
Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-024-00512-6

ORIG INAL PAPER

“Dirclustering”: a semantic clustering approach to optimize website
structure discovery during penetration testing

Diego Antonelli1 · Roberta Cascella1 · Antonio Schiano1 · Gaetano Perrone2 · Simon Pietro Romano2

Received: 12 April 2023 / Accepted: 30 December 2023
© The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024

Abstract
Dirbusting is a technique used to brute force directories and file names on web servers while monitoring HTTP responses
in order to enumerate server contents. Such a technique uses lists of common words to discover the hidden structure of the
target website. Dirbusting typically relies on response codes as discovery conditions to find new pages. It is widely used in
web application penetration testing, an activity that allows companies to detect website vulnerabilities. Dirbusting techniques
are both time and resource-consuming, and innovative approaches have never been explored in this field. We hence propose
“Dirclustering”, an advanced technique to optimize the dirbusting process by leveraging semantic clustering. Specifically, we
use semantic clustering techniques to organize wordlist items in different groups according to their semantic meaning. The
created clusters are used in an ad-hoc implemented next-word intelligent strategy. This paper demonstrates that clustering
techniques outperform the commonly used brute-force methods. Performance is evaluated by testing eight different web
applications. Results show a performance increase that is up to 50% for each of the conducted experiments.

Keywords Artificial intelligence · Dirbusting · Network security · Penetration testing · Performance assessment · Semantic
clustering

1 Introduction

Web Application Penetration Testing (WAPT) is a proactive
strategy employed by companies to identify vulnerabilities
in web applications using a black-box approach. The process
encompasses various phases, including information gath-
ering, enumeration, exploitation, and analysis. Within the

B Gaetano Perrone
gaetano.perrone@unina.it

Diego Antonelli
diego.antonelli@nttdata.com

Roberta Cascella
roberta.cascella@nttdata.com

Antonio Schiano
antonio.schiano@nttdata.com

Simon Pietro Romano
spromano@unina.it

1 NTT DATA ITALIA S.P.A., VIA ERNESTO CALINDRI,
MILANO, (MI), Italy

2 Department of Electrical Engineering and Information
Technology (DIETI), University of Naples Federico II,
Naples, Italy

information gathering phase, exploring the web application’s
structure and identifying libraries and frameworks are crucial
components. OWASP [1] provides a standard methodology
for testing web application security, emphasizing the sig-
nificance of discovering the application’s structure in the
“Fingerprinting Web Application” Security Test (WSTG-
INFO-09).

Despite the black-box nature ofWebApplication Penetra-
tion Testing, where testers lack a priori knowledge about the
web application’s structure, techniques such as spidering and
dirbusting are employed. Spidering automates the process of
analyzing internal links within HTML pages. However, the
discovery of hidden links calls for alternative approaches.
Dirbusting is a technique that involves brute-forcing a target
with predictable folder and file names. It proves valuable in
discovering hidden pages by monitoring HTTP responses. In
this context, the choice of wordlists in dirbusting becomes
critical, determined by factors like developer conventions,
framework orCMS (ContentManagement System) used, and
the web application’s development language.

Although the technique is used extensively by security
experts, it requires time-consuming manual efforts to select
proper wordlists. At the current time of writing, no research

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-024-00512-6&domain=pdf
http://orcid.org/0000-0001-8238-6426
http://orcid.org/0000-0002-5876-0382

D. Antonelli et al.

works have attempted to analyze if it is possible to auto-
matically select such wordlists in order to optimize the
performance of the dirbusting process. This study aims to
fill the gap by introducing “dirclustering”, a novel approach
to dirbusting optimization through semantic clustering. The
paper demonstrates the effectiveness of this strategy in emu-
lating the decision-making process of security experts when
selecting wordlists.

We conduct a preliminary experiment based on eight
well-known web applications that shows a performance
improvement close to 50% compared to legacy brute-force
approaches. The remainder of this paper is structured as
follows. Section2 delves into the details of the dirbusting
process and provides an introduction to semantic clustering
approaches. Section3 shows related works using semantic
clustering techniques for cybersecurity purposes, while in
Section 4 our approach is illustrated. The designed experi-
mental campaign is described, along with related results, in
Section 5 and Section 6, respectively. The last two sections
summarize the results and provide details about future evo-
lutions of the proposed work.

2 Setting the context

In this section,we introduce themain concepts behind the dir-
busting process, providing information about the techniques
it employs. Additionally, we discuss semantic clustering
along with the most well-known approaches it leverages.

2.1 Dirbusting

Dirbusting is a technique used to brute force a target with
predictable folder and file names while monitoring HTTP
responses to enumerate server contents. This technique uses
wordlists to send HTTP requests to a target website and dis-
cover hidden pages. It is useful during the first phase of a
Penetration Testing activity to discover the target applica-
tion’s structure. It is important to remark that Penetration
Testing is usually carried out as a black-box activity. The
security expert has no access to information about the web
application under test and typically has just low-privileged
access to the system. For this reason, she/he cannot see all
the pages of a web application by just using spidering. Thus,
one of the goals of dirbusting is to discover pages that are
not visible by using standard spidering techniques. Hidden
pages might allow a security expert to find sensitive con-
tent on the website or valid entry points to perform other
vulnerability injection tests. Dirbusting accepts a properly
constructed list of words as input and starts sending HTTP
requests to the website to discover new pages. In order to
successfully complete its task, the dirbusting process needs a
proper discovery condition. A common approach is to use the

response code for that purpose: a new page is found when an
HTTP response contains a status code other than 404 (Page
Not Found). In this work, we define “valid requests” as those
HTTP requests that have a response code other than 404.
The choice of wordlists plays a crucial role in obtaining good
results in terms of discovered pages. Such a choice depends
on the acquired knowledge about the web application. Secu-
rity experts choose the wordlists based on several criteria,
such as:

• which convention the developer has used to define paths;
• which framework/CMS (Content Management System)
has been used;

• which language has been adopted to develop the web
application.

