reciprocity law [26, Section 2.3.4.a], this is equivalent to the
condition

( p
7

) = 1, that is, p ≡ 1, 2, 4 (mod 7). We need to
exclude the case p ≡ 1 (mod 7) with regard to Question 1.
In other words,

√−7 ∈ Fp, while ζ /∈ Fp. More precisely,
Fp(ζ ) = Fp3 , because the extension degree [Q(ζ ) : Q] =
ϕ(7) = 6. Thus, we are interested in prime powers q ≡
2, 4 (mod 7).

Looking ahead, all the next equalities are verified in an
elementary way. For � := 7−1 (mod q − 1) and Z = n/d
such that n, d ∈ F

∗
q we obtain:

The case q ≡ 2 (mod 7):

� = 6q − 5

7
∈ N,

7
√

Z = Z� = n� · dq−1−�

= n� · d(q−2)/7 = n · (n6d)(q−2)/7;

The case q ≡ 4 (mod 7):

� = 2q − 1

7
∈ N,

7
√

Z = Z� = n� · dq−1−�

= n� · d(5q−6)/7 = nd2 · (n2d5)(q−4)/7.

Besides, for

e := q + 1

4
∈ N, k := �e

(

mod
q − 1

2

)

, L :=
(

Z

q

)

we eventually have:
The case q ≡ 2 (mod 7), q ≡ 3 (mod 4) or, equivalently,
q ≡ 23 (mod 28):

k = 5q − 3

28
∈ N,

14
√

L Z = Zk = nk · dq−1−k

= nk · d(23q−25)/28 = n4d18 · (n5d23)(q−23)/28;
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The case q ≡ 4 (mod 7), q ≡ 3 (mod 4) or, equivalently,
q ≡ 11 (mod 28):

k = 11q − 9

28
∈ N,

14
√

L Z = Zk = nk · dq−1−k

= nk · d(17q−19)/28 = n4d6 · (n11d17)(q−11)/28.

3 Taxonomy of hash functions to elliptic
curves

This section aims to systematize known results on hashing to
elliptic Fq -curves E . Table 1 contains state-of-the-art admis-
sible encodings of the form F

2
q → E(Fq). For the sake of

completeness, Table 2 exhibiting encodings Fq → E(Fq) is
also included. The latter are not regular, because their full
images are only proportions of the whole group E(Fq). Nev-
ertheless, in a series of situations they are more efficient than
the former. The point is that some protocols remain secure
whether a used hash function {0, 1}∗ → E(Fq) acts as a ran-
dom oracle or not. In the literature there are a lot of other
encodings to elliptic curves. The tables demonstrate only
those, which arose earlier and which are, at the same time,
the best at least for certain E and Fq .

The only exception is Skałba’s encoding [54]. In contrast
to Shallue–van de Woestijne’s (SW) encoding [55], it does not
cover curves of j-invariant 0, not to mention that Skałba’s
formulas are quite awkward. Hence, it is widely recognized
that the former is worse than the latter. Nonetheless, seminal
Skałba’s work merits to be cited, because it is historically
the first in this research area. Apart from

√·, both encodings
need the values of two Legendre symbols

( ·
q

)
. However, we

have to bear in mind the recent breakthrough [57, 58] in fast
constant-time implementations of the Legendre symbol. In
other words, the computational complexity of the encodings
is close to that of one square root extraction.

It is necessary to explain why Skałba’s encoding is seem-
ingly admissible and what is meant by modification of the
SW one, which appears to be equally admissible. The origi-
nal encodings of the form Fq → E(Fq) are of course not so,
because they are far from surjective. First of all, recall that
the threefold

T : y2 = f (x1) f (x2) f (x3) ⊂ A
4
(x1,x2,x3,y),

where E : y2 = f (x) := x3 + ax + b, is at the core of the
encodings under discussion. To be more precise, we have the
cornerstone map

h′ : T (Fq) → E(Fq)

h′ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
x1,

√
f (x1)

)
if

(
f (x1)

q

)
∈ {0, 1},

(
x2,

√
f (x2)

)
if

(
f (x2)

q

)
∈ {0, 1},

(
x3,

√
f (x3)

)
otherwise, i.e.,

(
f (x3)

q

)
∈ {0, 1}.

