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Abstract
Division property is an effective method for finding integral distinguishers for block ciphers, performing cube attacks on
stream ciphers, and studying the algebraic degree of boolean functions. One of the main problems in this field is how to
provably find the smallest input multiset leading to a balanced output. In this paper, we propose a new method, using the
division property, to find integral distinguishers for permutation functions and block ciphers, with provably-minimum data
complexity, in the conventional division property model. The new method is based on a precise and efficient analysis of the
target output bit’s algebraic normal form. We examine the proposed method on LBlock, TWINE, SIMON, Present, Gift, and
Clyde-128 block ciphers. Although in most cases, the results are consistent with the distinguishers reported in previous work,
their optimality is proved, in the conventional division property model. Moreover, the proposed method can find distinguishers
for 8-round Clyde-128 with less data complexity than previously reported. Based on the proposed method, we also develop
an algorithm capable of determining the maximum number of balanced output bits for integral distinguishers with a certain
number of active bits. Accordingly, for the ciphers under study, we determine the maximum number of balanced bits for
integral distinguishers with data complexities set to minimum and slightly higher, resulting in improved distinguishers for
Gift-64, Present, and SIMON64, in the conventional model.

Keywords Division property · Integral distinguisher · MILP · Clyde-128 · LBlock · TWINE · SIMON · Gift · Present

1 Introduction

Higher-order differential and integral characteristics [1–3]
are generalizations of the differential characteristic that can
be used as distinguishers for block ciphers. In these types of
characteristics, the XOR of outputs, corresponding to a set of
chosen inputs, equals zero in specific output positions. The
output bits with such property are called balanced.

Division property, proposed by Todo at Eurocrypt 2015
[4], is an efficient method for finding these types of char-
acteristics. Todo used this property in a breadth-first search
algorithm and proposed improved integral characteristics for
SIMON, Keccak, and Serpent. At Asiacrypt 2016, Xiang et
al. proposed anMILPmodel describing the division property
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propagation, based on which they developed an automated
method for finding integral distinguisher [5].

The division property comes in two models: conventional
division property [4] and three-subset division property [6].
The conventional model is easier to be automated though it
is less accurate and may miss some potential integral char-
acteristics. In contrary, the three-subset model is precise, not
missing any characteristic, but its automation is a challeng-
ing process. Despite some research on MILP modeling of
three-subset division property for block ciphers, the proposed
methods are time-consuming, working either for the small
block size target ciphers [7] or if onemitigates its accuracy to
some extent [8]. It deserves to be noted that in amodified vari-
ant of the three-subset division property called three-subset
division property without unknown subset some challenges
in MILP modeling of three-subset division property can be
handled. Thismethod is suited for analyzing public functions
such as update functions in stream ciphers in cube attacks [9].

Division property has been studied to a great extent, based
on which the existence of integral characteristics for most of
the block ciphers have been investigated, commonly using
an MILP-or SAT-aided tool [5, 10–15]. One of the main effi-
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ciency criteria for the integral distinguisher of a block cipher
is its data complexity, for a specific number of rounds. So,
a systematic and possibly provable method for finding the
integral distinguisher with minimal data (and hence time)
complexity would be of great importance. However, to the
best of our knowledge, none of the papers published so far,
except [11], has considered this problem. Hence, it seems
that most of the reported division-based integral distinguish-
ers are achieved by an extensive search.

The proposed method in [11] for finding integral distin-
guishers with reduced-data complexity works as follows.
First, they search for balanced output bits corresponding to
the input sets with one plaintext constant bit. Then, among
the results found in the previous step, they try out all the pos-
sible combinations of the plaintext constant bits that lead to
the same balanced bit in the output. This process is continued
until none of the combinations of the input constants leads
to a balanced output bit. The output of this algorithm is an
integral distinguisher with minimum data complexity if the
algorithm can be completely executed to the end. However,
the authors stated that “This approach improves the com-
plexity of finding distinguishers with lower data complexity
significantly, but often it is still computationally infeasible to
find an optimal distinguisher.”One can refer to [11] for more
details on this method.

1.1 Our contribution

In this paper, we propose a structured method for analyzing
the algebraic normal form (ANF) of the Boolean function
corresponding to the target output bit of the block cipher. As a
result, the proposed algorithm returns the provablyminimum
data complexity for distinguishing the target output bit in the
conventional division property model.

An integral characteristic needs a set of plaintexts active in
some bits that are not included in any single monomial of the
ANFof the target output bit. In otherwords, a set of plaintexts
active in some bits does not lead to a balanced output bit if
there is a monomial in the target ANF containing the active
bits in the given input set of plaintexts. For example, suppose
a targetANFof the form f (x0, x1, x2, x3) = x1x2x3⊕x0x3⊕
x1x3 ⊕ x1 ⊕ x2. Then, f (·) evaluated over a set of plaintexts
with active bits {x0, x1, x2} sums to zero, which is an integral
distinguisher, but the set of active bits {x0, x3} or {x1x2} is
not so.

The division property enables us to check if a givenmono-
mial is present in the ANF of the target output bit or not. This
assessment is accurate in the three-subset model, though a bit
less accurate in the conventional model. In more detail, the
absent monomials based on the conventional model are real-
ized accurately, but some monomials which are discovered
as existing ones in the ANF may not be really present. How-

ever, in this paper, we use the conventional division property
as a tool for finding the minimum data integral distinguisher.

