
Journal of Computer Virology and Hacking Techniques (2022) 18:147–170
https://doi.org/10.1007/s11416-021-00390-2

ORIG INAL PAPER

Detection and robustness evaluation of android malware classifiers

M. L. Anupama1 · P. Vinod2 · Corrado Aaron Visaggio3 ·M. A. Arya1 · Josna Philomina1 · Rincy Raphael4 ·
Anson Pinhero1 · K. S. Ajith1 · P. Mathiyalagan4

Received: 7 August 2020 / Accepted: 31 May 2021 / Published online: 26 June 2021
© The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021

Abstract
Android malware attacks are tremendously increasing, and evasion techniques become more and more effective. For this
reason, it is necessary to continuously improve the detection performances. With this paper, we wish to pursue this purpose
with two contributions. On one hand, we aim at evaluating how improving machine learning-based malware detectors, and on
the other hand, we investigate to which extent adversarial attacks can deteriorate the performances of the classifiers. Analysis
of malware samples is performed using static and dynamic analysis. This paper proposes a framework for integrating both
static and dynamic features trained on machine learning methods and deep neural network. On employing machine learning
algorithms, we obtain an accuracy of 97.59% with static features using SVM, and 95.64% is reached with dynamic features
usingRandom forest. Additionally, a 100%accuracywas obtainedwithCART and SVMusing hybrid attributes (on combining
relevant static and dynamic features). Further, using deep neural network models, experimental results showed an accuracy of
99.28% using static features, 94.61% using dynamic attributes, and 99.59% by combining both static and dynamic features
(also known asmulti-modal attributes). Besides,we evaluated the robustness of classifiers against evasion and poisoning attack.
In particular comprehensive analysis was performed using permission, APIs, app components and system calls (especially
n-grams of system calls). We noticed that the performances of the classifiers significantly dropped while simulating evasion
attack using static features, and in some cases 100% of adversarial examples were wrongly labelled by the classification
models. Additionally, we show that models trained using dynamic features are also vulnerable to attack, however they exhibit
more resilience than a classifier built on static features.

Keywords Static features · Dynamic features · Hybrid features · Fisher score · Adversarial examples · Attack models

B Corrado Aaron Visaggio
visaggio@unisannio.it

M. L. Anupama
anupama.ml@scmsgroup.org

P. Vinod
vinod.p@cusat.ac.in

M. A. Arya
aryanand54@gmail.com

Josna Philomina
josnaphilomina@scmsgroup.org

Rincy Raphael
rincyraphael2019@srec.ac.in

K. S. Ajith
ajithks273@gmail.com

P. Mathiyalagan
mathiyalagan.p@srec.ac.in

1 Introduction

Malicious code is a software intentionally written for bypass-
ing security controls and performing unauthorized actions
that are not allowed to the attacker and can cause a damage to
the victim. The techniques for analyzing malicious code can
be divided into static analysis and dynamic analysis. Static
analysis techniques scan the source code and don’t require

1 Present Address: Department of Computer Science and
Engineering, SCMS School of Engineering and Technology,
Cochin, India

2 Department of Computer Applications, Cochin University of
Science and Technology, Cochin, India

3 Department of Engineering, University of Sannio, Benevento,
Italy

4 Department of Computer Science and Engineering, Sri
Ramakrishna Engineering College, Coimbatore, Affiliated by
Anna University, Chennai, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-021-00390-2&domain=pdf
http://orcid.org/0000-0002-0558-4450

148 M. L. Anupama et al.

the execution of the programs to be examined. Thus, the study
can be conducted without compromising the systems. Static
analysis gained wider acceptance amongst the analysts as it
is quick and harmless, event though encryption, obfuscation
and the use of runtime libraries obstruct the static analysis.
Dynamic analysis, on the contrary, aims to uncover the run-
timebehaviour of the applicationbyexecuting the application
on the real device or in a sandbox environment [8]. Dynamic
analysis is not limited by code obfuscation and can provide
details about the malware behavior.

By combining both static and dynamic analysis, it is possi-
ble to leverage the advantages of both approaches: malware
scanners that use both the types of analysis are generally
known as hybrid malware detectors. Static analysis is con-
ducted by extracting structural features from the file, while
dynamic analysis uses features that require the execution of
the app, like system calls, network traces, and control flow
graphs.

Despite the large literature investigating the advantages
and limitations of using machine learning for detecting mal-
ware, further studies are necessary for consolidating the body
of knowledge on this topic and removing all the uncertain-
ties research pointed out so far, for different reasons. Recent
works collect evidence that anti-malware tools are dimin-
ishing their ability to recognize malware, due mainly to the
rapid increment of variants [20,40,50]. Spatial and temporal
bias can make untrustworthy some results, since training or
testing sets are not completely representative of the malware
(and goodware) population [34]. Adversarial attacks could
easily deteriorate the robustness of machine and deep learn-
ing based classifiers [10,19], while there is not a complete
convergence about which are the best machine learning algo-
rithms formalware detection [16,44]. For this reasonwith this
paper we aim at providing a two-fold contribution to the state
of the art: adding further evidence about the performance of
machine and deep learning algorithms in detecting malware,
and studying to which extent adversarial samples may alter
the effectiveness of classifiers.

More in detail, in this work we explore the usage of
the Fisher score [52] to select the most relevant attributes
for the classifiers. The features obtained are used to build
diverse classifiers using Logistic Regression, Classification
and Regression Trees, Random Forest and Support Vec-
tor Machine algorithms. A comprehensive analysis of the
machine learning models is conducted to identify the opti-
mal classification model that can be deployed for detecting
unseen or future samples. Finally, we realized three attack
models which leverage adversarial examples and evalu-
ate how the classifiers performances degrade. We observed
that a minor perturbation of attributes significantly dropped
the detection rate, and all the modified malware sam-
ples (tainted/adversarial examples) bypassed the detection.

