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Abstract

The ability to evade Antivirus analyses is a highly coveted goal in the cybersecurity field, especially in the case of Red
Team operations where advanced external threats against a target infrastructure are performed. In this paper we present
the design and implementation of PEzoNG, a framework for automatically creating stealth binaries that target a very low
detection rate in a Windows environment. PEzoNG features a custom loader for Windows binaries, polymorphic obfuscation,
a payload decryption process and a number of anti-sandbox and anti-analysis evasion mechanisms, including a novel user
space unhooking technique. In addition, the custom loader supports a large amount of Windows executable files, and features
stealth and advanced memory allocation schemes. We evaluate the effectiveness of PEzoNG by testing various malicious
payloads against up to 29 commercial Antivirus solutions, and we highlight and discuss the assets and differences of PEzZoNG

with respect to similar tools.

Keywords Malware - Evasion - Windows - Packer

1 Introduction

Executing payloads without being detected by an Antivirus
is one of the elements that leads to the success of a Pene-
tration Test [1] or a Red Team [2] campaign; being invisible
to the eyes of an Antivirus provides a wide range of possi-
bilities both to gain remote access and to escalate privileges
on a target machine. The amount of time required to figure
out the right payload to be deployed on a target machine
mainly depends on gathering as much information as pos-
sible about this target, e.g. Operative System (O S) version,
any Antivirus (AV) installed, patches applied, etc. Once the
payload has been conceived, there might be the need to make
it undetectable by an Antivirus, especially if the target O S is
Windows. The attacker (which may either be a penetration
tester, a red teamer, or a real malicious threat) needs to set up
an environment similar to the target one in order to verify that
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the payload will not trigger any alarm once deployed on the
target. PEzoNG aims to automate all the process of making a
payload undetectable, providing an automatic way to embed
any payload into a custom loader which takes care of being
invisible. The input of PEzoNG, which can be either a nor-
mal Windows executable file (a Portable Executable—P E
[3]) or a Windows shellcode, is encrypted and embedded
inside the loader; the loader is then obfuscated to obtain a
polymorphic binary in the output. This final result is another
payload which has two main features: 1—it’s a payload with
a low detection rate (i.e. both static and dynamic analysis
are bypassed) and 2—the behavior of the original payload is
unchanged.

Our work starts from PEzor [4], an existing opensource
PE and shellcode packer. As we describe in more details in
Sect. 2, this tool, and some of its dependencies, have limita-
tions which may either trigger an AV alarm or leave known
artifacts in memory (which can be identified by a forensic
analysis). PEzoNG overcomes all of them, while at the same
time provides new technologies and implements both static
and dynamic analysis bypass methodologies. Moreover, at
the time of writing PEzoNG it’s a completely different project
from PEzor as they only share a part of the name and the
building environment. We tested PEzoNG by packing well
known payloads identified as malicious by many AV soft-
ware. The resulting payload was successfully executed and
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not detected by the AV thus demonstrating the effectiveness
of PEzoNG. Moreover, PEzoNG was designed to be stealth
even to the human eyes of a Blue Team [5], opposed to the
Red Team. As discussed later, allocating a private memory
area with the Read, Write and Execute (RWX) flags could
be harmless for a number of AVs but suspicious to a human
being and to modern EDR systems, both while the malicious
payload is running and while conducting a forensic analysis
of the RAM content. For this reason, allocating memory in
such a way is considered to be an issue in the next sections.
Finally, we propose a new way for unhooking hooked func-
tions in Windows libraries that would allow the unhooking
process without the need of reading the original library from
disk.

In summary, the contribution of this paper and the unique
assets of PEzoNG are the following:

An environment in which embedding malicious payloads
to make them undetectable

— A novel unhooking technique

A custom PE loader with stealth memory allocation

A custom payload double-encryption process

— A custom function call obfuscation method to invoke
Windows APIs

The remainder of this paper is organized as follows: Sect.
2 is an overview of related work; Sect. 3 describes the design
and implementation of PEzoNG; Sect. 4 shows the results
we achieved and Sect. 5 concludes this paper.

2 Background and related work

PEzor (version 1.0) [4] is the PE packer from which PEzoNG
was born; at the time of writing the two projects have
diverged, meaning that PEzor focused on different features
than PEzoNG. For this reason, in the remainder of this paper,
when referring to PEzor we consider version 1.0. PEzor
contains many state of the art tools and combines them to
generate a PE containing a malicious payload with a low
detection rate; we analyzed all of them and the focus of our
research is to overcome their limitation while at the same
time provide new features for evasion. PEzor makes exten-
sive use of Donut [6]: “Donut is a position-independent code
that enables in-memory execution of VBScript, JScript, EXE,
DLL files and dotNET assemblies”. To summarize, Donut
converts an executable file to shellcode by prepending a small
custom loader before the actual executable. An issue of this
loader is that it leaves known artifacts in memory: Donut allo-
cates memory (where the executable file bytes are copied to)
using the VirtualAlloc API (Application Programming
Interface): as we discuss in more details in Sect. 3.5, memory
allocated in this way can be quickly identified; moreover, the
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allocation flags of this memory area include the Executable
Flag, i.e. it contains code that is going to be executed at some
stage.

PEzoNG does not use Donut but, like Donut, needs to
allocate memory somehow, so it overcomes this issue by
changing the allocation scheme to a modified version of the
DIl Hollowing [7] technique: memory allocated this way has
the same properties of memory allocated by Windows when
loading a DIl into the process address space.

PEzor also employs the Shikata Ga Nai Encoder [8] as
an encoding mechanism for the malicious payload in order
to obtain a polymorphic payload, different at each genera-
tion, to bypass static detection mechanisms. SGN also has
a problem, namely, it needs the memory allocated where the
payload resides to necessarily have RWX flags. This is also
an issue that PEzoNG successfully overcomes.

Additionally, PEzor uses a custom loader to load the pay-
load into memory (transformed into shellcode with Donut
and made polymorphic with SGN), and exploits the classic
pattern of shellcode allocation and execution on Windows,
namely the sequence of invocations: VirtualAlloc,
WriteProcessMemory and CreateRemoteThread;
moreover, instead of calling these Application Programming
Interfaces (APIs), the underlying syscalls are invoked—
which, as we’ll see later, has the advantage of avoiding some
detection mechanisms- using the inline_syscall project [9]
which, however, has a limitiation; namely it does not work if
the system call wrapper in the Windows library NTDLL.dIl
is hooked [10]. This happens because the inline_syscall
project parses NTDLL.dIl searching for symbols name (e.g.
NtClose) and gets the system call number by reading at an
offset of the symbol address. This approach won’t work if
the stub is hooked because the system call number won’t be
there. An example targeting NtClose is showed in Fig. 1.

This limitation entails a reliability issue: if the functions
used by the loader are hooked, the loader must unhook
them before the payload is loaded otherwise the loading
process will fail. PEzor implements the unhooking feature
by using DLLRefresher project [11] which can trigger some
AVs because of hooked functions and malicious behaviour
(e.g. NTDLL.dIl is loaded from disk—more about this is
described in details in Sect. 3.4.2). Moreover, for what con-
cerns user-space unhooking, in [12] 7 Antivirus software are
analyzed and different unhooking techniques are evaluated
so as to discuss their effectiveness against the same Antivirus;
in this paper, and more specifically in Sect. 3.4.2, we analyze
16 Antivirus and discuss a novel technique for user-space
unhooking.