Suppose that using the division-based method, it has been
determined that a specific monomial is present in the ANF
of the cipher. As a result, all its submonomials (i.e. the
monomials whose variables are a subset of the reference
monomial) would be discarded from the candidate input
active bits to be checked. For example, if we find x1x2x3 as
an existing term in the target ANF, none of its submonomials
x1, x2, x3, x1x2, x2x3, x1x3 can direct us to an integral distin-
guisher.As a result, we just need to study themonomials from
the highest degree to the lower ones, while the submonomi-
als of the discovered monomials will be excluded from this
search. This process continues until all the monomials are
checked, and the minimum size monomial not existing in the
ANF of the target bit is identified. This monomial directly
leads us to the minimum-sized data complexity integral dis-
tinguisher.

Using the newmethod,we studied theminimumdata com-
plexity integral distinguishers for the whole output bits of
TWINE, SIMON, Gift-64, Gift-128, Present, LBlock, and
partial output bits of 16-round LBlock and 8-round Clyde-
128. Although, in most cases, the results are compliant with
the reported distinguishers in the previous papers, the pro-
posed method proves that these distinguishers are optimal
in data complexity, in the conventional model. Furthermore,
for LBlock, we found a 16-round integral distinguisher with
data complexity 262 which was not found in the conventional
model, till now. We also found 8-round integral distinguish-
ers for Clyde-128 with data complexity 2126 which requires
one less active plaintext bit in comparison with the previ-
ously reported distinguishers. The results are summarized in
Table 1.

Moreover, the proposed method for analyzing the ANF of
the target output bit provides some information that can be
exploited for another purpose. We represent how to utilize
this information to find the maximum possible number of
balanced bits in an integral distinguisher with a specified
number of active bits in the conventional model.

Outline. The paper is organized as follows: we first intro-
duce the notations used in the paper as well as the division
property definition, its propagation rules, and MILP model-
ing of the propagation rules in Sect. 2. The new method and
its application on different ciphers are presented in Sects. 3
and 4, respectively. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

In this section, the notations used in the paper are introduced.
Then a brief review of the division property and its MILP
modeling is brought.
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Table 1 Summary of the results Cipher Round Active bits Type Balanced bits References

LBlock 16 63 C 32 [5]

16 62 T 18 [7]

16 62 C 10* This paper

17 63 C, T 4 This paper, [7, 11]

Clyde-128 8 127 C 2 [16]

8 126 C 1* This paper

TWINE 16 63 C 32 This paper, [5]

SIMON-32 14 31 C 16 This paper, [5]

SIMON-48 16 47 C 24 This paper, [5]

SIMON-64 18 63 C 22 [5, 11]

18 63 T 23 [7]

18 63 C 23 This paper

SIMON-96 22 95 C 5 This paper, [5]

SIMON-128 26 127 C 3 This paper, [5]

Present 9 60 T 4 [7]

9 60 C 1 This paper, [5]

9 61 C 4 This paper

9 62 C 4 This paper

9 63 T 28 [7]

9 63 C 28 This paper

Gift-64 9 61 C 5 This paper, [11]

9 62 C 11 [11]

9 62 C 12 This paper

9 63 C 30 [11]

9 63 C 32 This paper

Gift-128 11 127 C 32 This paper, [11]

The bolded entries refers to the improved distinguishers obtained in this paper compared to previous findings
C and T denote Conventional and Three subset division property, respectively
The *-marked cases are suboptimal since we have not studied all output bits

2.1 Notations

Throughout this paper, binary values are denoted by lower-
case letters like x , vectors by boldface likex, and (multi) sets
by blackboard bold uppercase letters like X. Let F2 denote
the binary finite field and a = (a0, a1, . . . , an−1) ∈ Fn

2 be
an n-bit vector, where ai denotes the i-th bit of a. The vector
ei is the unit vector whose i-th element is 1. By Hw(a),
we mean the Hamming weight of a, i.e.

∑n
i=0 ai . For any

k ∈ Fn
2 and k′ ∈ Fn

2, we define k � k′ if ki ≥ k′
i for all

i = 0, 1, . . . , n − 1. For n-bit vectors x and u, a monomial
is defined as xu = ∏n−1

i=0 xi
ui . For a given monomial xu , its

submonomials are defined as xv , where v � u. The ANF of
Boolean function f : F

n
2 → F2 is f (x) = ⊕

u∈Fn
2

auxu ,
where au ∈ F2. The boolean function f contains a mono-
mial xv if there exists at least one u in the ANF of f where
au = 1 for v � u. By the symbol ←, we mean adding a
member to a (multi) set.

2.2 Division property

The division property can be modeled in two ways, conven-
tional division property [4] and division property with three
subsets [6]. The latter is more precise, based on which some
innovative techniques for MILP-aided cube attack are pro-
posed [9]. But, the MILP modeling of this method for block
ciphers has some serious challenges and difficulties. In this
paper, we use the conventional model and propose the new
search algorithm, based on that.

Definition 1 Let X be a multiset whose elements take val-
ues from Fn

2. The multiset X has the conventional bit-based
division property D1n

K
if it fulfills the following condition:

⊕

x∈X
xu =

{
unknown, if there exists k ∈ K s.t. u � k,

0, otherwise.

(1)
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where K denotes a set of n-dimensional binary vectors.

2.2.1 Propagation rules for conventional bit-based division
property

The rules for the conventional bit-based division property
propagation through basic operations, proven in [4], are sum-
marized as follows.