Finally, the main contributions of this research work are as
follows:

– We implement a feature selection algorithm based on
Fisher score for ranking attributes, and show that clas-
sifiers trained on the relevant attributes selected in this
way can improve the detection rate.

– We create multi-modal features (hybrid features) classi-
fiers and obtain an accuracy of 100% with CART, SVM,
and an accuracy of 99.59% with deep neural network.

– We realize three attack models based on hamming
distance, k-means and app’s components for creating
adversarial samples. These specimens are created by
inserting permissions and app’s components into mali-
cious apps. We observed that classifiers’ performance
dropped drastically. In particular, Hamming distance
based attack increases the average False Positive Rate
of machine learning classifiers and deep neural network
by 55.86% and 45.94% respectively. All the adversarial
samples developed using k-means clustering are suc-
cessfully evaded (FN R = 100%). Finally, 90.13% and
100% tainted applications created by injecting especially
crafted app’s components deceived classifiers based on
machine learning approaches and deep neural network.

The paper is organized as follows. Section 2 discusses
the related work. In Sect. 3, proposed methodology is pre-
sented. The adversarial attacks are introduced in Sect. 4while
the attacks are elaborated in Sect. 5. The experiments and
obtained results are given in Sect. 6. Evaluation on obfus-
cated samples are discussed inSect. 7. Finally, the concluding
remarks and direction for future work is given in Sect. 8.

2 Related work

This section discusses existing malware detection and clas-
sification models based on both machine learning and deep
learning. Patel et al. [33] proposed a hybrid android malware
detection system. It extracts both permission and behaviour-
based features. Then, performed feature selection using
information gain. Finally, rule generation module classifies
applications as benign or malicious. In [46], authors have
mentioned another hybrid malware detector that uses SVM
classifier to classify app as benign ormalware. It detects zero-
day malware with a true positive rate of 98.76%. Damodaran
et al. [16] conducted a comparative analysis on malware
detection systememploying static, dynamic, and hybrid anal-
ysis. They found that behavioural data produce an highest
AUC of 0.98 using Hidden Markov Models (HMMs) trained
on 785 samples. In [47], authors initially utilize APIMoni-
tor to obtain static features from apps. Then, it involves the
usage of APE_BOX to obtain dynamic features. Finally, they

123

Detection and robustness evaluation of android malware classifiers 149

apply SVM for classification. MADAM [38] demonstrated
how KNN classifier can achieve 96.9% detection rate.

Significant Permission Identification, SigPID [27] is
another malware detection system that uses a three-layered
pruning by mining the permission data to identify the most
significant permissions that result in differentiating benign
and malicious apps. It then uses machine-learning classi-
fiers (SVM and decision tree) for classification and achieved
over 90% of detection accuracy. In [15], authors initially dis-
assemble applications by using Androguard to obtain the
frequency of API calls used by the application. Finally, it
is observed that a particular set of APIs is more frequent in
malicious apps. It can detect malicious apps with 96.69%
accuracy and 95.25% detection rate, by using SVM.

Crowdroid [11] is an Android malware detector which
uses dynamic analysis and then employs two-means clus-
tering algorithm for classifying benign and malicious apps.
In [18], authors have presented an Android Malware Detec-
tion system which extracts system calls by executing the
applications in a sandbox environment. They implemented
their approach inMALINE tool and can detect malware with
low rates of false positives by employing machine learning
algorithms. Afonso et al. [2] propose another android mal-
ware detection system that uses dynamic features such as
API calls and system call traces along with machine learning
to identify malware with high detection rate.

Authors in [21] present amachine-learning-basedAndroid
malwaredetection and family identification approach,Reveal-
Droid, that aims at reducing the sets of features used in the
classifiers. This approach leverages categorizedAndroidAPI
usage, reflection-based features, and features from native
binaries of apps. Besides accuracy and efficiency, authors
evaluate also obfuscation resilience using a large dataset of
more than 54,000 malicious and benign apps. The experi-
mental results show an accuracy of 98.

Tam et al. [43] propose a mechanism for reconstructing
behaviors of Android malware by observing and dissect-
ing system calls. This mechanism allows CopperDroid to
obtain events of interest, especially intra- and inter- process
communications. This makes CopperDroid agnostic to the
underlying invocationmethods. Experimental results showed
that CopperDroid discloses additional behaviors on more
than 60% of the analyzed dataset.

In [4] authors analyze the permissions used by an appli-
cation that requires during installation. It uses clustering
and classification techniques and also allows user to iden-
tify malicious applications installed on the phone and also
provides a provision to remove them. The drawback of this
system is that if a new unknown family of a malware is sup-
posed to be detected then a new cluster has to be created
considering the same family’s permission. CSCdroid [51]
builds a Markov chain by using system calls. Then, it con-
structs the target feature vector from the probability matrix.

Finally, it uses the SupportVectorMachine classifier to detect
malware, achieving an F1-score of 98.11%and a true positive
rate of 97.23%.