If the web application contains a page whose name comes
with camel case notation (e.g., loginPage), it is advisable
to use camel case wordlists (logoutPage, adminPage, etc.).
Similarly, if the fingerprinting phase detected the existence
of a Wordpress Content Management System, an opti-
mized wordlist should contain Wordpress-specific words
(wp-login.php, wp-logout.php, etc.). On the other hand, if
the web application contains files with well-known exten-
sions (e.g., JSP, PHP), it is better to use a wordlist whose
stems properly fit them.

In this work, we demonstrate that a semantic clustering
strategy is able to optimize dirbusting activities by correctly
mimicking the behavior of a security expert when it comes
to choosing the most appropriate wordlist. Before delving
into the details of the proposed approach, we will briefly
introduce semantic clustering in the following subsection.

2.2 Semantic clustering

Clustering is the process of partitioning a set of data objects
into subsets in such a way that items in the same group are
more similar to each other than to those in other groups. The
objective is to maximize intra-cluster similarity while at the
same time minimizing inter-cluster similarity. It is a widely
used technique in data mining for text domains, where the
items to be clustered are textual, and they can be of different
granularity (documents, paragraphs, sentences, or terms).

Simple text clustering algorithms represent textual infor-
mation as a document-term matrix. Features are computed
based on term frequencies, and semantically related terms
are not considered. Thus, documents clustered in this way
are not conceptually similar to one another if no terms are
shared, as semantic relationships are ignored.

Semantic clustering, instead, consists in grouping items
into semantically related groups [2, 3]. This requires mea-
suring the semantic similarity between textual information,

123

“Dirclustering”: a semantic clustering...

which can be accomplished by vectorizing the text corpus
using, among the others, one of the following resources:

• Semantic networks like WordNet [4]: a large lexical
database of more than 200 languages. Nouns, verbs,
adjectives, and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing a distinct concept.
Synsets are interlinked using conceptual-semantic and
lexical relations.

• Word embedding techniques such asWord2Vec [5, 6] and
GloVe [7]: a word embedding is a simple neural network
trained to reconstruct the linguistic contexts of words. Its
input is a large corpus of words and produces a vector
space, with each unique word assigned to a correspond-
ing vector. Word embeddings allow us to use an efficient,
dense representation in which similar words have a sim-
ilar encoding.

• Sentence Embeddings: while word embeddings encode
words into a vector representation, sentence embeddings
represent a whole sentence in a way that a machine can
easily work with. These are capable of encoding a whole
sentence as one vector. Examples are Doc2Vec [8], an
adaptation of word2vec for documents, or more recent
approaches such as the Universal Sentence Encoder
(USE) [9] and InferSent [10].

• Language representation models like the Bidirectional
Encoder Representations from Transformers (BERT)
[11]: BERT is a method for pre-training language rep-
resentations, meaning that a general-purpose “language
understanding” model is trained on a large text corpus
(e.g., Wikipedia), and then used for downstream Natural
Language Processing tasks. Pre-trained representations
can either be context-free or contextual. Context-free
models such as word2vec [5, 6] or GloVe [7] generate
a single word embedding representation for each word in
the vocabulary, so, for example, the word basket would
have the same representation in sports and e-commerce.
Contextual models, instead, generate a representation of
each word that depends on the other words in the sen-
tence.

Our approach leverages the Universal Sentence Encoder
(USE) [9] as the chosen sentence embedding technique.
Indeed, one of the main tasks for training a USE encoder
is identifying the semantic textual similarity (STS) [12]
between sentence pairs scored by Pearson correlation with
human judgments. This is a task that perfectly fits our needs.

After the text corpus encoding phase, it is required to use
a clustering algorithm in order to create the semantic clus-
ters. Several clustering techniques can be effective for this
purpose [13], and among the available choices, the K-means
algorithm is used for its simplicity and accuracy.

One of the issues with K-means is the effective choice
of the parameter K, i.e., the number of target clusters. In
our case, such an issue is solved by leveraging the well-
known elbow method, a heuristic used in determining the
number of clusters in a data set. Figure 2 provides a graphical
representation of such a heuristic.

This paper demonstrates that the proposed method allows
us to improve dirbusting techniques by leveraging artificial
intelligence. The approach was tested on eight web applica-
tions with 30 repetitions each, demonstrating a substantial
performance improvement in each case..

3 Related works

The use of artificial intelligence techniques to improve secu-
rity tasks is well proven, especially for realizing anomaly
detection [14–18] and malware detection systems [19–22].
Despite the extensive literature, to the best of our knowl-
edge, the exploration of how to leverage artificial intelligence
in dirbusting has not been undertaken before. Relevant
works typically fall in the wider area of semantic cluster-
ing methodologies that have been extensively explored in
other application domains [2, 3]. Regardless of their applica-
tion to dirbusting, Natural Language Processing techniques
have been extensively used in security. Karbab [23] uses
Natural Language Processing and machine learning tech-
niques to create a behavioral data-driven malware detection
tool. Malhotra [24] shows that NLP can help evaluate the
completeness, contradiction, and inconsistency of security
requirements of a software system.