Rule 1 (Copy). Let y = f (x) be the Copy function
with x = (x0, x1, . . . , xn−1) ∈ Fn

2 as the input, and y =
(x0, x0, x1, . . . , xn−1) ∈ Fn+1

2 as the output. If the input mul-

tiset X has D1n

K
, then the output multiset Y has D1n+1

K′ , where
K

′ is computed from all k ∈ K as

K
′ ←

{
(0, 0, k1, . . . , kn−1) , if k0 = 0,

(1, 0, k1, . . . , kn−1) , (0, 1, k1, . . . , kn−1) , if k0 = 1.

(2)

Rule 2 (And). Let y = f (x) be the And function with
x = (x0, x1, . . . , xn−1) ∈ Fn

2 as the input, and y = (x0 ∧
x1, . . . , xn−1) ∈ Fn−1

2 as the output. If the input multiset X

has D1n

K
, then the output multiset Y has D1n−1

K′ , where K
′ is

computed from all k ∈ K as

K
′ ←

(

�k0 + k1
2

�, k2, . . . , kn−1

)

. (3)

Rule 3 (Xor). Let y = f (x) be the Xor function with
x = (x0, x1, . . . , xn−1) ∈ Fn

2 as the input, and y =
(x0⊕x1, . . . , xn−1) ∈ Fn−1

2 as the output. If the input multiset

X has D1n

K
, then the output multiset Y has D1n−1

K′ , where K
′ is

computed from all k ∈ K satisfying (k0, k1) = (0, 0), (1, 0)
or (0, 1) as

K
′ ← (k0 + k1, k2, . . . , kn−1). (4)

Rule 4 (S-Box). Let y = f (x) be the S-Box function
with x = (x0, x1, . . . , xn−1) ∈ Fn

2 as the input, and
y = (y0, y1, . . . , ym−1) ∈ Fm

2 as the output. Then, every
yi , i ∈ 0, 1, . . . , m − 1 can be expressed as a boolean func-
tion of (x0, . . . , xn − 1). For the input multiset X with D1n

K
,

then the output multiset Y has D1m

K′ , calculated as follows:

K
′ = {u′ ∈ Fm

2 | for any u ∈ K, if yu′

contains any term xv satisfying v � u}. (5)

2.2.2 The MILP modeling of conventional bit-based division
property

In [5], Xiang et al. defined the concept of division trail
and used linear inequalities to model propagation rules of
division property. As a result, they could develop an MILP

model which can efficiently describe the propagation of con-
ventional bit-based division property through a cipher. We
summarize the concept of the division trail and the MILP
models proposed by them. The new method in this paper is
based on Xiang et al.’s MILP-aided division property prop-
agation for finding an integral distinguisher.

Definition 2 (Division Trail). Let DKi be the division prop-
erty of the input for the i-th round function. Consider the
propagation of the conventional bit-based division property

{kI } de f= K0
f→ K1

f→ · · · f→ Kr , where Ki
f→ Ki+1

denotes the propagation of Ki to Ki+1 through the round
function f . For any vector ki+1 ∈ Ki+1, there must exist a
vector ki ∈ Ki such that ki can propagate to ki+1 accord-
ing to the propagation rules. Beside, for (k0,k1, . . . ,kr) ∈
K0 × K1 × . . . × Kr , we call k0

f→ k1
f→ · · · f→ kr an

r -round conventional bit-based division property trail if ki

can propagate to ki+1 for all i ∈ {0, 1, . . . , r − 1}.
They also modeled the conventional bit-based division

property propagation of three basic components (Copy, Xor,
And) as well as S-Box by linear inequalities. Therefore, they
could generate a MILP model that covers all division trails.
Finally, they propose the idea that if it can be shown that there

is no division trail k0
Ek→ ei , then the i-th bit of the r -round

output is always balanced.
TheMILPmodels of the basic operations are summarized

as follows, according to [5].
MILP Model 1 (Copy). The propagation of the division

property for Copy operation a → (b1, b0) can be adequately
described by the following linear constraint:

{
a − b1 − b0 = 0,

a, b0, b1 are binaries.
(6)

MILPModel 2 (Xor). The propagation of the division prop-
erty for Xor operation (a1, a0) → b can be adequately
described by the following linear constraint:

{
a1 + a0 − b = 0,

a0, a1, b are binaries.
(7)

MILPModel 3 (And).The propagation of the division prop-
erty for And operation (a1, a0) → b, can adequately be
described by the following linear constraints:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b − a0 ≥ 0,

b − a1 ≥ 0,

b − a0 − a1 ≤ 0,

a0, a1, b are binaries.

(8)

We useXiang et al.’s proposedmethod to get a set of linear
inequalities for modeling the conventional bit-based division
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property propagation through an S-Box. Their method pro-
poses to use the inequali t y_generator() function in Sage
to obtain the H-representation of the convex hull of divi-
sion trails through S-Box using Rule 4. As a result, one can
achieve a set of linear inequalities for modeling the con-
ventional bit-based division property propagation through an
S-Box. Applying the greedy algorithm proposed by Sun et al.
[17], the large set of linear inequalities reduces into a smaller
one and the MILP model becomes computationally feasible.

2.3 Gurobi

Gurobi [18] is an optimization solver for different types
of problems ranging from Linear Programming (LP) and
Mixed-Integer Linear Programming (MILP) to different
types of Quadratic Programming (QP).

Applying Gurobi as anMILP solver for cryptanalysis pur-
poses has become prevalent during the last decade and lots of
new techniques for different cryptanalysismethods havebeen
proposed based on its capabilities. We also utilized Gurobi
optimizer and its Python interface for our proposed method.
It should be noted that its interfaces for other programming
languages such as C or C++ can be utilized as well.