PEzoNG implemented syscalls invocation with the syswhis-
pers2 project [13], and allows memory allocation with
the aforementioned new allocation scheme—derived from
the ModuleOverloading [14,15] technique— which is
described in more details in Sect. 3.
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Fig. 1 Usage example of inline_syscall library calling NtClose when
it is hooked by BitDefender Total Security

With regards to static analysis bypass, the malware has to
be obfuscated in a way that the same source code would result
in different binary files at each compilation. In particular,
implementing obfuscation techniques that allows to obtain
multiple different outputs allows to avoid trivial signature
based detection since no unique signature can be computed
to identify them. Using metamorphic obfuscation techniques
has been proven to be effective against static analysis [16,17].

The PEzor loader is obfuscated using LLV M-based
obfuscators, e.g., YansoLLV M [18], to obtain a final PE
that is also polymorphic; PEzoNG also uses this mechanism
to obfuscate the code, generating a polymorphic binary. How-
ever, the author of PEzor didn’t release the source code for
obfuscation and a comparison with PEzoNG is not possi-
ble. The usage of L LV M-based obfuscators is a well-known
evasion technique [19] that allows to obfuscate the code at
compile time. The LLV M framework allows to easily add
further steps to the compilation (i.e. operations to manipulate
the intermediate representation of the code) while supporting
a large number of programming languages and output archi-
tectures which makes it a good candidate for obfuscating
binaries.

Finally, PEzoNG implements additional evasion mecha-
nisms with respect to PEzor, as described in Sects. 3.4 and
3.1, as well as function call obfuscation to invoke APIs (Sect.
3.2), a custom PE loader (Sect. 3.5) and a novel userland
unhooking technique (Sect. 3.4.2).

In [20] many open source packers are evaluated against
Bitdefender [21] which, according to the referenced statis-
tics, is the most effective Antivirus software. In total 9
packers were evaluated and the maximum evasion rate was
50%, meaning that half of the payloads were detected by
Bitdefender; in particular, two of the payloads that are
always detected regardless of the packer are meterpreter [22]
implants. By packing the same payloads with PEzoNG we
show in Sect. 4 that the evasion rate is 100% against not only
Bitdefender, but also a number of other AV software. In [23]
an evaluation similar to the previous one was carried out,
testing 5 different Antivirus software against 4 open source
PE packers. The best evasion rate in this paper is 60%, and

the packed payloads are meterpreter implants and custom
reverse shells.

3 PEzoNG

PEzoNG is a project written in C and C++. Although this
project targets Windows only, it has to be compiled using
the Mingw-w64 [24] development environment together with
the LLVM toolchain [25] in order to compile and link.
The toolchain made up of Mingw-w64 and LLVM/clang
can cross-compile Windows executables from a GNU/Linux
machine.

PEzoNG source code is made up of three main compo-
nents:

—

the malicious payload, i.e. the input of PEzZoNG,

2. the evasion code, which allows to evade from Antivirus
sandboxes and Endpoint Detection and Response (EDR)
solutions, and finally

3. the main loader, which loads the malicious payload into

memory and executes it.

PEzoNG is built with modularity in mind and allows to
add new features in a simple way by adding new modules
that could implement different techniques with a fine grained
detail. The project is organized in the following modules:

Encryption

APIs

— Syscalls

Evasion

PE loader
Shellcode injection

Each module can implement different techniques that can
be chosen when packing a malicious payload. Moreover, this
structure allows to decouple the implementation of the tech-
niques from the actual packer giving the flexibility to mix
different techniques together as well as adding new ones with
low effort.

The process of compilation and linking is not trivial and
it is divided into many steps (Fig. 2):

— The encrypted payload is embedded in the template
source code

— The source code (all but the payload) is compiled into
LLVM Intermediate Representation (IR)

— The IR obtained in the previous step is obfuscated using
YansoLLVM

— The obfuscated IR as well as the payload are compiled
and linked into binary format

@ Springer
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Since the evasion code and PEzoNG loader are obfuscated
using YansoLLVM, the generated output is polymorphic, and
as such trivial static signature detection methods used by
Antivirus software are not effective. Moreover, we recall that
the malicious payload is not obfuscated using YansoLLVM:
as we will discuss in more details later on, the payload is
actually encrypted in two different stages so as to decrypt
it during execution by reversing those stages, in a way that
allows to bypass AV logical paths hijacking. [26].

The high level operations performed by the generated PE
can be divided in the same way as the three main components
of PEzoNG (Fig. 3), along with the modules involved in each
phase:

1. The evasion code is executed
— Evasion, Syscalls

2. The malicious payload is decrypted
— Encryption

3. The custom loader is invoked

— APIs, Syscalls, PE loader, Shellcode injection

The next sections describe the aforementioned modules
in more details.

3.1 Payload decryption

Asbriefly explained before, the malicious payload is encrypted
in two steps during PEzoNG compilation so as the actual
payload cannot be trivially extracted from the final packed
binary. The encryption keys are randomly generated using
openssl during each packing process and their length is fixed
to 256 bit; then a Python script is used to encrypt the payload
and the encryption keys are embedded in a header file of the
crypto module of PEzoNG. The encryption algorithm can be
selected by the user, and the current choices range from a
baseline XOR encryption up to AES256-CBC. We remark
that our usage of an encryption algorithm is not related to
the need to protect confidentiality, but ’just” with the goal
of evading static analysis and sandboxing. Therefore, even a
semantically insecure algorithm (such as XOR with a con-
stant random pattern) meets our needs.

Decryption happens in two stages too, because an AV can
modify logical paths taken by an application in order to ana-
lyze its behavior [26]: if there is an if-else branch in the code,
the AV can choose to always run one branch by changing
the result of the checked condition (e.g. run all the branches
as if they were all true or false). For this reason, PEzoNG
implements two branches inside a loop which, under normal
conditions, are both evaluated as true for a single value of
the loop iterator; in this way, there is only one possible path
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that allows the complete decryption of the payload and, this
path cannot be taken if the logic inside the if statements is
changed (Listing 1).

Note that our two stages of encryption are devised to
bypass AV logical path hijacking. Therefore, the usage of a
stream cipher or even an XOR encryption (where encrypting
twice is actually equivalent to a single encryption) is correct
in our context. Indeed, the AV can only see random bytes
in memory until the double-decryption step is executed—
those bytes are going to become meaningful only after the
two decryption steps, i.e. after the two logical conditions are
executed without tampering by an Antivirus.

Listing 1 Payload decryption steps

a = 1337;
c = 1337;
for (int i = 0; 1 < 100000000; i++) ¢
if (a == 1337 && 1 == 98765400 && c != 7331) {
compute (); // Huge Computation
decryptl (); // First stage Decryption
}
if(a != 7331 && i == 98765400 && c == 1337){
decrypt2 (); // Second stage Decryption

}

If the AV changes either one or both of them, the final
decryption will be wrong and the next execution stage will
fail (the main loader), so PEzoNG will not execute any poten-
tially malicious code. Moreover, there will be no malicious
artifacts left in memory (i.e. the original payload) because of
the wrong decryption, but only a sequence of nonsense bytes.