Skałba’s encoding is based on Fq -unirationality of the
Châtelet surface (see, e.g., [59, Sections 1–2]). More con-
cretely, one deals with the surface

S : y21 + 12ay22 = f (x) ⊂ A
3
(x,y1,y2) [54, Equation (3)]

By definition, there is a dominant Fq-map ψ : A
2
(t1,t2)

��� S
in the sense of [26, Definition 4.43]. Such a map is given in
[54, Lemma 3] and yet another rational Fq -map ϕ : S ���
T is from [54, Lemma 2]. Besides, introduce the following
notation:

ϕ ◦ ψ = (X1, X2, X3, Y ) : A
2
(t1,t2) ��� T

with irreducible fractions

Xi = numi

deni
, numi , deni ∈ Fq [t1, t2], and Y ∈ Fq(t1, t2).

Finally, for α ∈ Fq let’s define the curves

Ci,α := α · deni − numi , Ci,∞ := deni ⊂ A
2
(t1,t2).

A“right” version of Skałba’s encoding is given as follows:

h : F
2
q → E(Fq)

h(t1, t2) :=
{

(0 : 1 : 0) if ∃i : (t1, t2) ∈ Ci,∞,(
h′ ◦ ϕ ◦ ψ

)
(t1, t2) otherwise.

In order to shorten a bit formulas Skałba restricts h to the
line t1 = t2, because he does not worry about the regularity
property. Using the intuition confirmed by [23, Theorem 3],
[33, Theorem 1], the author suggests that the curves Ci,α are
probably absolutely irreducible except for few α. He does
not possess sufficient computer resources to prove this state-
ment, since Skalba’s formulas are fairly cumbersome. If the
assumption is true, then, by analogy with [23, Corollary 2],
[33, Corollary 2], it follows that the encoding h is regular.
As usual, h is also efficiently computable and samplable in
a clear way, which implies its admissibility.

The SW encoding is obtained in almost the sameway. The
difference consists in the surface

S = y2 + (3x2 + 4a)t2 + f (x) ⊂ A
3
(x,y,t)

[55, Equation (15)]

or, equivalently,

S : −y2 = x3 + 3t2x2 + ax + 4at2 + b ⊂ A
3
(x,y,t).
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Table 1 Taxonomy of admissible encodings F
2
q → E(Fq ) to elliptic Fq -curves E : y2 = x3 + ax + b

Year Authors References Complexity Conditions

2005 Skałba [54]
√· + 2

( ·
q

)
a �= 0

2006 Shallue, van de Woestijne
(modification)

[55]
√· + 2

( ·
q

)

2022 Chávez-Saab,
Rodriguez-Henriquez,
Tibouchi (SwiftEC)

[1]
√· + 2

( ·
q

)
[1, Theorem 3]

2009–2010 Icart (combination with the
simplified SWU map)

[24, Section 7], [43], Sect. 2.1 6
√· q ≡ 2 (mod 3), ab �= 0

2022 K. [23] 3
√· a = 0,

√
b ∈ Fq

[33] 4
√· b = 0

2023 K. (combination with the
simplified SWU map)

[24, Section 7], Sect. 2.2 14
√· q ≡ 2, 4 (mod 7), j-invariant −3353

Table 2 Taxonomy of (non-admissible) encodings Fq → E(Fq ) to elliptic Fq -curves E : y2 = x3 + ax + b

Year Authors References Complexity Conditions

2009 Icart [43] 3
√· q ≡ 2 (mod 3)

2010 Brier et al. (the simplified SWU map) [24, Section 7]
√· ab �= 0

2019 Wahby, Boneh [25]
√· E has a vertical Fq -isogeny of small degree, ab = 0

2022 K. [50]
√· The trace of E has a small divisor, ab = 0

2023 K. [56]
√· +

( ·
q

)
Fq is highly 2-adic, ab �= 0

2023 K. Sect. 2.2 7
√· q ≡ 2, 4 (mod 7), j-invariant −3353

Note that the projection π : S → A
1
x is a conic bundle [60,

Definition 6]. The original SW encoding just picks a non-
degenerate Fq -fiber π−1(β) ⊂ A

2
(y,t) (for some β ∈ Fq )

whose Fq -parametrization A
1 ��� π−1(β) is taken in the

role of ψ .
According to the quite constructive result [60, Theorem

1], the surface S is also Fq -unirational, although in general it
is not Fq -rational as stressed in [55, Section 5]. As before, it
is proposed to choose a dominant Fq -map ψ : A

2 ��� S of
degree as little as possible. Once again, if the resulting curves
Ci,α (with respect to the new functions Xi ) are absolutely
irreducible, then the modified SW encoding h is admissible.