Kimet al. [25] propose an Android malware detection
method, that uses opcode features, API features, strings,
permissions, app’s components, and environmental features,
to generate a multimodal malware detection model. With
these static features, they trained their initial networks.
Later, they trained the final network, with initial network
results. The model produces an accuracy of 98%. Paper [41]
proposes a malware detection model-based on RNN and
CNN. It involves the usage of the static feature opcode.
Finally authors conclude that their accuracy exceeds 92%, for
even small training datasets. Malware Classification using
SimHash and CNN, MCSC [32] is a model leveraging
opcode sequences as static features, that combine malware
visualization, and deep learning techniques, resulting in a
classification accuracy of 99.26%.

In [39] authors propose a deep neural network-based
malware detector using static features. It consists of three
components, the first component extracts features, the second
component is a DNN classifier, and the final component is a
score calibratorwhich translates the output of aNN to a score.
Achieved 95% detection rate, at 0.1% false-positive rate
(FPR). MalDozer [24] is another highly accurate malware
detection model that relies on deep learning techniques and
raw sequences of API method calls. Deep android malware
detection [29] is another model developed based on the static
analysis of the raw opcode sequence from a disassembled
program. Features indicative of malware are automatically
learned by the network from the raw opcode sequence thus
removing the need for hand-engineered malware features.
This model has proposed a much simpler training pipeline.

A comprehensive analysis and comparison of deep neu-
ral networks(DNNs) and various classical machine learning
algorithms for static malware detection are discussed in [45].
The authors have concluded that DNNs perform comparably
well and are well suited to address the problem of malware
detection using static PE features. A malware classification
method using Visualization and deep learning is mentioned
in [26]. It requires no expert domain knowledge. Initially, the
files are visualized as grayscale images then experimented
on deep learning architectures involving different combina-
tions of Convolutional Neural Network (CNN) and Long
Short TermMemory (LSTM). A deep learning approach that
amends the convolutional deep learning models to use the
support vector machine is presented in [3]. The authors have
finally concluded that, among their three models, the model
with 5 layers has the best accuracy compared to those with 2
and 3 layers.

A CNN based windows malware detector that uses API
calls and their corresponding category as dynamic features
that finally resulted in the achievement of 97.97% accuracy

123

150 M. L. Anupama et al.

for the N-grams counselled by the Relief Feature Selection
Technique is described in [36]. In [28], the authors have
designed a method based on a convolutional neural network
applied to the system calls occurrences through dynamic
analysis. They obtained an accuracy ranging between 0.85
and 0.95.

In [48], authors have presented a method based on back-
propagation neural network to detect malware. It builds
Markov chains from system call sequences and then applies
the back-propagation neural network to detectmalware. They
experimented on a dataset of 1,189 benign ones, and 1,227
malicious applications and obtained an F1-score of 0.983.

KuafuDet [14] is a two-phase detection system,where fea-
tures are extracted in the first phase and the second phase is an
online detection phase. Camouflaged malicious applications
which is a form of adversarial examples are developed, and
similarity-based filtering is used to identify false negatives.

Xu et al. [49] applied genetic programming for evading
PDF malware classifiers. It uses the probabilities assigned
by the classifiers to estimate the fitness of variants. PDFrate
and Hidost were the two PDF classifiers used for the evalua-
tion. Authors reported 500 evasive variants created in 6 days.
The evaluation of adversarial attacks were performed on
Android malware detectors. Authors in [13] proposed a sys-
tem called DroidEye which extracts features from Android
apps and represents each observation as a binary vector. Fur-
ther, they evaluated the attack on standard classifiers used
for identifying malware. To improve the robustness of these
classifiers, they transformed the binary vectors as continuous
probabilities. Experiments were performed on samples col-
lected fromComodoCloudSecurityCenter, and reported that
DroidEye improved the security of system without effect-
ing the detection performance. Adversarial crafting attacks
on neural network were experimented in [23]. The attack
was demonstrated on malware detection system trained on
DREBIN dataset, where each application was represented
as a binary vector. They reported a classification accuracy
of 97% with FNR value of 7.6%. The trained model was
subjected with adversarial examples generated by modify-
ing AndroidManifest.xml and achieved a misclassification
rate of 85%. In addition, they hardened neural network using
adversarial training and defensive distillation, and reported
that the later approach reduced the misclassification rates.
Comprehensive experiments considering permissions [12]
were performed for binary classification (malware vs benign)
and multi class classification. Their study demonstrated that
carefully selecting permissions can lead to accurate detec-
tion and classification. Further, to evaluate robustness of
permission-based detection, top benign permissions were
added to themalicious applications. They showed that a small
number of requested benign permissions decreases ANN
performance. However, ANN recovers on larger permission

request, indicating identical performance as observed with
unmodified malware applications.

Demontis et al. [17] developed an adversary-awaremachine
learning detector against evasion attacks. Authors propose a
secure learning solutionwhich is able to retain computational
efficiency and scalability on large datasets. The method out-
performs state of the art classification algorithms, without
loss of accuracy when there aren’t well-crafted attacks.

Pierazzi et al. [35] propose a formalization of problem-
space attacks. They uncover new relationships between
feature space and problem space, providing necessary and
sufficient conditions for the existence of problem-space
attacks. This work shows that adversarial malware can be
produced automatically.

In our work, we build machine learning and deep learn-
ing models using static, dynamic and hybrid techniques.
We found that DNN obtained better performance using
hybrid features. Further, we conducted comprehensive anal-
ysis on adversarial attacks by proposing three approaches
for creating adversarial examples, and conclude that mal-
ware classifiers can be easily defeated by introducing tiny
perturbations.

The Table 13 summarizes the main contributions of each
analyzed work.

3 Methodology

This section describes the methods used by the hybrid mal-
ware detector that we will study.