3 Minimum-data integral distinguisher

In this section, we describe the new method for finding inte-
gral distinguisherswith a provablyminimumdata complexity
in the conventional division propertymodel. Suppose that we
aim to find the integral distinguisher with the minimum data
complexity for the j th output bit of the cipher, called the tar-
get bit. Let f (x) = ⊕

u∈Fn
2

auxu be the ANF of the target
bit, where au ∈ F2. We are looking for the lowest degree
monomial which is not itself a monomial of f , and is not
a submonomial of any monomials existing in f , as well. In
other words, we should find α∗ = argmin Hw(α) where
α ∈ {v ∈ F

n
2|v � u, au = 1}. Let J = {i |α∗

i = 1}, then
any set of plaintexts with active bits in positions J results in
a balanced output.

Moreover, the proposed algorithm is capable of returning
suboptimal distinguishers in case of time constraints. We use
Gurobi as a solver for MILP problems and describe the new
method based on its features.

3.1 The proposed search algorithm

The proposed method is described in Algorithm 2, based
on the Python interface for Gurobi which is summarized in
Table 2, and is detailed in this section. The flowchart of the
proposed method is given in Fig. 1.

First of all, we make an MILP model in which the con-
straints describe the propagation of division property (these

Algorithm 1: Finding minimum data complexity inte-
gral distinguisher

1 Input: L1 = Division property propagation constraints
2 Output: Active plaintext bits
3 begin
4 Obj1 ← max(

∑n−1
i=0 xi )// xi , i = 0, . . . , n − 1 are plaintext

bits

5 Obj2 ← min(
∑n−1

i=0 xi )

6 L2 ← null
7 while (1) do
8 M ← M(Obj1,L1,L2)

9 M .Optimize()
10 if (M .Status = 2) then // model is feasible
11 obj ← M .GetObjective()
12 NewConstr ← null
13 for i in range (0, blockSi ze) do
14 var ← obj .GetVar(i)
15 val ← var .GetAttr(′x ′)
16 if val = 0 then
17 NewConstr .Append(var .GetAttr(′V ar Name′))
18 end
19 end
20 L2.Append(NewConstr ≥ 1)
21 else if M .Status = 3 then // model is infeasible
22 M ← M(Obj2,L2)

23 M .Optimize()
24 ActiveBits ← null
25 for i in range range(0, blockSi ze) do
26 var ← obj .GetVar(i)
27 val ← var .GetAttr(′x ′)
28 if val = 1 then
29 ActiveBits.Append(var .GetAttr(′V ar Name′))
30 end
31 end
32 return ActiveBits
33 end
34 end
35 end

constraints are listed in L1), the division property of the
output equals to the unit vector e j and the objective is max-
imization of the sum of plaintext bits (Obj1). Such a model
finds themonomial with the highest algebraic degree existing
in the boolean function of the target bit (line 6 of Algo-
rithm 1). Using an optimization solver, Gurobi in our case,
we solve the model. If the model is feasible, from the opti-
mization result we extract the highest-degree monomial, as
well as the plaintext bits not existing in this monomial (lines
11–17 of Algorithm 1).

As an example, suppose that the unknown boolean func-
tion of the target output bit is f1(x0, x1, x2, x3) = x1x2x3 ⊕
x0x3 ⊕ x1x3 ⊕ x1 ⊕ x2, for which we aim to find an integral
distinguisher with the minimum data complexity. By solving
the above model for this function, the discovered monomial
at this step would be x1x2x3.

Notice that in order to distinguish f from a random func-
tion, one should choose a set of plaintexts whose active bits
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Table 2 Interface for utilizing
Gurobi

Notation Explanation

M(Obj,L) Model M with objective Obj and constraints L
M .Optimize() Optimizes model M

M .Status Indicates the current optimization status of model M

M .getObjective() Returns a linear expression equal to the linear objective, in our case

obj .GetVar(i) Returns variable for the term at index i in the linear expression of obj

var .GetAttr(′x ′) Returns the value of the variable var in the current solution

var .GetAttr(′V ar Name′) Returns variable name of var

Fig. 1 Flowchart of the proposed method

are not a submonomial of any monomial of f . For example,
having obtained the monomial x1x2x3 in f , no set of plain-
texts, active only in any submonomial of x1x2x3, i.e. any
combination of x1, x2 and x3, can result in balanced output,
according to the conventional bit-based division property.

Based on this fact, we then add a new constraint to the
model to filter out all the submonomials of the obtained
monomial from the feasible set of the model, in search of the

subsequent monomial of f . This constraint should imply that
at least one of the plaintext bits non-existing in the obtained
monomial must be present in the next monomial. So, sum
of the plaintext bits not included in the obtained monomial
should be equal to or greater than one (line 18 of Algorithm
1). Therefore, in the subsequent search there is no need to
study all the monomials in the ANF of f . In the above exam-
ple, this constraint is x0 ≥ 1, which removes monomials
x1x3, x1, and x2 of f from the feasible set.

The newly generated constraint corresponding to the
obtained monomial is now included in the main model, and
is saved in a separate list (L2, line 18 in Algorithm 1), as
well. Having added the new constraint to the main model, it
is updated and solved to find the next highest degree mono-
mial of f , satisfying the new constraint. In our example, we
expect to get the monomial x0x3 after solving the updated
model.

Once the new monomial is realized, we add another con-
straint to the model (as well as list L2) to remove all of its
submonomials from the feasible set. Then, we solve it to find
the next highest degree monomial, not being a submonomial
of the previously obtained monomials. In our example, this
new constraint is x1 + x2 ≥ 1. These steps are repeated until
the model becomes infeasible (line 19 in Algorithm 1). This
means that f does not contain amonomial satisfying the con-
straints in listL2, anymore. At this step, all the monomials in
the ANF of the target function have been studied andwe have
come up with a set of constraints by which the minimum set
of plaintexts which make the j th output bit balanced, can be
obtained.