In general, the use of Artificial Intelligence techniques for
PenetrationTesting has not been fully explored yet. However,
several techniques, such as fuzzing, have been used in other
domains. As an example, in the software testing field, several
works show how it is possible to optimize fuzzing techniques
by using machine learning [25]. Our work shows how it is
possible to optimize a bruteforce technique (i.e., dirbusting)
by usingArtificial Intelligence.Hitaj [26] demonstrates that a
Deep Learning approach can outperform both rule-based and
state-of-the-art password guessing methods. Since password
guessing is fundamentally a brute-force attack, our work
asserts that it is feasible to enhance Penetration Testing tasks
through AI. Specifically, Natural Language Processing tech-
niques have the potential to improve tasks related to word
usage. With special reference to dirbusting, semantic clus-
tering can indeed optimize a brute-force approach by finding
both syntactic and semantic relations among words.

Semantic clusters can be modeled in different ways,
including the usage of external resources such as Wikipedia
like in [27, 28], where authors clustered the text corpus
with an ensemble approach using knowledge and concepts
fromWikipedia. Other works [29–32] leverage semantic net-

123

D. Antonelli et al.

Fig. 1 The semantic clustering process used to group similar words. Each word in the wordlist is encoded by using the Universal Sentence Encoding
(USE), then K-means clustering is used to group similar words

works, such as WordNet [4], which is used as word sense
disambiguation to capture the main theme of the text and
identify relationships among words. More recent applica-
tions use word embedding techniques [33–35] and sentence
embedding techniques [36–38] where unsupervised embed-
dings models are used to encode the text corpus prior to the
clustering process.

Our semantic clustering approach follows the works
described in [36] and [37]. In [36], Universal Sentence
Encoding (USE) [9] and InferSent [10] are used to find
semantic similarities among user questions and cluster them
by using the K-means clustering algorithm. In [37], such
techniques are instead used to group similar tweets in a
semantic sense.

4 Proposed solution

The proposed approach groups common files and directo-
ries contained in the wordlist based on the chosen semantic
clustering technique. Semantic clusters define the execution
order of the entries in the wordlist, with the aim of optimiz-
ing the dirbusting process. Namely, the approach involves a
data pre-processing step on the entries of the wordlist and the
subsequent creation of semantic clusters using the Universal
Sentence Encoder (USE), in conjunction with the K-means
clustering algorithm, as shown in Fig. 1.

4.1 Semantic clustering

The first step of the clustering process is data-processing,
which consists of splitting each entry of the wordlist accord-
ing to the naming convention (camelCase, snake_case,
kabab-case), and punctuation characters: (! " $ # % &
‘ () * +, -. /:; <= >? [] ^% _ { ∼ @).

For instance, the sentence“comments/add_comment.php”
becomes “comments / add _ comment. php” and “Unicode-
Test.txt” becomes “Unicode Test. txt”. This is a fundamental
step because the naming convention and the punctuation
characterizing each entry of the wordlist affect the encod-
ing of the entry itself into embedding vectors. This may lead
to a wrong similarity measure. For this reason, we detect the
words in each entry to treat them as sentences instead of sin-
gle words. This approach allows us to capture the semantic
similarity among names contained in a wordlist, irrespective
of the specific naming convention adopted by developers.

Then, a sentence embedding technique is used to encode
each wordlist entry as a 512-dimensional vector so that sim-
ilar words, often used in similar contexts, have a similar
embedding vector representation.

More specifically, the Universal Sentence Encoder (USE)
[9], version 4, implemented in TensorFlow 2.2.0 [39] is used.
This model encodes text into high-dimensional vectors used
for text classification, semantic similarity, clustering, and
other natural language tasks. Themodel is trained on a variety
of data sources and optimized for greater-than-word length
text, such as sentences, phrases, or short paragraphs. One of
the main tasks for the USE training is identifying the seman-
tic textual similarity (STS) between sentence pairs, a task
that perfectly fits our needs and justifies our choice.

Finally, extracted embeddings are used with clustering
techniques to create the semantic clusters. Our approach
uses the K-means clustering technique for its simplicity and
accuracy. The number of clusters is chosen using the elbow
method, a heuristic used to determine the number of clusters
in a data set. The method consists of plotting the explained
variation as a function of the number of clusters and picking
a point slightly right to the elbow of the curve as the number
of clusters to use, 20 in this case.

In Fig. 3, Principal Component Analysis (PCA) is used
to show in a two-dimensional space the similarities of the
words of the wordlist encoded using USE. Each of the points
in the picture represents a word (word_ik), and each color
represents the cluster (cluster_k) where the word belongs. As
shown in the picture, semantically similar words are closer
in the embedding space and are grouped in the same cluster.

Other examples are presented in Table 1 where words
belonging to 5 different clusters are analyzed.

4.2 Intelligent dirbusting strategy

We implemented an intelligent dirbusting strategy that uses
the semantic clusters created according to the proposed
approach to improve the legacy brute force techniques.

Commonly used dirbusting techniques require a huge
number of requests to the target website, attempting to guess
the names or identifiers of hidden functionality based on the
common files and directories contained in the wordlists.

The choice of the wordlist depends on the information
gathered by the security experts during the spidering process,
whose main task is to enumerate the target’s visible content
and functionality. Based on the knowledge acquired during

123

“Dirclustering”: a semantic clustering...

Fig. 3 The figure shows semantic clusters in a two-dimensional space generated by the Principal Component Analysis (PCA). The space shows
the similarities of the words in the wordlist encoded using the Universal Sentence Encoder (USE)

Fig. 2 Elbow method, used to select the optimal number of clusters.
The number of clusters corresponding to the “elbow” point is considered
to be optimal. It is a compromise between the number of clusters and
the quality of clustering

this phase, the experts select the proper wordlist following
these criteria:

• Naming conventions: developers are used to following a
naming convention (camel case, snake case, kebab case)
when implementing a web application. For this reason, if
a security expert identifies a specific naming convention,
the wordlist is chosen or adapted to it.

• Content Management Systems (CMS): if the fingerprint-
ing phase detected the existence of a certain CMS, a
corresponding wordlist is chosen.