3.1 Static analysis

An Android application explicitly requires the user to
approve the necessary permissions during the installation.
As a consequence, the collection of permissions can reflect
the application behaviour. Standard and non-standard per-
missions may be extracted from AndroidManifest.xml file
using Android Asset Packaging Tool (aapt) command.
We developed a parser to read the manifest file to extract
<user-permission> and the <permission> tag
containing the permission name. Besides, our parser captures
the application components: activities, services, broadcast
receivers, and content providers are obtained by decompil-
ing the given app using APKTool [6].

3.2 Dynamic analysis

We use dynamic analysis for capturing the sequence of sys-
tem callswhile the application executes and interactswith the
operating system. Given an Android application, the proce-
dure for extracting systemcalls is shown inFig. 1. Initially the
application is installed in Nexus_5_API_22 Android emula-

123

Detection and robustness evaluation of android malware classifiers 151

Fig. 1 System call extraction

Fig. 2 Sample set of system calls and bigrams

tor using the ADB install command. The Monkey tool [30]
is used for interacting with the application and generating
system calls. Monkey tool is configured to give automatic
user inputs (events) which are: making a call, sending SMS,
changing geo location, updating the battery charging status,
incoming call 200 times in a minute. Then system calls are
recorded using the strace utility. Once the specified events
are completed, the application is unistalled with the ADB
uninstall command, and the emulator is set into a clean
state for the next app installation. We consider system call
names and ignored the parameters of call. In order to avoid
the presence of rare system calls in the feature space, we col-
lected five execution traces for each applications.We noticed
a longer call trace in case of benign application compared to
malicious apps. Also, we noticed top 10 frequently invoked
system calls in malicious applications were brk, bind,
fchown32, sendto, gettimeofday, epoll_wait,
getuid, getpid, clock_gettime and mprotect.

3.3 System call bigram generation

Bigrams are generated from the obtained system calls in a
separate text document for each application. Figure 2 shows a
sample set of features (system calls) and their corresponding
bigrams. The detailed architecture of the proposed Hybrid
Malware Detector is shown in Fig. 3.

3.4 Fisher score algorithm

In order to select themost relevant features, an algorithmwas
developed implementing the Fisher-score.

The algorithm takes as input a set of system calls. Ini-
tially, the mean for benign samples is computed, then for
malware samples; the variance for benign and malware sam-
ples is obtained. The Fisher score is computed for benign and
for malware samples. Finally, the Fisher scores obtained are

Algorithm 1 Fisher score algorithm
Input: F = { f1, f2, f3... fm} where fi represents a feature
Output: D = { f1, f2, f3... fk} where k << m
1: Start
2: for i = 1 to m do
3: μB = nm(μB

fi
− μ fi)

2 � Mean
4: end for
5: for i = 1 to m do
6: μM = nm(μM

fi
− μ fi)

2 � Mean
7: end for
8: for i = 1 to m do
9: for j = 1 to n do
10: σB = (f j i − μB

f i)
2 � Variance

11: end for
12: end for
13: for i = 1 to m do
14: for j = 1 to n do
15: σM = (f j i − μM

f i)
2 � Variance

16: end for
17: end for
18: F(fi)b = μB

σB
� Fisher score

19: F(fi)m = μM
σM

� Fisher score

20: F(fi)bm = μB+μM
σB+σM

� Fisher score
21: Sort the fisher scores obtainted in descending order.
22: Stop

sorted in descending order. The steps involved are shown in
Algorithm 1.

3.5 Features vector table generation

A sample features vector table is a dataframe consisting of
a collection of features. F1, F2, F3, · · · , Fp, represent ’p’
features (permissions, system calls or app’s component).
S1, S2, S3, · · · , Sq represent ’q’ samples. Class labels in the
last column are represented as either ’0’ or ’1’. ’0’ denotes
a benign app while ’1’ denotes a malware. The values in the
table denoted by v11, v12, · · · , vqp refer to the occurrence of
a particular feature in a sample. In the case of static features,
the occurrence of an attribute is represented by ’1’ while the
absence of an attribute is represented by ’0’. While in case
of dynamic features and app’s components, the elements of
vectors are the number of times the pth system call or the
app’s component was invoked by the qth sample.

In the case of hybrid analysis, the features vector tables
produced by both static and dynamic analysis are combined.

123

152 M. L. Anupama et al.

Fig. 3 The architecture of the proposed Hybrid Malware Detector

F1, F2, F3, · · · , Fp represent the relevant attributes obtained
after the features selection phase.

3.6 Machine learning unit

The training set is given to the classifier in the form of fea-
tures vector table. Test data are supplied to it, thus the trained
model assigns class labels to each sample in the test set.
Here machine learning is run on features obtained with the
static analysis (considering the permissions as the features),
dynamic analysis (in this case the features are the system
call bigrams), and hybrid analysis (permissions and system
call bigram are used jointly). Each of these features vector
tables is given as input to machine learning classifier and the
performances of the different machine learning classifiers
are compared. Also the features vector table generated after
features selection based on Fisher score is given as input to
machine learning and the obtained performances are com-
pared.

3.6.1 Training and testing

There are different techniques for training and testing. One
is train-test split and the other is cross validation. In train
test split, data are loaded in, then are split into training and
test sets. The model is finally fitted to the training data. The

predictions are based on the input training data while are
tested on the test data.With cross validation the dataset is split
into k subsets: k−1 of these subsets are used for the training
while the last subset is hold for test. For our experiment k is
fixed to 10.