To find this minimum set, we make a new model in which
the constraints are as listL2, and the objective is to minimize
the sum of plaintext bits (line 20 in Algorithm 1). By solving
this model, we would be directed to the integral distinguisher
for the target outputwith theminimumdata complexity, since
it returns a monomial with the lowest degree which is not a
submonomial of any monomials of f .

In our example, the objective function is to minimize x0+
x1 + x2 + x3, subject to the constraints x0 ≥ 1 and x1 + x2 ≥
1. This model returns the active plaintext bits {x0, x1} or
{x0, x2} as the active bit sets with the smallest possible size,
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which result in a balanced property in the target bit, which
is the minimal data complexity integral distinguisher in the
conventional division model.

Finally, we establish the subsequent theorem as evidence
supporting our assertion that Algorithm 1 is capable of iden-
tifying the integral distinguisher with the minimum data
complexity, based on conventional division property.

Theorem 1 The output of Algorithm 1 is the set of active
plaintext bits of minimum size that results in a balanced prop-
erty in the target output bit.

Proof We prove this theorem by contradiction. Suppose the
output of Algorithm 1, denoted as J̃ , is not the set of active
plaintext bits of the minimum size that results in a balanced
property in the target output bit. Hence, there must exist
another set, namely J ∗, such that |J ∗| < | J̃ | while for
any u � v, where vi = 1, i ∈ J ∗, it holds that au = 0.
In other words, the monomial corresponding to J ∗ is not a
(sub)monomial of the ANF of the target output bit.

J ∗ either satisfies the constraints of L2 or it does not.
If J ∗ satisfies L2, it directly contradicts the fact that J̃
is the minimum-sized set satisfying L2 (Line 22 of Algo-
rithm 1). Alternatively, if J ∗ does not satisfy L2, it means
that there exists at least one constraint in L2 that is not sat-
isfied by J ∗. Let’s denote the first unsatisfied constraint as
const∗, which is generated at the r∗-th iteration of Line 7 of
Algorithm 1. This implies the existence of a feasible model
M(Obj1,L1,L(r∗−1)

2 )with a solution u∗. It means that xu∗

exists in the ANF of the target output bit. Hence, the con-
straint const∗, generated in Line 20 of this iteration, would
be

∑
i,u∗

i =0 xi ≥ 1.
Since we assumed that J ∗ does not satisfy const∗, it must

hold that
∑

i∈J∗,u∗
i =0 xi = 0. As a result, the monomial

associated with J ∗ becomes a submonomial of the target
ANF, which leads to a contradiction. ��

3.2 Advantages and limitations

In this section, we bring some discussion about the capabil-
ities of the proposed algorithm, as well as its limitations.

Provably minimum data in the conventional model.
The most important advantage of the proposed method
is that it finds the integral distinguisher with a prov-
ably minimum data complexity for a target output bit,
in the conventional model for division property. To be
more specific, the proposed algorithm returns the small-
estmonomial not being a submonomial of anymonomials
of the ANF of the target bit. By choosing a set of plain-
texts, which is active in the same bits of this monomial,
we have an integral distinguisher with balanced property
in the target bit.

Suboptimal integral distinguishers. The new method
is based on analyzing the structure of the ANF of the
target output bit that gives us valuable information from
the ANF. This information can be utilized for different
purposes such as finding sub-optimal distinguishers in
time-consuming cases. Note that any d-degreemonomial
of f , discovered in an iteration of Line 7 of Algorithm 1,
directs us to an integral distinguisher with data complex-
ity 2d+1, conditioned that d < n−1. In this distinguisher,
the set of plaintext bits is active in all the bits present in
themonomial plus an arbitrary absent bit. Since it is guar-
anteed that the discovered monomials during running the
algorithm are not a submonomial of any monomial in the
target ANF, such a set of plaintexts results in balanced
property in the target output bit. In this way, for each d-
degree monomial discovered in Line 7 of Algorithm 1,
one canmake (n−d) distinct integral distinguishers with
data complexity 2d+1, conditioned that d < n − 1.
As an example, consider the following Boolean function
as the target output bit in the cipher:

f2(x0, x1, x2, x3, x4) = x0x1x2x3 ⊕ x0x2x3x4

⊕x0x1x4 ⊕ x0x2x3 ⊕ x1x2x4 ⊕
x1x3x4 ⊕ x2x3x4 ⊕ x0x1

⊕x0x3 ⊕ x1x3 ⊕ x1x4 ⊕
x2x3 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ 1

(9)

Table 3 is the trace table of Algorithm 1 applying to f2,
which shows that the algorithm finishes after 5 iterations.
Now, assume that we terminate Algorithm 1 after the 3rd

iteration, where monomial x0x1x4 is found. The algo-
rithm ensures that there is nomonomial of higher degrees
containing x0x1x4. Hence, any set of plaintexts active in
{x0, x1, x4} plus one (or more) input bits leads to a bal-
anced output. So, the sets of plaintexts with active bits
{x0, x1, x2, x4}, {x0, x1, x3, x4} lead to a balanced output.
Clearly, there is no guarantee that such distinguishers are
the minimum-data ones. So, they are the suboptimal inte-
gral distinguishers.