3.2 APIs

In order to setup its environment PEzoNG needs to call mul-
tiple Windows APIs, many of them usually used by many
malicious payloads. When an executable file makes use of
Windows APIs, their names are included in the PE Import
Table, so that the OS can load them at run-time and make
them available to the process. The Import Table is part of
the PE metadata so every imported API implies the pres-
ence of a string containing the API name inside the PE. Even
the mere presence of certain strings inside an executable file
may mark it as suspicious and trigger the AV to perform
deeper analysis, so we implemented an automatic function
call obfuscation method which allows to dynamically resolve
any Windows API address at run-time without ever specify-
ing the APIname. A Python scriptis used to compute the hash
of all the used Windows APIs using a compile-time salt. At
run-time each API is called using its corresponding hash—
transparently to the programmer, which continues to use the
API name—and its address is resolved similarly to what the
PEzoNG main loader does—as explained in Sect. 3.5. In
particular a function belonging to a dynamic library already
mapped into the process address space can be resolved by
parsing a linked list inside the Process Environment Block
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Fig.3 UnPacking process in PEzoNG

[27]; we iterate over this linked list until we find an API whose
hash is equal to the one provided by the caller. Since all the
APIs used by PEzoNG belongs to two dynamic libraries—
ntdll.dll and kernelbase.dll—which are always loaded by
Windows into every process address space, all of them can
be correctly resolved at run-time. Following is an example
of how to call an API using the method we provide:

API_CALL (ApiName, paraml, param2) ;

The are two main advantages of using this method; the
first one is that the API names will never appear inside the
PE, but only their hashes will, and since the salt is changed on
every compilation each PE packed by PEzoNG will contain
different hashes. The second advantage is that we do not
rely on two other Windows APIs to perform the run-time
API resolution, i.e. LoadLibrary and Get ProcAddress,
which are also usually employed by malicious software.

3.3 System calls

PEzoNG performs a number of tasks by directly invoking
the underlying syscalls used by an API without invoking the
APl itself (e.g. the high-level API VirtualAlloc calls the
system callNtAllocateVirtualMemory at some point
of its execution), thus avoiding the user-land hooking engine
[28] implemented by Antivirus (AV) and Endpoint Detection
and Response (EDR) software vendors.

Windows provides wrappers for system calls that are
meant to hide the internal structure and possible changes of
the internal operating system services. System calls wrappers

(Type [ordina]

bol
260

JTEXpOr osedbjectAuditAlarm

Exgortlaso i sestEncodableLength
Export| 1800 ZwClose
U EXpOr €| 1801 2 = ectAuditAlarm

Fig.4 ZwClose and NtClose pointing to the same address

use a name convention, namely user-space system service
function names start with Nt and the corresponding kernel-
level functions start with Zw. A user-space program does not
have access to kernel-space routines thus, in user-space Zw*
functions are at the same address of the corresponding Nt *
function. Figure 4 shows the user-space system call wrap-
per NtClose and the corresponding ZwC1ose kernel-level
function pointing to the same address in the Export Directory
of NTDLL.dII.

PEzoNG implements direct system calls with the help of
the Syswhispers2 project [13] which allows to resolve the sys-
tem call numbers dynamically at runtime even if the system
calls have been hooked in user space.

The technique was popularized by ElephantSe41 [29] and
MDSec Research [30]; it is based on the observation that
the system call number is used as an offset to identify the
position in memory of the real system service. In particular,
system call numbers can be obtained by ordering by address
all the Zw* functions in NTDLL.dI! so that a smaller system
call number will correspond to a lower position in memory.
For example, “The stub with the lowest memory in Windows

@ Springer



320

G. Bernardinetti et al.

10 1909 is NtAccessCheck and if we check the associated
syscall number... it is 0!” [29]

3.4 Evasion

PEzoNG implements different evasion techniques to defeat
anti-malware monitoring capabilities used for dynamic anal-
ysis. In particular, PEzoNG addresses sandbox execution as
well as user space hooking.

PEzoNG can be extended by adding more evasion tech-
niques to this stage of execution even though the mechanisms
we implemented are sufficient for the commercial AV solu-
tions that we tested (Sect. 4).

3.4.1 Anti-sandbox

Many anti-sandbox techniques implements delayed execu-
tion by sleeping for X seconds before executing the malicious
code. However, EDRs in the first place, but also some AVs,
may ignore the call to the s1eep () function, thus executing
the payload without delay and triggering alarms. Because of
that, PEzoNG implements dynamic analysis evasion using a
slightly modified version of the Offer you have to refuse [31]
technique. This technique is based on the concept that AV
engines cannot use large amount of resources to analyze a
potentially malicious program. The implemented technique
executes useless instructions that are memory dependent
between each other and whose execution time is about X
seconds. Since the sandbox cannot execute the code for a
long time for performance reasons to avoid degrading usage
experience, if the malicious payload is triggered after the time
used by the sandbox engine to analyze the binary, the binary
results harmless and thus, there is no detection of the mali-
cious behavior. After many experimental tests (Sect. 4) we
found the optimal amount of useless computations needed in
the average case.

3.4.2 User-space UnHooking

User-space API hooking is a well-known technique used by
AVs and EDRs to monitor the execution of a process at run-
time in order to detect malicious patterns. In particular, a
number of system functions are hijacked by the security prod-
uct overwriting the first instructions of the function with a
jump instruction which redirects execution flow to a piece
of code controlled by the security software before returning
to the original API code. Which exact functions are hooked
depends on the security product in use, however, functions
that are commonly used for malicious purposes are often
hooked.

Even if PEzoNG is extremely careful in using stealth tech-
niques to invoke Windows APIs and syscalls, the embedded
payload may not be so careful thus it may still raise alarms
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if user-space hooking is employed by an anti-malware soft-
ware. For this reason PEzoNG allows to patch the hooking
procedure in order to make Anti-Virus software blind.

API Hooking is a very effective detection technique as
it allows to take actions basing on real-time events that
could trigger the detection of the malicious software after
it has started to run. For example, AVG Internet Security
[32] was able to detect a Cobalt Strike [33] raw stageless
beacon shellcode packed with PEzoNG without us having
enabled the unhooking feature of our packer. In particu-
lar, the malware was not detected when the file was placed
on disk (static analysis), nor when the beacon was loaded
in memory (dynamic analysis) nor when it connected to
the Command-and-Control server but rather when a certain
command was executed on the system through the beacon.
The reason behind this is that once the beacon was run, the
packer couldn’t protect it anymore because the AV software
employed run-time detection techniques, namely by hooking
Windows APIs.

As we show in Sect. 4, we successfully executed mali-
cious payloads without getting caught by many anti-malware
software by packing them with PEzoNG after enabling the
unhooking feature with the novel Whisper2Shout technique.

From an attacker’s perspective, one way to bypass these
security products is to attempt to remove the hooking. There
are many documented techniques to remove user-space hook-
ing [34-37] but all of them require either reading the original
library (DLL) from disk or reading its contents from a remote
process’memory space before the library is already hooked
by the security product. Detection of those techniques is usu-
ally implemented with the support of Windows kernel, by
using minifilter drivers [38]. Windows allows anti-malware
software to register callbacks for a number of system events
including file operations and process creation [39]. This
means that the AV will be notified when such events hap-
pen in the system and could trigger a deeper analysis that
would potentially lead to detection. For example, reading the
contents of the NTDLL.dII file, which should only be loaded
during process creation, can be considered suspicious and
could lead to detection.