3.6.2 Classifiers

Classification is a supervised learning approach, i.e. each
sample of the training set is explicitly assigned to a cate-
gory identified by a label. A classifier is an assumption or
a function with discrete values that is used to assign class
labels to input test samples. The machine learning classifiers
in the proposed system used: the Logistic Regression (LR),
Classification and Regression Trees (CART), Random For-
est (RF), and Support Vector Machine (SVM). The features
vector table is the input to the machine learning unit, which
then generates the trained model, used to assign class labels
to the samples of the test dataset.

4 Adversarial attacks on classifier

In the previous experiments, we discussed feature engineer-
ing for developing a classification model to accurately detect
malware and benign apps. In this section, we discuss how

123

Detection and robustness evaluation of android malware classifiers 153

Fig. 4 Adversarial attack

adversarial attacks degrade the robustness of machine learn-
ing classifiers, thus we proposed three attack models. In the
first phase, we develop the models for classification. Next we
perform a poisoning attack on the optimal model. Figure 4
depicts the architecture of the proposed method. The dataset
consists of benign applications andmalware. Features such as
permissions and app components are extracted using appt
and apktool. Using the extracted features, Feature Vector
Tables(FVT) are created. The FVTs are given as input to the
machine learning classifiers andDNN for training. In the next
phase, the attack is launched on the classifiers. For the attack,
10% of total malware apps are chosen randomly as the test
set.Hammingdistance andKMeans clustering techniques are
used for injecting additional permissions to malicious seed
samples. App components are inserted by adding a perturba-
tion in the FVT of app components. Attacks are explained in
Sect. 5. The adversarial malware samples are presented to the
trained model for predicting the modified applications. Fur-
ther, we compute the performance of DNN when supplying
adversarial samples. The classification accuracy, F1-score,
precision and recall of the classifiers are evaluated before
and after the attacks. We found that the classification accu-
racy of the classification model dropped to 40% and 10% for
permissions and app components respectively.

4.1 Feature extraction

After data collection, features extraction is performed. In
this approach, static features such as permissions and app
components are extracted.

For extracting permissions,AndroidAsset PackagingTool
(AAPT) utility is used, which helps us to view, create
and update zipped packages. To extract app’s components,
applications are disassembled using apktool. Apktool
is an utility for reverse engineering Android applications
resources(APK).

Fig. 5 Evasion Attack based on Hamming Distance

5 Evasion attack

Evasion attack is the process of injecting certain perturba-
tions at test time to increase the error rate of the machine
learning classifiers. Initially, classifiers sayH is trained using
dataset D = (Xi , yi)ni=1, where Xi ∈ [1, 0]d is a d dimen-
sional feature vector for permissions and Xi ∈ [integer]4
is a four-dimensional feature vector since there are four
app components. yi ∈ [1, 0] are the class labels where
i ∈ [l, ..., n]. When the dataset is given to the classifiers as
input, it performs a classification and response y is generated
by s.t .H(X) = y. The goal of the is to add a small pertur-
bation to feature vectors of X , H(X + μ) = H(X∗) such
that H(X∗) = y′ and y′ �= y. For permissions the perturba-
tion μ ∈ [1, 0] and for app components, the perturbation is
Xi j_avg or Xi j_max , where Xi j_avg is the average of an
app component values in the dataset D and Xi j_max is the
maximum of an app component values in the dataset D.

Three types of attacks are proposed in this study using (a)
hamming distance (b) K-means and (c) statistical methods.
In the attack scenario, an adversary will add extra attributes
to each malicious samples in the test set, until the classifiers
wrongly labels suspicious files as legitimate. For the interest
of deceiving classifiers, discriminant attributes characteristic
of legitimates apps are inserted in the malware applications.
In this context by discriminant attributes, we refer to subset
of prominent features in one class but at the same time this
set is rarely used in alternate class or vice-versa. This will
result the decision boundaries of the target classes to overlap
thereby increase misclassification.

5.1 Attack using hamming distance

The Hamming distance-based attack is performed using per-
missions. The attack model is shown in Fig. 5. A set of
malware sample is randomly chosen as a test set. In the next
step, the Hamming distance between a malwares in the test
set and all benign samples are calculated.

123

154 M. L. Anupama et al.

Fig. 6 Evasion attack an example

For example, let the feature vector of malware sample be
M = 1011011001 and that of benign be B = 0100110011.
The Hamming distance between M and B is d(1011011001,
0100110011), i.e.

1011011001 ⊕ 0100110011 = 111111010

d(1011011001, 0100110011) = 7

The benign samples are arranged in ascending order of
the distance with the malware seed sample. 0.5% of legiti-
mate files that are close to the malwares are selected. Finally,
the attack is performed on selected malware having feature
vectors nearly identical to the legitimate app vectors. As the
comparison performed over the entire feature space is com-
putationally expensive.Hence,we randomly choose features,
and if an attribute is present in benign (logic 1) and absent
in malware(logic 0), then that feature is added to the mal-
ware sample. Figure 6 shows the addition of permissions to
a malware sample.

Steps for adding features to the malware sample are:

– Select a malware sample from the test set.
– 0.5% of the nearest benign samples are shortlisted after
calculating the Hamming distance.

– Perform XOR operation between the malware sample
and the first benign sample in the shortlist.

– Randomly select an index where XOR gives a logic 1 as
output.

– If the selected index has a logic 1 in a benign sample
and logic 0 in the malware sample, then add a 1 to the
corresponding index in the malware sample to get a new
sample.

– The new sample is given to the optimal model for classi-
fication.

– If all of the three classifiers in the model predict the new
sample as a benign one, then malware is selected and
continue the iteration. Otherwise, randomly choose an
alternate index, and compare its value in both malware
and benign samples.