Multi-fold integral distinguishers. The other capability
of the proposed method is that it can be used to provably
determine the maximum number of balanced output bits,
all with the same minimum-size set of plaintexts. Notice
that for the i th individual output bit, by executing Algo-
rithm 1, we have extracted a set of constraints, listed in
L(i)
2 , guaranteeing that the i th output bit is balanced with

the minimum number of plaintext active bits, m ≤ n −1.
One can construct a newmodel by conditionally merging
all the constraints of L(i)

2 , for i = 0, . . . , n − 1. For this
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Table 3 Trace table of
Algorithm 1 applying to boolean
function f2

Iteration Extracted monomial Constraint Removed monomials

1 x0x1x2x3 x4 ≥ 1 x0x2x3, x0x1, x0x3, x1x3, x2x3, x1, x2

2 x0x2x3x4 x1 ≥ 1 x2x3x4, x4

3 x0x1x4 x2 + x3 ≥ 1 x1x4

4 x1x2x4 x0 + x3 ≥ 1 −
5 x1x3x4 x0 + x2 ≥ 1 −

Algorithm2:Finding themaximumnumber of balanced
output bits with the same minimal input set

1 Input:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L(0)
2 = {A(0) · x ≥ b(0 )},

.

.

.

L(n−1)
2 = {A(n−1) · x ≥ b(n −1 )}

m = minimum data
2 Output: maximum number of balanced output bits
3 begin
4 Obj ← max(B = ∑n−1

i=0 Bi )

5 L3 ← null
6 for i in range (0, n − 1) do
7 L3.Append(A(i) · x + C(1 − Bi )1 ≥ b(i))

8 end
9 L3.Append(

∑n−1
i=0 xi = m)

10 M ← M(Obj,L3)

11 M .Optimize
12 return M .GetObjective
13 end

paper, we use the conditional constraints method [19] as
follows.
Suppose that the binary variable Bi implies that the i th

output bit is included in the set of candidate target bits
or not. In other words, if Bi = 1, then the i th output
bit is taken into account, and hence the set of constraints
associated with its balance (L(i)

2 ) should be included in
the model. Otherwise, if Bi = 0, this output bit is not
considered and the constraints in L(i)

2 should become

ineffective. For this purpose, for all constraints in L(i)
2

of the form A(i) · x ≥ b(i) we add the following con-
straint to the model:

A(i) · x + C(1 − Bi )1 ≥ b(i) (10)

whereC is a large enough constant (in our case, it suffices
to set C = maxi, j b(i)

j [19]) and 1 is the all-ones column
vector. Moreover, another constraint, ensuring that the
data complexity remains minimal, is added to the model
as

∑n−1
i=0 xi = m, and finally, the objective would be

max B = ∑n−1
i=0 Bi . It deserves to be noted that constraint∑n−1

i=0 xi = m, with m higher than the minimum active
bits, determines the maximum number of balanced bits
in distinguishers with higher data complexities.

Efficiency The newmethod is more time-efficient for the
target number of rounds equal or close to the maximum
distinguishable one. However, for cases with fewer num-
ber of rounds, themethod becomesmore time-consuming
and in some cases, onemay settle for the sub-optimal dis-
tinguisher, by early terminating the program. This is due
to the fact that the ANF of the target output of the higher
number of rounds contains (potentially many) monomi-
als with maximum or near to maximum degrees. Since
monomials with higher degrees remove more submono-
mials, the problem gets simpler and the final result will be
achieved faster, as well. On the other hand, this method
may become computationally impractical for fewer num-
ber of rounds. However, this drawback does not affect the
use cases of the new method since we are usually inter-
ested in analyzing the minimum data complexity for the
maximum distinguishable number of rounds.

4 Applications to LBlock, TWINE, SIMON,
PRESENT, Gift, and Clyde-128

We applied Algorithm 1 to LBlock, TWINE, SIMON,
Present, Gift, and Clyde-128 to find the minimum data com-
plexity integral distinguishers for thembasedonconventional
division property. As an application of the capability of the
new method in provably determining the maximum number
of balanced output bits, we applied Algorithm 2 on 17-round
LBlock and determined the maximum number of balanced
bits in any 17-round integral distinguisher on LBlock in
the conventional model. The extracted distinguishers are
reported in Appendix A.

4.1 Application to LBlock

LBlock [20] is a lightweight block cipher with 64-bit block
size and 80-bit key size. It has a Feistel structure, consisting
of 32 rounds. LBlock round function is depicted in Fig. 2.

Integral characteristic for LBlock has been studied based
on the conventional [11] aswell as three-subset division prop-
erty [7]. Both result in a 17-round integral distinguisher with
data complexity 263. The best previous 16-round integral
distinguisher in the conventional model requires 263 cho-
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Fig. 2 Round function of LBlock

sen plaintexts [5], while Wang et al. reported an improved
16-round integral distinguisher with data complexity 262

in three-subset model [7]. However, we found a 16-round
integral distinguisher with data complexity 262 in the con-
ventional model by utilizing the new method.

In order to show the capability of the new method to find
multi-fold integral distinguishers, presented in section 3.2,
we applied Algorithm 2 on 17-round LBlock and found out
the number of balanced bits in a 17-round integral distin-
guisher is at most 4, for a single set of plaintexts with 63
active bits. All these multi-fold distinguishers are listed in
Appendix A.1. Hence, the reported distinguisher in [11] can-
not be improved in the conventional model neither in data
complexity nor in the number of balanced bits.