PEzoNG implements two unhooking techniques that can
be chosen by the operator

1. Shellycoat [40]
2. Whisper2Shout

Shellycoat technique is a well-known technique which
unhooks a hooked DLL by loading a clean version from disk.
This techniqueusesNtCreateFile,NtCreateSection
and NtMapViewOfSection to load a fresh copy of the
DLL in the process address space, it copies the original bytes
of its text section in the text section of the hooked DLL and
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Table 1 Antivirus employing API Hooking

Antivirus API Hooking

AVG

Avast

BitDefender

Comodo
MalwareBytes

ESET Internet Security
Sophos Home 3.0
Norton 360

Trend Micro

Dr. Web

Windows Defender
Kaspersky

Avira Prime

McAfee Total Protection
Webroot

Qihoo 360

S N N N N RN N NENEN

finally calls Nt UnmapViewOfSection to unload the pre-
viously loaded library.

However this technique, as well as all the aforementioned
existing ones, could be detected because of three main rea-
sons:

1. NtCreateFile is called to open a system DLL that is
not usually opened by user-space programs

2. NtMapViewOfSection is called to map a DLL that
is already loaded in the process address space (e.g.
NTDLL.dll is always loaded by the OS)

3. There is a (small) period of time in which the DLL is
mapped twice in the process address space

To solve the issues mentioned above PEzoNG implements
a new technique, not documented at the time of writing, that
we called Whisper2Shout. This technique came out as the
result of aresearch, on 16 different Antivirus software, whose
purpose was to evaluate which AV employs API hooking,
and most importantly how they implement it. We evaluated
if and how each of the Antivirus provides user-space API
hooking by reading the content of a number of Windows
DLLs in RAM and checking, for every API, if the execution
flow was hijacked towards a memory location outside of the
same DLL.

Table 1 shows which of the 16 AV software—the same
that are used in Sect. 4 for the final tests of PEzoNG as a
platform—provides user-space API hooking as one of their
detection mechanisms, while how they actually implement
hooking will be explained later on in this Section.

<> Source /- Referer
NtClose

stes @ Breakpoints 8 Memory Map (L) call Stack &5 SEH 1| script @] symbols

mp 7|
add byte ptr ds:[rax],al
add dh,dn

add al,zs
or_byte ptr ds:[rbx],al

Fig.5 NtClose hooked by BitDefender Total Security

3C:8BDL

E8 OF000000

FG0425 0803FE7F 01
03

|[00007FFFCFE3CBCO mov r10,rcx NtClose
o[ 000 mo ,F

test byte ptr ds: [7FFE0308],1
— ntd11.7FFFCFE3CEDS

ret
int zE

Fig.6 NtClose unhooked by writing the original system call stub at the
symbol address

The Whisper2Shout technique uses a number of observa-
tions to restore the prologue of hooked functions with the
original bytes without the need of reading the contents of the
original library.

First of all, the technique discriminates the hooked func-
tions between system calls and higher level APIs. The system
call case exploits the same property used in Syswhispers2: as
explained in Sect. 3.3, system call numbers can be obtained
by ordering by address the Zw* functions in NTDLL.dll even
if the user-space system call stub has been hooked. Once the
correct system call number is obtained, if a system call stub
is hooked, restoring the original bytes is trivial as the stub
used to call a system call is well-known; thus, it is possible
to unhook any system call stub hooked in NTDLL by over-
writing the instructions with the system call stub using the
right system call number.

The following is an example of how a system call stub
looks like. We omitted some instructions between the number
of the system call and the syscall instruction as they are
not important for the purpose of the example.

Listing 2 NtClose system call stub on Windows 10 1909

mov rl0, rcx
mov eax, F

é&écall

During our research on the 16 different Antivirus software
—the same AVs listed in Table 1 and in Sect. 4—we found
that the methods used to hook a system call were 2: (i) a
5-byte jmp instruction and (ii) a 7-byte sequence of instruc-
tions mov eax, N; jmp rax; Since the first instruc-
tions of a syscall stub mov rl0, rcx; mov eax,
system_call _number are always 8 bytes long, the
knowledge of the system call number is enough to recon-
struct the correct stub. Figure 5 shows the system call stub
of NtClose hooked by BitDefender Total Security [21] and
Fig. 6 shows the reconstructed stub after the unhooking pro-
cess.

The API case is less trivial because there are a number of
different techniques that could be used by AV/EDRs to hook
a Windows APL

We analysed previous research on the topic [41] as well
as the aforementioned security software to understand which
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LdrLoadp11

push rdi
push ris
sub rsp,00

cc int3
~ E9 33EC0BCO imp_7FFF456A0238)
cc ints

:56
48:81EC D000000O

Fig.7 NTDLL.LdrLoadDIl hooked by AVG using inline hooking

[Jcalstack =pseH  |o| saipt %l symbols <> Source

Jmp_aqword ptr ds:[7FFF456A0230]
int3

® Breakpoints

[ Memory Map

int3

Fig.8 Trampoline for jumping to AVG DIl

40:53 push rbx
48:83EC 20 sub rsp,20
FF15 94880000 €all gqword ptr ds:[7FFF61A3ADEO]
8BDS8 mov_ebx,eax

€all aswhook.7FFF61A358C0

mov eax,ebx

add rsp,20

pop rbx

ret

E8 6D360000
8l

48:83C4 20
5B

Fig.9 AV Checker function in AVG DIl

techniques were used and we developed a general unhooking
technique working for each hooking method we found.

In particular, we recall that the jump to the trampoline stub
(which is allocated and written by the AV dII at runtime) can
be done in the two aforementioned ways, i.e. short jump or a
mov eax, N; jmp rax; sequence. It should be noted
that those are not the only possible ways to hook a function,
however, during our research we found that in practice only
these two techniques are used.

After jumping to the AV controlled area, there must be a
way to jump back to the original function. Since now execu-
tion is in the AV controlled area, there is not any restriction
on the number of instructions to use in order to restore the
execution flow.

In particular, we identified the following two unique tech-
niques to execute back the original function from the hook:

1. Jump back to the original function with a jmp instruction
(implemented by Detours hooking library [42])
2. Double-Push technique [41]

During our research we identified a common pattern
with regards to the memory allocated to storing pointers
and trampolines needed for hooking. We found that the
memory type of all the regions containing useful informa-
tion regarding the hooks was marked as Private (namely
MEMORY_BASIC_INFORMATION.Type == MEM_PRI
VATE) [43].

The previous observation is the fundamental block of this
unhooking technique because that private memory region
will contain all the information necessary for the unhooking
process. Figures 7, 8, 9, 10 shows the blocks used by AVG
Internet Security to hook the function NTDLL.LdrLoadDIl

So when a function is hooked, the pointer to the symbol in
the Export Directory of the DLL points to a jump instruction
or to a set of well-known instructions that divert the execution
to a target address located inside a Private memory region
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ints

mov_aword ptr ss:[rsp+10],rbx
push rsi

Jmp_aqword ptr ds: [7FFF456A0228]
ints

cc
38:895C24 10

WEd11.00007FFFB55E1606

ush rdi

push ris
rsp,D

mov rax,qword ptr

cc int3 xor rax,rsp

mov quord ptr ss:
14,r9

=
mov_gword per ss:frsfand a1,2

push rs1 mov_eax,dword ptr_ds:[r1o]
o int3 T

<

~ £9 3936782 880580 Createremoterhreadex
41:55

41:56

a1:s7

48:81EC 50050000

48i8805 D7222000

rd ptr de: [7FFEAEFOARZ0] 00007FFEAEFOAE20: "8l RUS"

Fig. 12 Kernelbase.CreateRemoteThreadEx Hooked by BitDefender

000
00007FF 831830000 | 0000000000010000
00007FF §318C0000 | 0000000000010000

U007 FFE7 AT U000 U000 000000 Tt TTMETTO=TTOTT
00007FF87A1F1000 | 0000000000004000 | . Text Executable code

Fig. 13 BitDefender Private memory region

(Figs. 7 and 11 shows the hook and the private memory for
AVG while 12 and 13 for BitDefender).