• Used programming language: if the web application
under test contains files with well-known extensions (e.g.
.jsp, .php), it is advisable to use a wordlist whose stems
properly fit them.

As a general rule, in order to discover as much hidden
content as possible, it is fundamental to choose the wordlist
that best suits the target’s characteristics. Once the wordlist

Table 1 Examples of similarities in semantic clustered words

Word Cluster

Libraries/joomla/github/package/gitignore.php 1

Plugins/user/joomla/joomla.php 1

Libraries/cms/menu/menu.php 1

Libraries/cms/component/helper.php 1

Wp-login.php 2

Wp-config.php 2

Wp-includes/fonts/dashicons.eot 2

Wp-content/plugins/index.php 2

About.php 3

Appinfo.php 3

Index.php 3

Update.php 3

Basket.jsp 4

Product.jsp 4

Search.jsp 4

Cart/.gitignore 4

Images/bricks.jpg 5

Images/menu/menu_tabs.gif 5

Misc/tree.png 5

Favicon.ico 5

is chosen, the dirbusting process starts by addressing HTTP
requests to the target according to the directory andfile names
in the list. The order of execution of the requests follows the
wordlist order, as described in algorithm 1 below.

Our approach aims at making dirbusting more intelligent
by leveraging artificial intelligence. As described in the flow
in Fig. 4, the process starts by choosing a random word
(word_ik) from a common wordlist. When a valid URL is
detected, the proposed strategy consists of choosing the clus-
ter (cluster_k) where the current word belongs. In this way,
the next words picked from the chosen cluster will likely tar-

123

D. Antonelli et al.

while words in wordlist do
pop a word from wordlist (word_i);
url = basePath + word_i;
statusCode = httpRequest(url);
if statusCode is not 404 then

save word_i;
else

continue iterations;
end

end
Algorithm 1: Dirbusting Process. Send an HTTP request
and check the response code for each word in the wordlist.
If the response code is different from 404 (i.e., the “not
found” status code), then store the path.

get another valid URL. Examples of words grouped in the
same cluster are given in Tab. 1.

While common dirbusting techniques require that the
expert is forced to manually select a wordlist according
to the target characteristics, the intelligent dirbusting strat-
egy accomplishes this task by building the above-described
semantic clusters while considering the following aspects:

• the CMS used in web applications: as shown in Table 1,
in clusters 1 and 2, words related to different CMSs are
grouped together. In cluster 1, Joomla-related words are
included, while in cluster 2 we can find words commonly
used in WordPress;

• web application programming languages: clusters 3 and
4, in Table 1, include words related to specific languages.
In these clusters, the programming languages PHP and
JSP, respectively, are represented;

• semantic similarities: semantic clusters are able to con-
sider semantic similarities as well. In this way, dirbusting
is able to automatically understand the context of the
website. In Tab. 1, cluster 4 contains words related to e-
commerce, whereas in cluster 5, words associated with
images are considered.

5 Trials and experimentation

The experiments aim to demonstrate that a dirbusting strat-
egy based on semantic clustering enhances the discovery of a
website structure by reducing the number of HTTP requests
required to successfully complete the entire process. To this
purpose, we developed a virtualized environment composed
of 8 distinct target websites. Then, we created a wordlist
containing full paths of each website and instrumented a dir-
busting tool that can be configured to run either in bruteforce
mode or by leveraging the semantic clustering strategy intro-
duced by us. In order to create the wordlist, we have started
all of the target applications and retrieved full paths by exe-

Fig. 4 The semantic clustering strategy flow is used to optimize the dir-
busting process. At the start, a random word is chosen from a common
wordlist. Then, depending on the found valid URLs, the word selec-
tion extracts words belonging to the cluster obtained by the semantic
clustering process

Table 2 Web applications words count

Web Application Words Count Total %

Bodgeit 40 0.47%

Bricks 66 0.78%

Drupal (CMS) 1074 12.82%

DVWS 80 0.95%

Joomla (CMS) 4672 55.78%

Wacko 126 1.50%

Wordpress (CMS) 1595 19.04%

XVWA 722 8.62%

Total 8375 100%

cuting OS-level commands. In Tab. 2, the word count for
each web application under attack is reported.

After obtaining the wordlist, we applied semantic clus-
tering in order to group words according to their semantic
meaning. The resulting clusters are stored in an ad hoc con-
figuration file that is used by the instrumented dirbusting

123

“Dirclustering”: a semantic clustering...

module when carrying out the clustering-based testing cam-
paigns.

Finally, for each website, we have performed the exper-
iments by executing the dirbusting tool both in bruteforce
mode and in semantic clustering mode. Each experiment’s
results have been logged to enable further offline analysis of
the collected data.

The virtualization environment is a useful alternative to a
real-world setup for several reasons:

• we do not have to deal with network issues that might
affect the environment;

• we do not create potential Denial Of Service conditions.
Indeed, as the dirbusting process sends lots of requests
against a web application, if the tested webserver is not
designed to support high traffic loads, it might crash;

• we do not run into legal issues: a bruteforce directory
listing might be tagged as a bruteforce attack. Dirbusting
is an inner part of Penetration Testing. As such, it should
be regulated by contracts.

As described in Section 1, we define a “valid request”
as an HTTP request that has revealed a new path within the
target website. We compare the total number of executed
HTTP requests with the number of valid HTTP requests. To
improve the significance of the results, we have repeated each
experiment 30 times for each website.

With the bruteforce approach, the unique wordlist is shuf-
fled, and words are used to perform the classic dirbusting
procedure. On the other hand, with the clustering approach,
we use the algorithm we have described in the previous sec-
tion to select the words from the wordlist in a non-random
way.