Recently,Chávez-Saab,Rodriguez-Henriquez, andTibouchi
[1] completely studied the case when S is an Fq(x)-rational
conic, that is, it has anFq(x)-point. Thereby, they constructed
the birational Fq -map ψ (of degree one). Be careful, Fq -
rationality of the surface S does not imply Fq(x)-rationality
of S as a conic. The corresponding encoding h was called
SwiftEC. It is relevant for many elliptic curves arising in
practice. Inter alia, all ordinary curves of j-invariant 0 are
covered.

Nevertheless, the applicability conditions of SwiftEC are
too restrictive for a series of interesting curves among which
E : y2 = x3+ax (of j-invariant 1728). That is why thework

[33] does not lose significance. Moreover, the encoding h1

invented in [23] is still much faster than SwiftEC over highly
2-adic fields (see Sect. 4). Lots ofmodern curves [61] (includ-
ingBLS12-377) are defined over such fields. The point is that
h1 extracts a cubic root in Fq rather than a square one, not to
mention two Legendre symbols.

In conclusion, the last four rows of Table 1 encourage to
formulate a very beautiful and practically useful conjecture
(partially related to Question 1).

Conjecture 1 For any elliptic Fq-curve E there is an admis-
sible encoding F

2
q → E(Fq) at the cost of one radical n

√·
in Fq for some n ∈ N without computing additional power

residue symbols
(

γ
q

)

m
:= γ (q−1)/m, where γ ∈ Fq and

m | q − 1.

4 How to hash over highly 2-adic fields

As said in the title, this section dwells on the problem of
hashing to an elliptic curve E defined over a finite field Fq

such that 2ν || q − 1 for a non-small ν ∈ N. According
to Tables 1, 2, the majority of curves have only hash func-
tions computing a root of even degree. Therefore, we cannot
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expect to represent such a root as one or at least several expo-
nentiations in Fq . For simplicity, let’s restrict to the case of
a square root, but the arguments below are also true in the
general case.

Undoubtedly,
√· ∈ Fq can be found through (constant-

time) Tonelli–Shanks’s algorithm [3, Appendix I.4]. How-
ever, it requires O(log(q) + ν2) operations in Fq . The given
drawback can bemitigated to O

(
log(q)+(ν/μ)2

)
ones with

O(2μν/μ) storage (where μ is a parameter) by means of
Bernstein’s table-lookup variant [62]. In practice, this mem-
ory overhead is not significant for moderate 2-adicities such
as the popular choice ν ≈ 32. These words are justified, for
example, by the square root implementation [63] aimed at
the classical point decompression [64]. By contrast, in the
context of hashing to elliptic curves (assuming a secret input
as earlier) Bernstein’s approach is vulnerable to cache-timing
attacks (cf. [65]). There is a vast literature about secure table
lookups (see, e.g., [66]). However, it is desirable to com-
pletely avoid them if possible in order to be more confident
in reliability.

Whenever j-invariant of E is different from 0, 1728, we
can resort to the recent solution from [56]. Its novelty con-
sists in an unexpected possibility to batch Müller’s square
root algorithm [67] and some encoding hM : Fq → E(Fq)

including
√· in such a way that Müller’s algorithm does

not contain anymore the non-deterministic subroutine.Recall
that the unique bottleneck ofMüller’s algorithm (and thereby
of hM ) is computing the n-th element of a certain non-
full Lucas sequence Vi (·, 1), where n := (q − 1)/4. These
sequences periodically appear in various areas of cryptogra-
phy (see, e.g., [68, Section 6.3.2]).

For determining Vn(·, 1) we possess Postl’s algorithm
[69], which performs ≈ 2 log2(q) multiplications in Fq . In
fact, there is a folklore trick [70, 71] reducing the running
time to ≈ 2 log2(q) − ν ones. Taking it into account, Postl’s
algorithm may be faster than (or at least of the same perfor-
mance as) exponentiation in Fq to some power e of length
≈ log2(q) and of Hamming weight ω � log2(q). This hap-
pens when

2 log2(q) − ν � log2(q) + ω ⇔ log2(q) � ν + ω.

In this estimation the conventional binary exponentiation
method is applied for the sake of simplicity. In particular, the
encodings from [56, Table 1] extracting a higher-degree root
m
√· sometimes become slower than hM even if GCD(m, q −
1) = 1.