This (private) memory region contains trampolines to the
hooking dll (which will be used to hijack the execution of
the function towards the anti-malware software) as well as
trampolines to the hooked (original) dll (which will be used if
the call has been identified as legitimate by the anti-malware
software and thus the execution should continue as normal).
Even when there are multiple Private memory regions, both
trampolines reside in the same memory area. This means
that by using the destination address of the jump located at
the symbol address, we can call VirtualQuery to get the
memory region where the prologue of the hooked function
is stored (Figs. 14, 15, 16).

Once this memory region is identified, it is necessary to
parse it, searching for the trampolines used to jump back to
the original function. Each of those trampolines will contain
the original prologue of a hooked function as well as a pointer
to an address near the position of the hooked function—a few

Base rejocarion

bt
PR
R
T
T

TYTETTOTTaTT
Text Executable code

Fig. 14 BitDefender Private memory region where the trampoline of
CreateRemoteThreadEx resides (Green)

<« nts

1ng,
|1jmp| 7FF831880530)
pusfrrrs

a1:se push ris
157 push ris

48:81EC 50050000 sub rsp,ssc

4818805 D7382000  |mOv rax,aword ptr ds:([7FFSAEFOAE30]

o
~ €5 3893E782 CreaterenoteThreadex
41:55

J0007FFSAZF0AE30: "aIRUE

Fig. 15 CreateRemoteThreadEx Hooked by BitDefender
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e g e a L e
mov rli,rsp
push rbx

LSl

PuSh rax
push rax
mov_rax,kernslbase.

Ll 1
pop rax

ret
add byte ptr ds:[rax],al

Fig. 16 BitDefender trampoline to execute back the hooked function

mov ri@, rcx

Fig.17 Layout of the NtClose
function before being hooked

mov eax, F

syscall

( NiClose 7FFFAFE40300 AVadlltcatch_malware

jnp jmp AV.d1ltcatch_malware() if( 1is_malware() )

syscall jmp 7FFF4FE40000

7FFFAFE40000

mov rie, rex

mov eax, F

jmp (NtC T)

Fig. 18 Layout of the NtClose function after being hooked

00007 FF 831820000 | D00UO0DDO00I0000
00007FF 831830000 | 0000000000010000
0000 | 0000000000010000

=
ER-
ER--

TRWC
ER¥C -

T TOMTTTETTOTIOTT
00007FF87A1F1000 | 0000000000004000 | . Text Executable code

Fig. 19 BitDefender Private memory region

bytes after its first instruction. Figures 17 and 18 shows the
layout of the NtClose function before and after being hooked
respectively.

At this point, the actions that have to be taken differ
between hooking techniques as there are different ways to
understand if the trampoline is pointing to the function we
are trying to unhook.

When a jump is used to execute back the hooked function
(first hooking technique), it is necessary to find all the jumps
in that region so that we can analyze the destination address
of each jump searching for the memory region where the
original function is located (Figs. 11, 10). In particular, we
scan the private memory region searching for (i) long jumps
(used by the Detours library) with opcode OxFF25 and (ii)
short jumps (used e.g. by MalwareBytes [44]) with opcode
0xE9. On the other side, when the second technique (double-
push) is used, it is necessary to find all the sequences of
push rax; push rax; mov rax, addr sothatthe
destination address could be extracted to check if it points to
the hooked function (Figs. 19, 20).

Once we have identified the correct trampoline, then the
bytes prepending the aforementioned stub are the original
bytes that have been overwritten by the initial hook. To
unhook the function, we have to copy those bytes back to
the original address of the symbol.

e S TR
mov rii,rsp
push rbx

rsi

BUSh T ox
push rax
mov _rax,kernel

pop rax

add byte ptr ds:[rax],al

Fig.20 BitDefender trampoline to execute back the hooked functiopn

oints W MemoryMap  [[J Cal Stack =@ SEH  |o) saipt  ® symbols <> Source - Re

3CT880C mov rii,rsp
53 push rox
s

Createren

56 push
a1:s5 push ri3
41156 push ris
7 push ris
o R

41:57
48181EC 50050000 ub rsp,ss0

Fig.21 CreateRemoteThreadEx UnHooked

cc ant3
48:895C24 10 |mov"aqword ptr ss:[rsp+10J,rbx |LdrLoado1t
56 push rsi

21:56
48:81EC D00000OO

nnnnnnnnnnnnnnn i<+ r7EEERR7ANEANT

Fig.22 LdrLoadDIl unhooked

NtClose 7FFFAFE40300 ( AVdilicatch_malware
jmp jmp if( tis_malware() )
syscall imp

-
7FFFAFE40000

mov r1@, rcx i

mov eax, F

jmp (NEClose+OFFSET)

-

Fig.23 Layout of the NtClose function after being unhooked.

At first, we have implemented this idea by cycling over
each hooked dll and performing the following steps:

1. Use a direct system call to NtProtectVirtual
Memory to set the memory permissions of the . text
section to RW

2. Unhook the functions by writing each original stub at the
corresponding symbol address

3. CallNtProtectVirtualMemory torestore the orig-
inal memory permissions (RX)

The final results are shown in Fig. 21 for CreateRe-
moteThreadEx and in Fig. 22 for LdrLoadDII.

However, at some point we faced a problem with security
products which were using a more advanced method and
were monitoring the integrity of their hooks which would
undo our modifications.

To solve this problem, we changed our approach and
decided that rather than overwriting the hooks at the sym-
bol address, we could overwrite the AV hooking trampoline
with a jump to the original prologue function (located in the
same Private memory area).

In this way, when the AV checks for its hooks it will find
all the initial jumps unmodified. Those jumps will also point
to the very same addresses the AV placed the hooking tram-
polines in, however the instructions there will not divert the
execution to the AV DIl anymore. We are basically bypassing
the hooking trampoline so that when the function is called,
the execution will behave exactly like no hooks were in
place even if a jump is placed at the symbol address. Fig-
ure 23 shows the layout of the NtClose function after being
unhooked in this way.
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It should be noted that all the previous observations are
still valid and they allow us to retrieve all the original stubs
by walking the process address space in a clever way.

‘We have all the information that is necessary to restore the
original execution path:

— We know the destination address of each jump located at
the symbol address
— We know where the original function stub is located

After collecting all this information, we can start the
unhooking process:

— Use a direct system call to NtProtectVirtualMemory to
set the protection of the memory area that stores the stub
to RW

— Add a short jump instruction opcode: 0xe9 to jump to the
original prologue

— Set back the memory to RX using another direct system
call to NtProtectVirtualMemory

Finally, it is worth mentioning that, using this technique,
itis no longer necessary to differentiate between system calls
and APIs - although the knowledge of the system call stub
can be used as a verification to understand if a function has
been hooked/unhooked correctly—and therefore the unhook-
ing process will be exactly the same, namely:

— Check if the function has been hooked

— Get the pointers to “hooking” and “original” stubs

— Overwrite the “hooking” stub with a jump to the “origi-
nal” stub.