We compared the results graphically by plotting the rela-
tionship between the total requests sent to the target website
and the number of valid requests.

Our goal is to compare the above-mentioned approaches
by measuring the overall number of requests sent to the web
application in order to complete the discovery of a website’s
structure thoroughly. Such a comparative evaluation aims to
show that performance increases when using the semantic
clustering approach.

5.1 Experiment information

The following information is useful to describe the per-
formed experiments better. Firstly, we do not evaluate the
time required to complete the task. Instead, we aim to ver-
ify that our solution reduces the number of HTTP requests
sent to reconstruct the entire structure of the target website.
Hence, we do not compare the execution time of the two
approaches.

Fig. 5 Architecture of the dirbusting tool used to perform experiments.
The input parameters are the target URL, a boolean value that enables
the semantic clustering approach, and a seed value used to increase the
randomness of thewordlist’s shuffling. The tool is instrumented through
a configurationmodule,while theHTTP requests are performed through
the dirbuster module

As already anticipated, we have created an isolated
environment by using container-based virtualization. No
highly-intensive processes have been run during the tests.
We continuously monitored CPU, RAM, and disk usage dur-
ing each experiment to ensure that none went under pressure
during any of the trials. We also verified that the tool did not
crash during any of the runs.

Network issues might impact the results of the campaign.
While we are not specifically focusing on response times,
a stable network is crucial. Network problems could lead
to response timeouts, potentially invalidating results. For
these reasons, websites are deployed in an isolated Docker
network. The environment operates within the context of
the dirbusting instrumented tool. Therefore, we can safely
assume that there are no network reliability issues during the
experiments.

5.2 Architecture of the benchmarking tool

To perform experiments, we instrumented a dirbusting tool
that is illustrated in Figure 5

The tool in question was developed in Python 3.6 and is
made of three components:

• Entrypoint: accepts input parameters needed to set up a
trial associated with a specific target;

• AiDirBuster: dirbusting module that implements the
dirbusting process either in bruteforce mode or by lever-
aging the semantic clustering strategy proposed by us;

• Config: configuration module containing several config-
uration parameters, such as groups of words identified
through semantic clustering.

The tool accepts the following parameters as inputs:

• use_clustering: a boolean value. If true, dirbusting uses
the semantic clustering strategy; otherwise, a brute-force
approach is adopted;

123

D. Antonelli et al.

• target_url: the target web application used to run the
experiment;

• seed: a seed used to increase randomness when the
wordlist is shuffled during the brute-force approach.

Semantic clusters are computed offline and subsequently
stored in the above-mentioned Config module.

Universal Sentence Encoder (USE) [9], version 41, imple-
mented in TensorFlow 2.2.0 [39], is used to extract sentence
embeddings.

We leveraged the K-means clustering algorithm imple-
mentation made available by the sklearn python library to
find and collect clusters. The default set of parameter val-
ues was used, except for the factor ‘K’, which was properly
configured with the elbow method.

5.3 Experimental environment setup

To simulate the dirbusting process, we have built a docker
environment composed of 8 publicly available web applica-
tions, some of which are also typically used for experiment-
ing with vulnerability assessment and penetration testing.

Table 3 shows the characteristics of the web applications
in question.

Among the applications reported in the table, the ones that
are usually used to experiment with web application penetra-
tion testing areBodgeit,2 bricks,3 DVWS4 (DamnVulnerable
Web Services), XVWA5 (Xtreme Vulnerable Web Applica-
tion) and Wacko.6

On the other hand, Wordpress,7 Drupal8 and Joomla9 are
among the most widely spread PHP Content Management
Systems used to create web applications.

The environment realized for the experiment is built by
using an Infrastructure as Code (IaC) approach. A docker-
compose file including eight services describes the system’s
architecture under test, as shown in Fig. 6. Each service
exposes the standard HTTP service (port 80) and maps it
onto an unassigned TCP port of the hosting machine. The
semantic clustering dirbusting tool sends requests to the eight
web applications by targeting such exposed TCP ports on the
host. With this approach, it is possible to add new web appli-

1 https://tfhub.dev/google/universal-sentence-encoder/4
2 https://github.com/psiinon/bodgeit
3 https://sourceforge.net/projects/owaspbricks/
4 https://github.com/snoopysecurity/dvws
5 https://github.com/s4n7h0/xvwa
6 https://github.com/adamdoupe/WackoPicko
7 https://wordpress.com/
8 https://www.drupal.org/
9 https://www.joomla.org/

Fig. 6 The container-based testbed architecture used to evaluate the
proposed algorithm. Each web application runs inside a Docker con-
tainer and exposes an unassigned TCP port in the host machine

cations in an easy way, as well as to extend the experiment
by including new target applications.

5.4 Wordlist acquisition

We extracted paths from eachwebserver to create the inte-
grated wordlist and merged them in a single file. Given n the
number of webservers used for the experiments, the follow-
ing formula applies:

UniqueW ordlist = rand(
n∑

w=1

absolute_pathsw)

In a nutshell, UniqueWordlist can be obtained as the ran-
domized concatenationof all absolute paths contained in each
webserver.

The path extraction task for a specified webserver can
be carried out by executing OS-level commands inside the
related Docker service. The following one-line command is
a practical example of how the above-mentioned task might
be completed:

docker exec -it <webserver> bash
cd /var/www
find . | sed ’s/ˆ\.//g’

The concatenation of all of the collected words creates a
unified wordlist. As described in the previous section, the
words in the wordlist are basically absolute paths. For our
experiments, the final unified wordlist is composed of 8367
words.

123

https://tfhub.dev/google/universal-sentence-encoder/4
https://github.com/psiinon/bodgeit
https://sourceforge.net/projects/owaspbricks/
https://github.com/snoopysecurity/dvws
https://github.com/s4n7h0/xvwa
https://github.com/adamdoupe/WackoPicko
https://wordpress.com/
https://www.drupal.org/
https://www.joomla.org/

“Dirclustering”: a semantic clustering...