Fig. 7 Poisoning Attack Using KMeans Clustering

– These modified samples are presented to DNN for pre-
diction, finally, the performance of DNN is recorded.

In the algorithm 2, lines 5 to 13 show step for calculating
Hamming distance, which are stored in a two-dimensional
array A of n rows and 2 columns, where n equals the number
of benign samples. The elements of the first column indicate
a benign vector and the second column is the Hamming dis-
tance to the malware sample. In line 14, values are sorted
in ascending order to obtain the legitimate files close to the
malware sample. The XOR operation in line 20 is computed
to restrict unnecessary comparisons in future. The aim is to
obtain the index of a feature that is present in a benign but
absent in malware samples.

5.2 Evasion attack using KMeans clustering

In this approach, we cluster benign applications using K-
Means clustering. The groups or clusters are formed by
representing each legitimate application as a vector of per-
missions. The attack model is presented in Figure 7 and steps
involved are described in algorithm 3. Further, the process
of creating adversarial examples using K-Means is discussed
below:

1. Randomly choose k centroids.
2. Calculate the Euclidean distance of malware seed sample

to the centroids.
3. Assign each seed to the closest centroid and update the

centroids by finding the mean value of all the data points
in the cluster. This way we cluster all seed examples to
the clusters which have similarity based on explicit per-
mission declaration.

4. Compute XOR operation of each seed sample with the
centroid vector.

5. Randomly choose an index, if the selected index has the
value 1 in the centroid vector and 0 in the malicious seed,
modify the vector of the malicious seed sample. This cor-

123

Detection and robustness evaluation of android malware classifiers 155

Algorithm 2 Evasion Attack using permissions (Hamming Distance)
Input: Dataset D, Testset T , Classifiers H , Number of benign samples to be shortlisted β, perturbation limit δ
Output: Evaded Samples
1: i ← 0 � iteration counter
2: repeat
3: x ← T [i] � initialize i th malware sample vector from T to x
4: j ← 0 � iteration counter
5: repeat
6: b ← D[j, 1 : m] � initialize j th benign sample vector from D to b
7: if b[m]=0 then � mth column represents the class label of a vector
8: h ← hamming_distance(x, b)
9: if h �= 0 then
10: A[j][2] ← h � A is a 2 dimensional array where, 1st column has benign samples 2nd column has the

distance to x
11: end if
12: end if
13: until j ≤ |D|and
14: sort A in ascending order of distances
15: l ← A[1 : β] � l is the 2- dimensional array of benign samples with the shortest distance to malware x
16: j ← 0
17: repeat
18: c ← 0 � count of peturbation added
19: b ← l[j] � benign vector in A
20: a ← b XORx
21: select a random number γ s.ta[γ] = 1
22: if b[γ]= 1 and x[γ]=0 then
23: x[γ] ← 1 � adding peturbation
24: c ← c + 1
25: P ← H_predict(x) � testing classifier with evaded sample
26: if p=0 then � classifier predict it as benign
27: i = i + 1
28: goto 2
29: else
30: if c < δ then
31: goto 21
32: until j ≤ |l|
33: until i ≤ |T |

responds to the addition of permissions in the malware
apk.

6. The new sample with injected permissions are presented
to all the classification models. If the models wrongly
predict the tainted sample as benign, we select such adver-
sarial samples to perform evasion against the deep neural
network.

7. However, if the classification model labels modify sam-
ples as malicious, we repeat the process by selecting
randomly index of the seed vector. This process is contin-
ued until a minimum fraction of permissions is injected
into the malicious samples.

5.3 Evasion attack using app’s components

App’s components are the basic building blocks of an
Android application. The four main app components are
Activity, Services, Provider and Receiver.
Activities are used for user interaction, Services are an entry
point for keeping an app running in the background, the

Fig. 8 Modification of app components

Table 1 Statistics of Application components for the legitimate apps

Metrics Activity Services Provider Receivers

Minimum 0 0 0 0

Average 57 43 24 18

Maximum 130 112 79 53

123

156 M. L. Anupama et al.

Table 2 Comparison between different machine learning classifiers on static, dynamic and hybrid analysis

Method to detect malware Technique to evaluate predictive models Classifier A (%) F1(%) P (%) R (%)

Static analysis K-fold LR 96.89 95.61 96.88 94.39

CART 97.26 96.17 96.45 95.85

RF 96.41 94.77 99.24 90.70

SVM 97.59 96.60 97.85 95.40

Train-test split LR 96.57 95.25 97.37 93.22

CART 96.57 95.32 96.05 94.59

RF 95.67 93.81 99.31 88.88

SVM 97.10 96.00 97.94 94.14

Dynamic analysis K-fold LR 93.00 90.46 88.66 92.37

CART 93.71 91.52 89.27 93.37

RF 95.64 94.07 92.21 96.05

SVM 93.41 90.52 93.67 87.73

Train-test split LR 92.77 90.43 88.55 92.39

CART 93.56 91.47 89.57 93.46

RF 95.47 93.99 92.17 95.89

SVM 93.53 90.95 94.21 87.90

Hybrid analysis K-fold LR 93.80 91.50 90.20 92.80

CART 100 100 100 100

RF 98.54 97.98 98.06 97.90

SVM 100 100 100 100

Train-test split LR 93.19 90.89 89.88 91.93

CART 100 100 100 100

RF 98.03 97.31 97.99 96.65

SVM 100 100 100 100

Receiver helps in delivering events outside the app envi-
ronment and the Provider manages the shared set of app
data. The AndroidManifest.xml file contain following
tags :<activity>,<services>,<provider> and
<receiver>. To create samples that can evade classifiers,
we count the occurrence of app components defined in the
legitimate applications. Figure 8 shows the approach of per-
turbing malicious apk. In Fig. 8 A_min, A_avg and A_max
denote the minimum, average and maximum occurrence of
activities in all the benign samples. Similarly S_min, S_avg
and S_max is the minimum, average and maximum num-
ber of services in the manifest file, R_min, R_avg, R_max
denote receiver and P_min, P_avg and P_max is the esti-
mate of providers declared in goodware. A, S, R and P are
the estimates of activity, services, receiver and provider in a
seed malware sample. The number of injected components
in a malware seed is either average or a maximum number
of specific component appearing in benign applications.