3.5 Main loader

Once the payload has been decrypted, the execution enters
in the loading phase. Here a distinction must be made
between shellcode and PE payloads: in both cases memory
can be allocated using either the classic VirtualAlloc—
VirtualProtect scheme (possibly by calling the corre-
sponding system calls) or our modified dll hollowing scheme
(default behavior) and then, in the first case execution goes
directly to the shellcode while in the second case, the control
is given to the custom PE loader before the actual payload is
executed.

As said, the memory is allocated by default using as a basic
principle that of dll hollowing: we were strongly inspired by
the idea of Phantom DIl Hollowing [45] and we introduced
some modifications to overcome its limitations.

Phantom DIl Hollowing looks for a dll on disk that has not
already been loaded into memory and that is large enough to
host the malicious payload. Once a feasible DIl is found, the
loader opens the DII using a transacted NTFS (Tx F) [46]
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and maps it to memory using NTDLL .DLL!NtCreate-
Section and NTDLL.DLL!NtMapViewOfSection
thus obtaining a memory area allocated in the same way as
all the dll libraries. At this point the sections of the mapped
dll in memory is overwritten with the bytes of the malicious
PE exploiting the properties of NTFS Transacted filesystem
which allows to have a copy of the section completely iso-
lated from external applications.

In particular, 7xF can be used to “preserve the integrity
of data on disk caused by unexpected error conditions and
help resolve concurrent file-system user scenarios by isolat-
ing your changes from others while the changes are being
made.” [46] To optimize memory usage, Windows shares
mapped views of image sections created from Dlls (e.g. only
one copy of kernel32.d11 actually resides in physical
memory); if the mapped view of a shared section is modi-
fied, the modified copy of the shared section is stored within
the process address space. Without the usage of TxF, this
region is marked as Private and this artifact can be used by
defenders as a warning of malicious behaviour.

Phantom DLL Hollowing uses TxF to edit mapped views
before they are actually mapped in the process address space,
without having the modified sections marked as Private. The
function NTDLL.DLL !NtCreateSection is called to
load a Microsoft signed library from disk using the flag
SEC_IMAGE: when this flag is used, the initial permis-
sions parameter is ignored resulting in an initial allocation
of RWXC. The resulting section can be mapped into mem-
ory using NTDLL.DLL ! NtMapViewOfSection which
allows to use transacted file handles as input. Since it is
possible to modify the view of the loaded DIl by call-
ing WriteFile using the transacted handle, when calling
NTDLL.DLL!NtMapViewOfSection, the process will
have a modified view of the library but the file object under-
lying the mapped image will point to the original unmodified
Mifrosoft library.

However, this technique has a strong prerequisite: the file
must be opened with Write access otherwise, the call to
WriteFile will fail. Even if, as suggested by the author,
this issue can be easily solved by copying the DIl in a direc-
tory where the attacker has write privileges, this is not ideal
and thus we tried to overcome this limitation avoiding the
use of TxF.

PEzoNG memory allocation removes the prerequisite of
having write access to the target DIl by using the con-
cept of Module Overloading [14,15]. Our approach uses
NTDLL.DLL!NtCreateSectionand NTDLL .DLL !Nt -
MapViewOfSection to allocate memory but instead of
using WriteFile on a phantom file handle to overwrite
the dll with the malicious payload, it uses the handle of
the mapped memory, changing the sections’ memory pro-
tection according to the headers of the injected PE by using
VirtualProtect (orNtProtectVirtualMemory if
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 0x 140000000 Private 1,364kB RW
0x 140000000 Private: Commit 4kE R
0x 140001000 Private: Commit as0 kB RX
0x1400d3000 Private: Commit 404kE R
0x14013d000 Private: Commit 36kB RW
0x 140146000 Private: Commit 60kE R
M FFFAfd=annnn Mannead 1n74kR R

Fig.24 Memory allocated with VirtualAlloc

PEzoNG was compiled with syscall support). This tech-
nique allows to open the sacrificial DIl file with READONLY
access, thus removing the write access constraint but main-
taining the Image flag for mapped memory (as opposed to
Private). Moreover, this approach is different from the
classic implementation of DIl Hollow which instead rely on
LoadLibrary API to load the sacrificial DIl. To summa-
rize, the following are the steps used to allocate memory for
the injected payload:

— open a sacrificial DLL with READONLY flag using
CreateFilewW APL

— call NtCreateSection with SEC_IMAGE and
READONLY flags using the handle of the file opened in
the previous step

— call NtMapViewOfSection with READWRITE flag
to allow overwriting of the sections

— return the pointer to the mapped section

Finally, it is necessary to add the module to the PEB’s list
of loaded modules so as to avoid having a mismatch between
loaded libraries and mapped images that could be used by
AVs as an indicator of compromise (I0C).

Once the loader has the pointer to the mapped section, it
overwrites the memory with the payload to be injected and
the sections are marked with the appropriate permissions.

It should be noted that, after this operation, the content of
the overloaded dll in ram and on disk is different. One way to
identify the injection is to compare the content on disk with
the content in ram for each dll loaded by the process. In case
this allocation fails or the user has explicitly decided to not
use the dll hollowing scheme, the classic allocation scheme
with VirtualAlloc and VirtualProtect is used by
either using the API submodule (Sect. 3.2) or by using the
system call submodule (Sect. 3.3). It should be noted that this
allocation method leaves known artifact in memory, allow-
ing a simpler detection by checking the attributes of the
allocated memory. In particular, allocating memory using
VirtualAlloc (or using the corresponding system call
NtAllocateVirtualMemory) will cause the allocated
memory region to be flagged as Private memory with
the state field of MEMORY_BASIC_INFORMATION set to
MEM_COMMIT. (Fig. 24)
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v 0x7ffdb4400000 Image 1,940kB  WCX C:\Windows\System32\aadtb.dll
0x7ffdb4400... Image: Commit 4kB R C:\Windows\System32\aadtb.dll
0x7ffdb4401... Image: Commit 860kB RX C:\Windows\System32\aadtb.dll
0x7ffdb44d8... Image: Commit 404kB R C:\Windows\System32\aadtb.dll
0x7ffdb453d... Image: Commit 36kB RW C:\Windows\System32\aadtb.dll
0x7ffdb4546... Image: Commit 355kB R C:\Windows\System32\aadtb.dll
0x7ffdb459f...  Image: Commit 128kB WC C:\Windows\System32\aadtb.dll
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Fig.25 Memory allocated with DLL Hollowing

On the other side, using the dil hollowing technique, the
allocated memory is flagged as Image (with the state field of
MEMORY_BASIC_INFORMATION set to MEM COMMIT)
making it indistinguishable from memory allocated by the
system to load dll libraries (Fig. 25). Moreover, as previously
mentioned, the dll on disk remains unchanged, and only its
run-time version in memory is different from the original.

After allocating memory, the custom loader intervenes to
replicate the behavior of the operating system when running
a PE. Our loader has a wide support as it manages most of the
features present in a PE except some niche cases; examples
of these features are (i) Imports, (ii) Relocations, (iii) TLS
callbacks, (iv) PE resource management and (v) Exception
handlers.

At this point the PEB of the current process (i.e. PEzoNG
loader) is modified to change the entry-point and the base
address to those required by the target PE in order to hide
information about the loader in memory. This also has the
advantage of allowing the use of resources in the target PE
(that otherwise could not be used). Finally, the memory area
where the loader’s PE header is located is cleaned up and
execution control is given to the entry-point of the target PE.