(a) Bodgeit (b) Bricks

(c) Drupal (d) DVWS

Fig. 7 Performance plots for Bodgeit, Bricks, Drupal, and DVWS web
applications. The plots depict the mean and standard deviation trends
of the detected valid requests relative to the total requests sent to the

target server, averaged over 30 experiments. As observed, the semantic
clustering approach (blue) demonstrates a performance improvement
of nearly 50% compared to the legacy brute-force strategy (orange)

123

D. Antonelli et al.

(a) Joomla (b) Wacko

(c) Wordpress (d) XVWA

Fig. 8 Performance plots for Joomla, Wacko, Wordpress, and XVWA
web applications. The results mirror those in Fig. 7, with the exception
of Joomla, where the performance improvements are less pronounced.

This is attributed to the fact that the wordlist used for the experiment
contains more than half of the words related to Joomla. Hence, selecting
a comprehensive wordlist is crucial for achieving favorable results

123

“Dirclustering”: a semantic clustering...

Table 3 Web applications used
for the experiment

Web Application Language Extension path name convention

Bodgeit jsp under case

Bricks php camel case

Drupal (CMS) php snake case

DVWS php snake case

Joomla (CMS) php upper case

Wacko php snake case

Wordpress (CMS) php kebab case

XVWA php snake case

6 Experimental results

Our experiments allowed us to demonstrate that the enhanced
dirbusting strategy we propose outperforms the legacy brute-
force approach. Indeed, for each of the eight web servers
under test, we achieved a performance improvement of up to
50%.

In Fig. 7 and Fig. 8, we show the results of our campaign.
For each web server, we plot both the mean and the standard
deviation (std) trend of the detected valid requests over the
number of total requests addressed to the target server. Each
experiment has been replicated 30 times in order to improve
the significance of the collected results.

As we anticipated above, a “valid request” is a request
with a response code other than 404 (Not Found HTTP error
message).

In each of the plots, the two approaches are compared.
In orange, we show the results of the legacy random brute-
force approach, while in blue, we report the performance of
the proposed semantic clustering strategy.

As it is possible to observe, the random brute-force strat-
egy shows a linear trend. Indeed, as we apply randomization
for each experiment, the number of requests needed to find
all the paths is, on average, equal to the number of paths.
In this way, the longer the wordlist, the higher will be the
number of requests required to find the valid paths.

On the other hand, semantic clustering shows a steeper
growth rate. As a matter of fact, with this approach, the curve
stops increasing much earlier than with the brute force one.

With all web servers under test, the trend of the two
approaches always remains the same. This indicates the gain
in performance that can be achieved by leveraging the pro-
posed semantic clustering approach.

Furthermore, our approach can identify almost all avail-
able target URLs with only half of the requests compared
to the brute-force approach. This results in a performance
improvement of close to 50%.

The only exception is Joomla, where the performance
improvements are comparatively lower than those observed
in the other web applications under test. The reason behind
this finding is that the number of words collected for Joomla

is 4672, which is more than half the total number of words
included in our wordlist. This is evident when looking at the
word count in Table 2. As observed, Joomla covers about half
of the integrated wordlist.. This means that with a random
approach, we can find valid URLs in Joomla with a proba-
bility of about 50%, reducing the potential gain achievable
by leveraging the alternative approachwe propose.Neverthe-
less, there is still a clear improvement for thisweb application
as well, with around 2000 requests less than those needed to
find all of the available paths with the brute-force approach.

7 Discussion

Many studies explore security testing in the web applica-
tion domain, but current works often neglect the problem of
optimizing the enumeration phase. The primary objective of
our work has been to fill this gap. Specifically, we explore
a novel approach based on semantic clustering to optimize
the “dirbusting” technique, which is one of themost common
approaches used to discover the structure of web applications
during the enumeration phase of web application penetration
testing.

This technique employs a “brute-forcing” fuzz of known
path names to uncover hidden folders and files within the
web application. The approach is well-defined in business
security standards, such as CommonWeakness Enumeration
(CWE) [40] and Common Attack Pattern Enumeration and
Classification (CAPEC) [41] methodology. Additionally, it
can be instrumental in identifying security disclosure flaws,
as the discovered paths may contain hidden sensitive data
that could be exposed to malicious attackers.

Regrettably, conventional approaches are typically time-
consuming, involving security experts who manually inspect
the components of the web application and attempt to guess
potential valid paths.

We demonstrate the feasibility of optimizing this activ-
ity through a semantic clustering approach. Our experiments
indicate that the total number of HTTP requests needed to
uncover the structure of a web application can be reduced by
up to 50% compared to the classic dirbusting approach.

123

D. Antonelli et al.

It is important to note that performance is highly depen-
dent on the chosen wordlist. In our experiment, where the
wordlist consists of approximately 50% Joomla paths, the
approach does not yield significant benefits. Therefore, it is
crucial in the initial setup to properly configure the solution
with a comprehensive wordlist.

It is crucial to emphasize that this study serves as an
introduction to the effectiveness of semantic clustering in
addressing the challenge of web application structure dis-
covery. The primary goal was to demonstrate that a semantic
clustering approach can be applied in the unexplored realm
of the enumeration phase, optimizing the typically manual
dirbusting process. As such, trials and experiments were
conducted in a controlled, small, and isolated environment,
primarily focused on vulnerable applications and Content
Management Systems.

Further studies should be undertaken to assess the solution
with more comprehensive wordlists, diverse features, and a
broader range of applications.

This assumption is valid, as the main goal of a penetra-
tion tester activity is to completely discover web application
vulnerabilities.