We consider a malware seed sample with 20 activities, 50
services, 35 provider, and 2 receivers respectively. The statis-
tics of the app components in the set of benign applications
are shown in Table 1.

Using the approach detailed in Fig. 8, the app components
of the malware seed sample are modified. The first feature
value A = 20 is in the range A_min < 20 < A_avg,
hence the activity (A) in the seed example is updated to
A_avg = 57. The count of services in the seed is altered
to S = S_max = 112, as S is in the range S_avg < 50 <

S_max . Similarly the old value of P = 35 is updated to
P_max , as P is in the range P_avg < 35 < P_max , like-
wise R ismodified to R_avg = 18. Finally, the seedmalware
application is augmented with 57 activities, 112 services, 24
providers, and 18 receivers. If the modified app is wrongly
labelled by the classification models, then a set of such sam-
ples have the potential to deceive detection. Otherwise, we
increment the count of each component by a value of 3 until
the modified app is miss-classified by the classification mod-
els.

6 Experimental evaluation

The study consists of two experiments. The purpose of the
first experiment was to compare the performances of classi-
fiers trained with features obtained with static, dynamic, and

123

Detection and robustness evaluation of android malware classifiers 157

Table 3 Comparison of the results obtained for static, dynamic, and
hybrid analysis based on Deep Learning

Method to detect malware A (%) P (%) R (%) F1(%)

Static analysis 99.28 98.99 99.08 99.04

Dynamic analysis 94.61 90.54 95.51 92.96

Hybrid analysis 99.59 99.63 99.27 99.45

hybrid analysis. The second experiment aims at evaluating
how the performances of classifiers degrade when subjected
to the adversarial examples.

6.1 Dataset and experimental setting

For the first experiment we consider, 5,694 benign applica-
tions, and 3,197 malware applications. The benign applica-
tions were downloaded from the Android App store “9apps”.
The Drebin dataset [7] is considered as the malware dataset
as it is widely used for experiments and testing of malware
classifiers and detectors. Subsequently, in the second exper-
iment for evaluating the robustness of the machine learning
and deep learning models, we augmented both malware and
benign dataset retaining apks from the first experiment. A
total of 11, 447 applications comprising 6,072 benign apks
(from 18 different categories) and 5,375 malware apks were
collected. Employing VirusTotal1 we accepted as benign
those apps that were labelled as goodware by the majority of
antivirus offerede by VirusTotal.

All our experimentswere conducted on a systemwith an i7
processor, 8GB RAM, 256 SSD and, 1TB HDD, running the
64-bit Ubuntu operating system. The software requirements
were Android Studio and, Anaconda. Anaconda Python dis-
tribution was used to execute machine learning in Python
language with the help of libraries Scikit-learn, Keras, Mat-
plotlib. Classifiers used in this study are logistics Regression,
Random Forest, Support Vector Machine and Deep Neural
Network. Hyperparameters for classifiers are tuned using a
random search method.

6.2 Evaluationmetrics

The metrics used for evaluating the performance of the clas-
sifiers are accuracy, the F1, precision and recall. Malware
classified asmalware represents the True Positive (T P), mal-
ware classified as benign represents False Negative (FN),
benign app classified as malware represents False Positive
(FP) and benign application classified as benign app rep-
resents True Negative (T N). Accuracy, precision, recall and

1 https://www.virustotal.com/gui/.

F1 are defined with the following equations.

Accuracy(A) = T P + T N

T P + FP + T N + FN
(1)

Precision(P) = T P

T P + FP
(2)

Recall(R) = T P

T P + FN
(3)

False Posi tive Rate(FPR) = FP

FP + T N
(4)

F1 score(F1) = 2 ∗
(
P × R

P + R

)
(5)

6.3 Results of experiment-I

Static Analysis :In static analysis, the attribute length in the
experiments carried out is 3,360. The highest accuracy and
F1 was observed for the SVM classifier, even if the best
precision is obtained by RF in k-fold and in train-test split,
while recall is better for CART classifier in both k-fold and
train-test split.
Dynamic Analysis :In dynamic analysis, the attribute length
is 2,425. It is observed that RF produced the highest accuracy,
F1 and recall compared to LR, CART and SVM classifier,
even if the precision is greater for SVM classifier in k-fold
and 2.04% in train-test split.

Hybrid Analysis :In hybrid analysis, the feature length
is 5,785. It is observed that CART and SVM classifier
obtained the highest accuracy, F1, precision and recall: we
can conclude that the hybrid features provide the highest per-
formances.

Using Fischer score prominent attributes were selected
to obtain variable feature vector comprising of 10%, 20%,
30%, 40% and 50% of original feature space (which is 3,360,
2,425 and 5,785, respectively as discussed above). Table 2
reports comparison between different machine learning clas-
sifiers on static, dynamic and hybrid analysis. Specificallywe
report the results of k-fold cross-validation and train-test split
approach to evaluate predictive models.