4.2 Application to TWINE

TWINE [21] is a lightweight block cipher with 64-bit block
size and 80-bit key size. It is based on Feistel construction
and its round function is depicted in Fig. 3. The best integral
distinguisher based on conventional division property covers
16 rounds with data complexity 263 [5, 11]. We analyzed all
the 64 bits of the 16th round output with the new method and
the results are summarized in Table 4. As reported in [11], the
newmethod also shows that there is no integral distinguisher
for 17 ormore rounds of TWINE using conventional division
property.

Table 4 Summary of distinguishers for TWINE block cipher

Output bit no. 0 1 2 3 4 5 6 7
Min. data compl. 263 263 263 263 264 264 264 264

Output bit no. 8 9 10 11 12 13 14 15

Min. data compl. 263 263 263 263 264 264 264 264

Output bit no. 16 17 18 19 20 21 22 23
Min. data compl. 263 263 263 263 264 264 264 264

Output bit no. 24 25 26 27 28 29 30 31

Min. data compl. 263 263 263 263 264 264 264 264

Output bit no. 32 33 34 35 36 37 38 39
Min. data compl. 263 263 263 263 264 264 264 264

Output bit no. 40 41 42 43 44 45 46 47

Min. data compl. 263 263 263 263 264 264 264 264

Output bit no. 48 49 50 51 52 53 54 55
Min. data compl. 263 263 263 263 264 264 264 264

Output bit no. 56 57 58 59 60 61 62 63

Min. data compl. 263 263 263 263 264 264 264 264

Distinguishers highlighted in bold represent cases with valid (non-full
codebook) data complexity

We applied Algorithm 2 on 16-round TWINE and found
out themaximum number of balanced bits in a 16-round inte-
gral distinguisher is at most 32. This multi-fold distinguisher
is listed in Appendix A.3. Hence, the reported distinguisher
in [5] can be improved in the conventional model neither in
data complexity nor in the number of balanced bits.

4.3 Application to SIMON

SIMON [22] is a family of lightweight block ciphers of dif-
ferent block sizes (32, 48, 64, 96 or 128) and different key
sizes (64, 72, 96, 128, 144, 192, or 256). It is based on Fiestel
construction and consists of a variety of number of rounds
(32, 36, 42, 44, 52, 54, 68, 69, or 72) depending on the block
and key sizes. The round function is depicted in Fig. 4.

For different versions of SIMON,we searched for themin-
imumdata complexity for themost number of distinguishable
rounds, and the results are summarized inTable 5.Contrary to
SPN block ciphers, SIMON structure has a rotational sym-
metry, which causes the minimum data complexity for the

Fig. 3 Round function of TWINE
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Fig. 4 Round function of SIMON

integral distinguisher of half of the bits of the output block
(due to its Fiestel construction) to be the same.

We also applied Algorithm 2 to different versions of
SIMON. The maximum number of balanced bits in versions
with block lengths 32, 48, 96, and 128 are the same as the
reported ones in [5, 11] in the conventional model. However,
for block length 64, the maximum number of balanced bits
is 23, which exceeds the previously reported distinguishers
[5, 11] one bit in the conventional model.

Table 5 Summary of distinguishers for SIMON block cipher

Block length 32 48 64 96 128

No. of rounds 14 16 18 22 26

Min. data compl 231 247 263 295 2127

Distinguishers highlighted in bold represent cases with valid (non-full
codebook) data complexity

4.4 Application to PRESENT

PRESENT [23] is an SPNblock cipherwith a bit permutation
linear layer. It consists of 31 rounds and its round function
is depicted in Fig. 5. It has two versions with 80- and 128-bit
key size and 64-bit block size. The best integral distinguisher
based on conventional division property covers 9 rounds of
PRESENTwith data complexity 260 [5, 11]. We analyzed all
the 64 bits of the 9th round output with the proposed method.
The results are summarized in Table 6.

Applying Algorithm 2, the maximum number of balanced
bits are studied for 9-round integral distinguisherswith differ-
ent numbers of active bits.As shown inTable 1, themaximum
number of balanced bitswith 61 and 62 active bits is the same,
i.e. increasing the number of active bits from 61 to 62 does
not increase the maximum number of balanced bits. More-
over, we found that the maximum number of balanced bits
with 63 active bits, equals 28 which was previously achieved
just in the three subset model.

Fig. 5 Round function of PRESENT

Fig. 6 Round function of Gift-64
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Table 6 Summary of distinguishers for PRESENT block cipher

Output bit no. 0 1 2 3 4 5 6 7
Min. data compl. 264 264 264 264 264 264 264 264

Output bit no. 8 9 10 11 12 13 14 15

Min. data compl. 264 264 264 264 263 263 263 261

Output bit no. 16 17 18 19 20 21 22 23
Min. data compl. 264 264 264 264 264 264 264 264

Output bit no. 24 25 26 27 28 29 30 31

Min. data compl. 264 264 264 264 263 263 263 261

Output bit no. 32 33 34 35 36 37 38 39
Min. data compl. 264 264 264 264 264 264 264 264

Output bit no. 40 41 42 43 44 45 46 47

Min. data compl. 264 264 264 264 263 263 263 261

Output bit no. 48 49 50 51 52 53 54 55
Min. data compl. 263 263 263 263 263 263 263 263

Output bit no. 56 57 58 59 60 61 62 63

Min. data compl. 263 263 263 263 263 263 263 260

Distinguishers highlighted in bold represent cases with valid (non-full
codebook) data complexity

4.5 Application to Gift

Gift [24] is an SPN lightweight block cipher designed based
on revising the PRESENT cipher. It comes in two versions,
Gift-64 andGift-128with block sizes 64 and 128 bits, respec-
tively. The key size in both versions is 128 bits. The round
functions consist of applying 4-bit S-boxes and bit permuta-
tion linear layers. The round function iterates 28 and 40 times
in Gift-64 and Gift-128, respectively. The round function of
Gift-64 is depicted in Fig. 6 which is very similar to the round
function of Gift-128, as well (the number of S-Boxes is 32
instead of 16 and the bit permutation layer is over 128 instead
of 64 bits).