The proposed approach should be further analyzed in
production environments. In real-world scenarios, web appli-
cations are often deployed behind web application firewalls
that could potentially block certain HTTP requests, impact-
ing the effectiveness of dirbusting. Bypass techniques for
such firewalls are an important consideration but are outside
the scope of this work.

For the purposes of this study, the assumption is made
that the security tester is authorized to perform the assess-
ment, and defense firewalls are disabled. This assumption
aligns with the primary goal of penetration testing, which is
to thoroughly discover vulnerabilities in web applications.

The proposed ideas are generalizable and can be adapted
to specific needs. Future work could involve extending
experiments to include real-world applications for a more
comprehensive evaluation. Additionally, exploring the appli-
cation of large language models (LLMs) could be beneficial
to identify further improvements to the approach. Combin-
ing different techniques, such as standard web spidering with
dirbusting, is another avenue for improvement. This could
involve using spidering to detect the overall structure of
the target web application and then leveraging dirbusting to
uncover hidden or private pages.

It is important to note that our work focuses on demon-
strating the effectiveness of a semantic clustering approach
compared to a brute-force one for discovering the web appli-
cation structure. As a result, strategies for exploring subpaths
are not considered in this study. Thewordlists used during the
experimentation consist of full paths (e.g., /users/mooney/ir-
course/). However, dirbusting techniques can be recursive,
meaning that whenever a new path is found, dirbusting can

be recursively applied to it to discover new subpaths. This
recursive aspect could be explored in future work for a more
comprehensive analysis. In view of the above considerations,
it would be interesting to investigate the use of our semantic
clustering approach in a recursive way while also evaluat-
ing the possible alternative strategies for applying recursion
while navigating through the dynamically identified sub-
paths (e.g., breadth-first, depth-first, etc.).

8 Conclusions

Web application security testing is paramount for shield-
ing digital assets against potential threats. Security testers,
pivotal in identifying and addressing vulnerabilities, often
engage in directory busting during the enumeration phase.
In this study, we introduce “dirclustering”, a semantic clus-
tering approach, as a significant optimization to traditional
dirbusting techniques. Through meticulous experimentation
in a controlled testbed, our results demonstrate the superior
effectiveness of “dirclustering” compared to conventional
dirbusting methods. This work opens a promising avenue for
enhancing the enumeration phase of web application secu-
rity testing, providing valuable insights for security testers to
optimize their processes and achieve more efficient results in
subsequent assessment phases.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

1. Williams, J.: The OWASP project (ed.) (no date) Testing guide 4
- OWASP. https://owasp.org/www-project-web-security-testing-
guide/assets/archive/OWASP_Testing_Guide_v4.pdf. Accessed
04 Feb 2024

2. Ibrahim, R., Zeebaree, S., Jacksi, K.: Survey on semantic similarity
based on document clustering. Adv. Sci. Technol. Eng. Syst. J 4(5),
115–122 (2019)

3. Naik,M.P., Prajapati, H.B., Dabhi, V.K.: A survey on semantic doc-
ument clustering. In: 2015 IEEE International Conference on Elec-
trical, Computer and Communication Technologies (ICECCT), pp.
1–10 (2015). IEEE

4. Fellbaum, C.: Wordnet. The encyclopedia of applied linguistics.
Chichester, England: Wiley-Blackwel (2012)

5. mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient esti-
mation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013)

6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.:
Distributed representations of words and phrases and their compo-
sitionality. Adv. Neural Inf. Process. Syst. 26, 3111–3119 (2013)

7. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors
for word representation. In: Proceedings of the 2014 Conference

123

https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
http://arxiv.org/abs/1301.3781

“Dirclustering”: a semantic clustering...

on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1532–1543 (2014)

8. Le, Q., Mikolov, T.: Distributed representations of sentences and
documents. Int. Conf. Mach. Learn. 32, 1188–1196 (2014)

9. Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John, R.S.,
Constant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., et al.: Uni-
versal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

10. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.:
Supervised learning of universal sentence representations from
natural language inference data. arXiv preprint arXiv:1705.02364
(2017)

11. Devlin, J., Chang,M.-W., Lee,K., Toutanova,K.: Bert: Pre-training
of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018)

12. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.:
SemEval-2017 task 1: Semantic textual similarity multilingual
and crosslingual focused evaluation. In: Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-2017),
pp. 1–14. Association for Computational Linguistics, Vancouver,
Canada (2017). https://doi.org/10.18653/v1/S17-2001 . https://
www.aclweb.org/anthology/S17-2001

13. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern
Recognit. Lett. 31(8), 651–666 (2010)

14. Song, X., Wu, M., Jermaine, C., Ranka, S.: Conditional anomaly
detection. IEEE Trans. Knowl. Data Eng. 19(5), 631–645 (2007).
https://doi.org/10.1109/tkde.2007.1009

15. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network
anomaly detection: methods, systems and tools. IEEE Commun.
Surv. Tutor. 16(1), 303–336 (2014). https://doi.org/10.1109/SURV.
2013.052213.00046

16. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a sur-
vey. ACM Comput. Surv. 10(1145/1541880), 1541882 (2009)

17. Ahmed, M., Naser Mahmood, A., Hu, J.: A survey of network
anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31
(2016). https://doi.org/10.1016/j.jnca.2015.11.016

18. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for
anomaly detection: a review. ACM Comput. Surv. (2021). https://
doi.org/10.1145/3439950

19. Aslan, A., Samet, R.: A comprehensive review on malware detec-
tion approaches. IEEE Access 8, 6249–6271 (2020). https://doi.
org/10.1109/ACCESS.2019.2963724

20. Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S.: A survey on mal-
ware detection using data mining techniques. ACM Comput. Surv.
(2017). https://doi.org/10.1145/3073559