An important feature of the loader is about how func-
tion resolving is handled. While a PE is being loaded, its
Import Address Table (I AT) [3] must be filled with the
addresses of the imported function names. Microsoft pro-
vides two APIs to resolve a function name: LoadLibrary
and GetProcAddress; the first one is used to load a
DIl into the process address space, while the second one
is an API used to find the address of a function inside a
given DII; these two APIs can be used to fill the /AT of
the target PE, however, they are also frequently employed
by malware for malicious tasks. For this reason, PEzoNG
features a custom function resolving mechanism based on
the Windows loader information which reside in the PEB
structure [27]: a function belonging to a DIl already mapped
into the process address space can be resolved by parsing
a linked list inside the PEB; on the other side, if a DIl is
not already mapped, LoadLibrary must be called: the
PE loader calls LoadLibrary by searching its address in
Kernel32.d1l1l which is referenced by PEB. Manually
scraping imported Dlls searching for LoadLibrary allows
to hide the function from the Import Address Table (I AT)
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of the packed executable since the function is dynamically
resolved. Notably, most of the DIl libraries needed by a PE are
already loaded in most cases, and as such LoadLibrary
invokation are very rare. In the case of forwarded exports
this method results in an infinite loop if the function to be
imported is part of the ApiSet Map [47], so parsing of the
ApiSetMap has been added as well.

Finally, the loader also has support for loading . NET exe-
cutables from memory. Before starting the loading process,
both AMSI and ETW are disabled by patching the functions
AmsiScanBufferand EtwEventWrite respectively as
documented by [48,49]. The loading process is then started
by loading the Common Language Runtime (CLR) in the pro-
cess, then the .NET PE is loaded in memory by passing the
assembly bytes to the Load_ 3 function defined in the CLR.
Finally, the assembly is executed by calling the Invoke_3
function defined in the CLR as well.

4 Experimental results
4.1 Sandbox timing

The first experimental step was focused on identifying the
average time used by AV sandboxes to analyze the payload
so that we could tune the computation done when PEzoNG
starts to evade sandboxes. In particular, Windows Defender
was taken as reference for sandbox evasion since the exper-
iments showed that the same values could be successfully
used on other AV vendors. The experiments identified that the
sandbox was successfully evaded if the computation lasted
for more than about 13 seconds. It should be noted that these
experiments have to take into account the time (namely, the
milliseconds of useless work needed to successfully evade)
and not the computation needed (namely, the number of
iterations) because the latter is strongly dependent on the
computational power of the system and thus, different sys-
tems will result in a different number of iterations needed.

4.2 Testing methodology

A Web Application was developed in order to automate the
packing process: all PEzoNG modules can be enabled/dis-
abled with ease and configured. A bash script is also available
with the same capabilities. Figure 26 shows the Web Interface
of PEzoNG.

We tested PEzoNG running packed known malware on
Windows 10 protected by the following 16 AV software.

— Windows Defender [50]
BitDefender [21]
Kaspersky [51]

— ESET [52]
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Fig.26 PEzoNG Web Application

— Norton 360 [53]

— Avast [54]

— MalwareBytes [44]

— AVG Internet Security [32]

— Sophos Home 3.0 [55]

— McAfee Total Protection [56]
— Webroot [57]

— Avira Prime [58]

— Qihoo 360 Total Security Business [59]
— Comodo [60]

— Trend Micro [61]

— Dr. Web [62]

The testing environment consists of Windows 10 virtual
machines, each of them provisioned with one Antivirus soft-
ware. All the AVs were configured such that all the available
security features and hardening mechanisms were enabled—
which by default is true on most of the AV but not all of them.
We say that a test is successful on a virtual machine if i) the
AV does not statically detect the packed binary, ii) we are
able to execute the packed binary and iii) the behavior is the
same of the original payload. It’s worth to note that i) and ii)
are not sufficient for a test to be successful because a pay-
load can be detected and its process killed by the Antivirus at
some point during the execution. Furthermore, we used anti-
scan.me service [63] to test the packed binaries over 26 AV
engines; all the aforementioned 16 AV software are included
in this service except for Qihoo 360, Norton 360 and Trend
Micro, thus increasing the total number of tested Antivirus
software to 29.

The list of all the tested payloads includes tools employed
during real Penetration Tests and Red Team engagements
i.e. Cobalt Strike beacons [33], Mimikatz [64], Meterpreter
[22] implant, UACme [65], Rubeus [66], SharpHound [67],
SeatBelt [68], Netcat [69], and other reverse shell custom
payloads. All the AV software used for the experiments
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mimikatz

Kaspersky Anti-Virus

Active malware detected
We recommend that you close all running programs
and save your changes before the computer restarts.

Detected: HEUR:Trojan-PSW.Win64.Mimikatz.gen
Location: C:\Users\ \Desktop\mimikatz.exe

Disinfect and restart the computer

Try to disinfect without computer restart
This method does not guarantee complete disinfection.

104AM
A o B

Fig.27 Mimikatz detected by Kaspersky

Fig. 28 Mimikatz packed with PEzoNG executed with Windows
Defender enabled

Fig. 29 Mimikatz packed with PEzoNG executed with BitDefender
enabled

flagged the binaries as malicious, and as an example Fig. 27
shows how Kaspersky detects the Mimikatz executable.

4.3 Results

After packing our payloads with PEzoNG we were able
to successfully execute the payload on the Windows 10
machines protected by the aforementioned 16 AV software;
as an example, Figs. 28, 29, 30, 31 and 32 show the results of
executing the post-exploitation tool Mimikatz against Win-
dows Defender, BitDefender, Ka-spersky, ESET and Norton
360 respectively. The detection engine of all the aforemen-
tioned AV software was not able to detect our payloads thus
proving the effectiveness of PEzoNG.

Fig. 30 Mimikatz packed with PEzoNG executed with Kaspersky
enabled

(@SED) INTERNET SECURITY

@ setip

® Help and support

Fig.31 Mimikatz packed with PEzoNG executed with ESET enabled

otected

SSSSSS

Fig. 32 Mimikatz packed with PEzoNG executed with Norton 360
enabled

Furthermore, we used antiscan.me service [63] to test the
packed binaries over 26 AV engines resulting in 0/26 detec-
tion rate (Figs. 33 and 34 shows the results for mimikatz and a
meterpreter payload respectively); as previously mentioned,
all the manually tested 16 AV software are included in this
service except for Qihoo 360, Norton 360 and Trend Micro,
thus increasing the global detection rate to 0/29. In addi-
tion, we were able to test PEzoNG against 2 business EDR
solutions, i.e. Cyber Reason [70] and Microsoft Defender
Endpoint [71], and the tests were successful; in this case the
environment was provided by a third party and we didn’t
have access to the configuration.