We applied the proposed method to all the 64 bits of
9th round output of Gift-64. The results are summarized in
Table 7. As reported in the previous papers, the new method
also shows that there is no integral distinguisher for 10 or
more rounds of Gift-64 based on conventional division prop-
erty.

We also applied Algorithm 2 to Gift-64 with different
numbers of active bits. As a result, we achieve an increase
of 1 and 2 in the number of balanced bits for integral distin-
guishers with 62 and 63 active bits, respectively.

4.6 Application to Clyde-128

Clyde-128 [16] is a tweakable SPN block cipher used in
Spook authenticated encryption scheme. Clyde-128 updates
the 128-bit input state by iterating Ns steps equivalent to 2Nr

Table 7 Summary of distinguishers for Gift-64 block cipher

Output bit no. 0 1 2 3 4 5 6 7
Min. data compl. 261 263 264 264 261 263 264 264

Output bit no. 8 9 10 11 12 13 14 15

Min. data compl. 261 263 264 264 261 263 264 264

Output bit no. 16 17 18 19 20 21 22 23
Min. data compl. 261 263 264 264 261 263 264 264

Output bit no. 24 25 26 27 28 29 30 31

Min. data compl. 261 263 264 264 261 263 264 264

Output bit no. 32 33 34 35 36 37 38 39
Min. data compl. 261 263 264 264 261 263 264 264

Output bit no. 40 41 42 43 44 45 46 47

Min. data compl. 261 263 264 264 261 263 264 264

Output bit no. 48 49 50 51 52 53 54 55
Min. data compl. 261 263 264 264 261 263 264 264

Output bit no. 56 57 58 59 60 61 62 63

Min. data compl. 261 263 264 264 261 263 264 264

Distinguishers highlighted in bold represent cases with valid (non-full
codebook) data complexity

rounds as depicted in Fig. 7. The designers’ recommended
number of Rounds is 12 (6 Steps). Its round function consists
of applying 32 parallel 4-bit S-boxes followed by 2 parallel
64-bit L-boxes (linear layer).

Designers evaluated the division properties for Clyde-128
over r rounds, for r ∈ {1, . . . , 8} and the longest reported
distinguisher is an 8-round integral distinguisher with data
complexity 2127. We examined the proposed method on the
first output bit of 8-round Clyde, by which we found many
integral distinguishers with data complexity 2126. However,
these findings are the suboptimum 8-round integral distin-
guishers, since we terminated the algorithm execution before
it completely be executed.

As pointed out in section 3.2, any d-degree monomial in
the ANF of the target bit, discovered by Algorithm 1, implies
(n − d) distinct integral distinguishers with data complexity
2d+1 provided that d < n − 1. Hence, the 3500 125-degree
monomials found in the ANF of the analyzed output, by par-
tial execution of Algorithm 1 on Clyde, introduced a large
number of integral distinguishers with data complexity 2126,
one of which is brought in Appendix A.

5 Conclusion

In this paper, we proposed a new method for searching inte-
gral distinguishers based on conventional division property.
In the new method, the ANF of the target output bit is ana-
lyzed and the constraints for getting balanced property in the
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Fig. 7 Round and Step of Clyde-128

target output bit will be extracted. Finally, by optimizing the
model consisting of the extracted constraints and the objec-
tive function as minimizing the sum of plaintext bits, the
minimum data complexity for getting the balanced property
will be determined provably in the conventional model. We
applied the new method on LBlock, TWINE, SIMON, Gift,
Present, and Clyde-128 and reported some improvements on
LBlock and Clyde-128. We also discussed the advantages of
the newmethod and introduced its capability to determine the
maximum number of balanced bits in a single distinguisher
and its application on the studied ciphers.

Data Availability The codes underlying this article are available on
GitHub, at: https://github.com/khalesiakram/DivisionMinData.
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A Distinguishers

The integral distinguishers based on the conventional divi-
sion property of the studied ciphers are summarized as fol-
lows, where xis and y jt in {xi0 , . . . xin−1} → {y j0 , . . . y jn−1}
imply the constant input and balanced output bits, respec-
tively.

A.1 17-round LBlock

{32} → {2, 3, 30, 31}
{36} → {4, 7, 10, 11}

{40} → {13, 15, 16, 18}
{52} → {22, 23, 25, 27}

A.2 16-round LBlock

{32, 34} → {28}

A.3 16-round TWINE

{0} → {0−3, 8−11, 16−19, 24−27, 32−35, 40−43, 48−
51, 56 − 59}

A.4 SIMON

A.4.1 14-round SIMON32

{0} → {16 − 31}

A.4.2 16-round SIMON48

{0} → {24 − 47}

A.4.3 18-round SIMON64

{0} → {35, 37, 43 − 63}

A.4.4 22-round SIMON96

{12} → {53, 58, 60, 62, 67}
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A.4.5 26-round SIMON128

{12} → {73, 75, 77}

A.5 9-round Gift-64

{61, 62, 63} → {12, 32, 36, 40, 60}

A.6 9-round Present

{0, 1, 2, 3} → {63}

A.7 8-round Clyde-64

{0, 4} → {0}
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