21. Qiu, J., Zhang, J., Luo,W., Pan, L., Nepal, S., Xiang,Y.:A survey of
androidmalware detectionwith deepneuralmodels.ACMComput.
Surv. (2020). https://doi.org/10.1145/3417978

22. Deore, M., Kulkarni, U.: Mdfrcnn: malware detection using faster
region proposals convolution neural network. Int. J. Interact.
Multimed. Artif. Intell. 7(4), 146 (2022). https://doi.org/10.9781/
ijimai.2021.09.005

23. Karbab, E.B., Debbabi, M.: Maldy: portable, data-driven malware
detection using natural language processing and machine learning
techniques on behavioral analysis reports. Digital Invest. 28, 77–87
(2019)

24. Malhotra, R., Chug, A., Hayrapetian, A., Raje, R.: Analyzing and
evaluating security features in software requirements. In: 2016
International Conference on Innovation and Challenges in Cyber
Security (ICICCS-INBUSH), pp. 26–30 (2016). IEEE

25. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: Machine learning
for input fuzzing. In: 2017 32nd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 50–59
(2017). IEEE

26. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: Passgan: A deep
learning approach for password guessing. In: International Confer-
ence on Applied Cryptography and Network Security, pp. 217–237
(2019). Springer

27. Nourashrafeddin, S., Milios, E., Arnold, D.V.: An ensemble
approach for text document clustering using wikipedia concepts.
In: Proceedings of the 2014 ACM Symposium on Document Engi-
neering, pp. 107–116 (2014)

28. Wu, Z., Zhu, H., Li, G., Cui, Z., Huang, H., Li, J., Chen, E., Xu,
G.: An efficient Wikipedia semantic matching approach to text
document classification. Inf. Sci. 393, 15–28 (2017)

29. Desai, S.S., Laxminarayana, J.: Wordnet and semantic similarity
based approach for document clustering. In: 2016 International
Conference on Computation System and Information Technology
for Sustainable Solutions (CSITSS), pp. 312–317 (2016). IEEE

30. Sahni, L., Sehgal, A., Kochar, S., Ahmad, F., Ahmad, T.: A novel
approach to find semantic similarity measure between words. In:
2014 2nd International Symposium on Computational and Busi-
ness Intelligence, pp. 89–92 (2014). IEEE

31. Wei, T., Lu, Y., Chang, H., Zhou, Q., Bao, X.: A semantic approach
for text clustering using wordnet and lexical chains. Expert Syst.
Appl. 42(4), 2264–2275 (2015)

32. Fiorini, N., Harispe, S., Ranwez, S.,Montmain, J., Ranwez,V.: Fast
and reliable inference of semantic clusters.Knowl.BasedSyst.111,
133–143 (2016)

33. Zhang, L., Li, J., Wang, C.: Automatic synonym extraction using
word2vec and spectral clustering. In: 2017 36th Chinese Control
Conference (CCC), pp. 5629–5632 (2017). IEEE

34. Li, C., Lu, Y.,Wu, J., Zhang, Y., Xia, Z.,Wang, T., Yu, D., Chen, X.,
Liu, P., Guo, J.: Lda meets word2vec: a novel model for academic
abstract clustering. In: Companion Proceedings of the The Web
Conference 2018, pp. 1699–1706 (2018)

35. Alshari, E.M., Azman, A., Doraisamy, S., Mustapha, N., Alkeshr,
M.: Improvement of sentiment analysis based on clustering of
word2vec features. In: 2017 28th International Workshop on
Database and Expert Systems Applications (DEXA), pp. 123–126
(2017). IEEE

36. Karagkiozis, N.: Clustering Semantically Related Questions Öre-
bro University, School of Science and Technology. (2019)

37. Asgari-Chenaghlu,M., Nikzad-Khasmakhi, N.,Minaee, S.: Covid-
transformer: Detecting trending topics on twitter using universal
sentence encoder. arXiv preprint arXiv:2009.03947 (2020)

38. Bodrunova, S.S., Orekhov, A.V., Blekanov, I.S., Lyudkevich, N.S.,
Tarasov, N.A.: Topic detection based on sentence embeddings and
agglomerative clustering with Markov moment. Future Internet
12(9), 144 (2020)

39. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasude-
van, V., Viégas, F., Vinyals, O.,Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org
(2015). https://www.tensorflow.org/

40. Corporation,M.: CWE-552: Files or directories accessible to exter-
nal parties. https://cwe.mitre.org/data/definitions/552.html (2023)

41. Corporation, M.: CAPEC-143: Detect unpublicized web pages.
https://capec.mitre.org/data/definitions/143.html (2023)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/S17-2001
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/S17-2001
https://doi.org/10.1109/tkde.2007.1009
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3439950
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1145/3073559
https://doi.org/10.1145/3417978
https://doi.org/10.9781/ijimai.2021.09.005
https://doi.org/10.9781/ijimai.2021.09.005
http://arxiv.org/abs/2009.03947
https://www.tensorflow.org/
https://cwe.mitre.org/data/definitions/552.html
https://capec.mitre.org/data/definitions/143.html

	``Dirclustering'': a semantic clustering approach to optimize website structure discovery during penetration testing
	Abstract
	1 Introduction
	2 Setting the context
	2.1 Dirbusting
	2.2 Semantic clustering

	3 Related works
	4 Proposed solution
	4.1 Semantic clustering
	4.2 Intelligent dirbusting strategy

	5 Trials and experimentation
	5.1 Experiment information
	5.2 Architecture of the benchmarking tool
	5.3 Experimental environment setup
	5.4 Wordlist acquisition

	6 Experimental results
	7 Discussion
	8 Conclusions
	References