Table 2 shows the detection rate of a meterpreter payload
against 6 of the 16 Antivirus software where only some of the
features of PEzoNG were enabled. In the table, every column
specifies that the corresponding feature is enabled, along with
all the previous columns. That is, the “Syscall” column shows
the results when both the Syscall and the Encryption modules
are enabled. The “v"” symbol means that the Antivirus was
able to detect the payload whereas the “x” symbol means that
the payload was not detected and therefore it was executed. It
should be noted that Table 2 shows one use case of PEzoNG
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o Ad-Aware Antivirus: Clean @ Fortinet: Clean

K AhnLab V3 Internet Security: Clean -‘f F-Secure: Clean

@ Alyac Internet Security: Clean €3 IKARUS: Clean
o A |
Avast: Clean P& Kaspersky: Clean
AVG: Clean
X @) McAfee: Clean
m Avira: Clean

&% Malwarebytes: Clean
B BitDefender: Clean X
J Panda Antivirus: Clean

M BullGuard: Clean

@ Sophos: Clean
$§ ClamAv: Clean

@ Trend Micro Internet Security: Clean
Comodo Antivirus: Clean

0 Webroot SecureAnywhere: Clean
a DrWeb: Clean

== Windows 10 Defender: Clean
U Emsisoft: Clean

HA Zone Alarm: Clean
& EesetNOD32: Clean
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Fig.33 Antiscan result for mimikatz packed with PEzoNG

h
E Text Results

i Filename Qo MDs
17272b9d252a510ed0220773d423b3b29935dfe1.packed.exe

@ Image Result 00 Links

8767003272372d181b0CBLE9E50463d5

W Detected by Scan Date
026 21-06-2021 10:29:52

Your file has been scanned with 26 different antivirus software (no results have been distributed).
The results of the scans has been provided below in alphabetical order.

Fig. 34 Antiscan result for meterpreter reverse shell packed with
PEzoNG

were features are enabled incrementally in order to try to
bypass Antivirus software; the order in which the features
are enabled can be changed and it’s worth mentioning that
one Antivirus could be theoretically bypassed by enabling
less features.

4.4 Entropy analysis

A number of Antivirus software use entropy as a first indica-
tor to determine if an executable file is malicious or not.
In particular, “malware authors also tend to rely heavily
on packing, compression, and encryption to obfuscate their
tools on order to evade signature based detection systems”

\Desktop\mimi_pezong.exe | grep Entropy

tem32\cmd.exe | grep Entropy

Fig.35 Entropy comparison between the packed version of Mimikatz
and the Windows Command Prompt

[72] thus leading to an increase of entropy. We computed
the binary entropy of the packed executable files and com-
pared them with a legit PE, i.e. the Windows Command
Prompt (cmd.exe). Figure 35 shows the comparison between
the entropy—computed with SigCheck [73]—of Mimikatz
packed with PEzoNG and cmd.exe, which are 6.732 and
6.167 respectively, while malicious packed executables usu-
ally have entropy greater than 7.2 [72].

In our scenario, both the PEzoNG loader and YansoLLVM
help increase the total number of instructions, so as long as
the embedded payload size is limited compared to the entire
packed PE, the entropy of the packed PE is reduced. Because
usually the code of our packer is much larger than the embed-
ded payload, even if the malicious payload is encrypted, it
will not affect the final entropy of the binary file. Conversely,
if the size of the payload we want to pack is comparable to
the size of PEzoNG, then high entropy can be detected in the
final PE. It is worth noting here that even in this case, other
techniques can be applied to obtain entropy reduction, for
example, we attach another legit PE to the packed PE.

4.5 Comparison with PEzor

The same payloads were packed with PEzor and checked
against the same AV software. As an example, we show
that the detection rate of Mimikatz is 5/26 (Fig. 36): the
malicious payload was packed with all the evasion features
enabled, i.e. unhooking, syscalls, antidebug, payload encod-
ing with SGN.

The entropy comparison result is shown in Figs. 35 and
37: it is clear that the binary packed with PEzor contains
an encrypted payload because the entropy is very high, and
in particular greater than the threshold value of 7.2, while

Table 2 Detection rate of meterpreter payload (windows/meterpreter /reverse_tcp) with different features of PEzoNG enabled

Antivirus Raw Encryption Syscall DIl Hollowing Anti-sandbox Unhooking All(=+Obfuscation)
Defender v X X X X X X
AVG v X X X X X X
BitDefender v v v v X X X
MalwareBytes v v v v X X X
Norton 360 v v v v v X X
ESET Int. Sec. v v v v X X X
McAfee v v v v X X X
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& Malwarebytes: Clean
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U Panda Antivirus: Clean
M BullGuard: HEUR/AGEN. 1142908
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@ Webroot SecureAnywhere: Clean
@ Drweb: Clean

¥ Windows 10 Defender: Clean
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@ Eset NOD32: a variant of Win64/Rozena.HT trojan
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Fig.36 Detection rate of Mimikatz packed with PEzor

PS C:\Users >

C:\temp\mimi_pezor.exe | grep Entropy

Entro 7.996

Fig.37 Entropy of Mimikatz packed with PEzor

the same binary packed with PEzoNG has an entropy more
similar to cmd.exe.

5 Conclusion

The results we achieved in this paper demonstrate that it is
indeed feasible to automate the process of payload obfus-
cation and Antivirus evasion, as commonly used Anti-virus
software fail in detecting payloads embedded into PEzoNG.

It would be possible however to build detection strategies
by actively analysing the system: if DIl Hollow is used to
store the payload, scraping the RAM memory and compar-
ing the content of the sacrificial DII with the content of the
DIl on disk may be used as an indicator that the library was
overwritten. In particular, besides the actual data being dif-
ferent, in the general case, PE sections in RAM won’t match
the sections on disk (e.g. size, permissions); while this indi-
cator might lead to false positives (i.e. dotnet binaries are
used to change the memory layout while running), it may
be used as a red flag to trigger further analysis. Moreover, if
the malicious payload is a PE, PE headers might be different
from the headers stored on disk when PEzoNG is configured
to overwrite the original PE headers (i.e. when the payload
needs support for resources). Hasherezade’s hollows_hunter
[74] and Volatility Hollowfind [75] plugins can be used
though they generates many false positives [76]; in addi-
tion, the memory allocation scheme used in PEzoNG provide
more stealthiness than standard Process Hollowing Injection
techniques, which can be quickly identified by defenders
[77]. If defenders have the choice of running code in ker-
nel space (i.e. installing a kernel driver), it would be possible

to catch the event of an image (e.g. DII) loaded into a pro-
cess (e.g. NtMapViewOfSection, LoadLibrary,
LoadLibraryEx) by registering a callback using the API
PsSetLoadImageNotifyRoutine [78] in a minifilter
driver.

As regards the unhooking technique Whisper2Shout, from
adefender’s perspective, user-space hooking is a very impor-
tant mechanism, and even though bypasses are possible
it is important to have it in place following a defense in
depth approach. Moreover, security products that monitor
the integrity of the hooks should be preferred as they make
attacker’s life harder increasing the likelihood of detection.
In particular, since the malicious payload have full control
over its own memory address space, the only way to detect
hooking removal is monitoring the hooked dlls and the hook-
ing stubs searching for changes in the instructions stored in
those memory areas.

For what concerns the embedded payload, even if PEzoNG
mitigates the presence of user space hooks and provides
an almost completely safe environment to execute mali-
cious payloads to the eyes of AV/EDRs, those payloads can
still raise different alarms if other detecting techniques are
employed—i.e. network traffic analysis—by a firewall, for
example, for which PEzoNG provides no protection.

Finally, itis important to note that these Antivirus products
are not bullet-proof solutions that will protect systems from
every possible threat, they are tools that defenders can use
to identify anomalies in the monitored systems. Setting and
tuning a security software are fundamental steps when a new
AV is placed in the network: being able to receive meaningful
alerts would help defenders to detect and react to stealth
attacks that are not automatically detected as malicious but
looks suspicious.
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