As an illustration, look at the relatively new stark(jub)
curves [72, 73] (of j �= 0, 1728) defined over the same
field Fq for which �log2(q)	 = 252 and ν = 192. Note
that q ≡ 2 (mod 3), hence Icart’s encoding hI is applicable
to these curves. Consequently, we deal with the parameters
m = 3, e = (2q − 1)/3, and ω = 125 as is readily checked.

Substituting the values in the above inequality, we thus see
that hM performs approximately 192+125−252 = 65 fewer
multiplications in Fq than hI . Of course, utilizing a shorter
addition chain for exponentiation to the power e allows to
compensate the given difference. One can ultimately con-
clude that proper implementations of the encodings hI , hM

to stark(jub) curves have more or less identical execution
time.

In the author’s opinion, the task of hashing in time
O(log(q)) to all elliptic Fq -curves of j-invariant 1728 is
solvable. For instance, one of prospective approaches ismen-
tioned in [56, Section 4]. Nonetheless, it is suggested to omit
the case of j = 1728 curves in the present section, because
they are not considered over highly 2-adic fields in today’s
real-world cryptography. The situation is radically opposite
for j = 0 curves. So, it is worth explaining how an imple-
menter should act if (s)he encounters the Weierstrass form
E : y2 = x3 + b such that

√
b /∈ Fq .

As usual, one first needs to check the existence of an Fq -
isogeny ϕ : E ′ → E of small (prime) degree � from another
elliptic curve E ′. This can be done bymeans of [68, Theorem
25.4.6]. In this case, nothing prevents to employ the indirect
encoding ϕ ◦ hM . To evaluate ϕ we are able to use classical
Vélu’s formulas [68, Section 25.1.1] requiring O(�) opera-
tions in Fq . Alternatively, there is in [74] the method called
square-root Vélu and denoted by

√
élu. It has the asymptotic

complexity Õ
(√

�
)
, that is, O

(√
�
)
up to polylogarithmic

factors. In turn, the work [75] establishes that the complex-
ity is closer to O(�log2(3)/2). Owing to those sources,

√
élu

becomes more efficient for � ≈ 100.
Now, we proceed to the most painful remaining case.

Obviously,
√

b ∈ Fq2 , hence we can enjoy the admissible
encoding h1 : F

2
q2 → E(Fq2). Further, the trace map

Tr : E(Fq2) → E(Fq) P �→ P + Pq

comes to the fore, where Pq is the point Fq -conjugate to P .
Eventually, we get the composition Tr ◦ h1 : F

2
q2 → E(Fq).

By the way, Tr is also leveraged in Sato–Hakuta’s encoding
[76] relevant conversely for all curves of j �= 0. It is cute,
but useless (regardless of ν) if we bear in mind Tables 1, 2.

Lemma 3 The map Tr ◦ h1 is admissible.

Proof The trace map is known to be a surjective homomor-
phism (as confirmed in [77, Lemma 1]), hence it is regular.
At the same time, Tr is realized as an algebraic Fq -map with
quite clear formulas (see, e.g., [26, Section 7.4.2]), imply-
ing its samplability. Thus, the trace map is admissible, which
readily entails the statement of the lemma. ��
One of disadvantages of this construction is that its domain
has the bit length 4�log2(q)	 instead of 2�log2(q)	. Conse-
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quently, the execution time of a supplementary (indifferen-
tiable) hash function η : {0, 1}∗ → F

2
q2 is doubled as well.

Besides, the cubic root arising in h1 takes place over Fq2

rather than Fq . In contrast to a square Fq2 -root [2, Algorithm
5.18], the author does not know how to express 3

√· ∈ Fq2

through a few Fq -roots. Since E is supposed to be an ordi-
nary curve, q ≡ 1 (mod 3) and thereby the 3-adicities of Fq

and Fq2 coincide. This means that 3
√· ∈ Fq2 is represented

as an exponentiation in Fq2 if and only if the same holds over
Fq , that is, q �≡ 1 (mod 27) due to [23, Lemma 6]. As above,
denote by ω � 2 log2(q) the Hamming weight of the corre-
sponding power. By virtue ofKaratsuba’s trick [2, Algorithm
5.16], let’s assume that one multiplication in Fq2 costs three
multiplications in Fq . As a result, a cubic Fq2 -root is found
after ≈ 2 log2(q)+ω multiplications in Fq2 , which amounts
to ≈ 6 log2(q) + 3ω ones in Fq . To sum up, the encoding
Tr◦h1 has the linear complexity O(log(q)) as desired unless
the field Fq is highly 3-adic. Fortunately, such fields do not
occur in practice to the author’s knowledge.
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