6.3.1 Performance of deep neural network

The conventional machine learning algorithms accurately
detect unknown samples if specialised feature engineering
methods are put in place for extracting attributes representa-
tive of target classes. Thus, it demands discovering attribute
selection methods that can capture the behaviour of the
applications capable of categorizing samples into a specific
class. Usually extracting a subset of features from a fea-
ture space by applying diverse feature selection approaches
is time-consuming. Even if a set of significant attributes
are derived, the next challenge is the adoption of a suit-

123

https://www.virustotal.com/gui/

158 M. L. Anupama et al.

Algorithm 3 Evasion attack on permission:K-Means clustering
Input: Dataset D, Test set T , Classifiers H , Number of clusters ρ, the threshold for sigmoid function f-
, perturbation limit δ
Output: Evaded Samples
1: procedure K-Means clustering (Dataset D)
2: initially choose ρ data points from D as centroids
3: (re)assign each vector in D to the cluster to which it is closer relying on the mean value of the object in the cluster
4: update the cluster means
5: centres ← cluster_means
6: end procedure
7: i ← 0 � iteration counter
8: repeat
9: c ← centers[i] � initialize i th centroid vector from centers to c
10: j ← 0
11: repeat
12: s ← f [c[j]] � f is the sigmoid function applied on each value in j thcentroid
13: if s > T
14: c[j]=1
15: else
16: c[j]=0
17: j = j + 1
18: until j ≤ |c|
19: i = i + 1
20: until i < ρ

21: i ← 0 � iteration counter
22: repeat
23: x ← T [i] � initialize i th malware sample vector from T to x
24: j ← 0 � iteration counter
25: repeat
26: c ← centers[j, 1 : m] � initialize j th centroid v
27: a ← c XORx
28: select a random number γ s.ta[γ] = 1
29: if b[γ] = 1 and x[γ] = 0 then
30: x

[
γ
] ← 1 � adding perturbation

31: c = c + 1
32: P ← H_predict(x) � testing classifier with evaded sample
33: if p = 0 then � classifier predict it as benign
34: j = j + 1
35: goto 24
36: else
37: if c< δ then � check if number of perturbations added is beyond the limit
38: goto 27
39: end if
40: end if
41: j = j + 1
42: until j ≤ |l|
43: i = i + 1
44: until i ≤ |T |

able approach for representing applications, in particular
feature vector representation. Both the aforesaid techniques,
i.e., feature engineering and attribute representation require
domain-specific knowledge. The dark side of such a proposal
for security systems is the threat of adversarial attacks affect-
ing the integrity and availability of such malware scanners.

Toovercome the limitations posedbyconventionalmachine
learning algorithms, deep learning neural network models
are used as an extension in this study. The primary objec-
tive is to improve the detection of malicious apks without
the need of implementing feature selection and representa-
tion. Thus, we developed three DNN models for predicting
samples by using attributes such as (a) permissions (b) sys-

tem calls and (c) a combination of permissions and system
calls. Further, before deploying the classification models for
predicting apks, hyper-parameters were tuned. In particular,
we investigated fixing the best optimizer from a collection of
optimizers (rmsprop, adam) and initializers from a collection
of initializers (glorot_uniform, uniform). Additionally, we
tuned drop-out rate, epochs and batch size. Further, speed-
ing the search of optimal hyper-parameters GridSearchCV
approach was adopted. The number of epochs, batch size,
and the dropout rate is different in all three models. A small
description of these parameters and their values are discussed
below.

123

Detection and robustness evaluation of android malware classifiers 159

The dataset has to be propagated forward and backwards
through the neural network and this denotes one epoch. But
it is too large to pass the entire dataset in one epoch. So it
is divided into smaller batches. In the initial static analysis
model, the number of epochs is 50 and its batch size is set to
500. In the dynamic analysis model, the number of epochs
is raised to 250 and its batch size is reduced to 200. In the
hybrid analysis model, the number of epochs is 150 and its
batch size is set to 300.

Dropout is a technique used to reduce overfitting, which
randomly ignores some layer’s output. In the static analysis
model, its rate is 0.0,which denotes no outputs from the layer.
For both dynamic and hybrid analysis models, it is 0.4. That
is, 40% of the neurons in the neural networks are ignored.

Table 3 reports the results obtained for static, dynamic,
and hybrid analysis based on deep learning. The static
analysis model using deep learning has the highest accu-
racy, precision, recall, and F1 compared to the highest
performance static analysis SVM model based on machine
learning. That is, accuracy, precision, recall, F1 is increased
by 1.69%, 1.14%, 3.68% and 2.44%. The machine learning-
based RF model has a better performance compared to the
deep learning-based model for dynamic analysis. That is,
accuracy is greater by 1.03%, precision is greater by 1.67%,
recall is greater by 0.54%, and F1 is greater by 1.11%.

Finally, in hybrid analysis, the machine learning-based
CART and SVM models exhibit higher accuracy, precision,
recall, and F1 compared to the deep learning-based model.
That is, accuracy is higher by 0.41%, precision is higher
by 0.37%, recall is higher by 0.73%, and F1 is higher by
0.55%. However, comparing the results of static, dynamic,
and hybrid models using deep learning, the hybrid model
has the highest performance. This again shows that hybrid
models can exhibit better results than standalone static and
dynamic models.

6.3.2 Comparative analysis

The proposed system that uses multi-modal features, i.e.
hybrid features is compared with the following solutions
developed on the same dataset

Surendran et al. [42] proposed GSDroid, which leverages
graphs for representing system calls sequence extracted from
applications in lower-dimensional space. Experiments were
conducted on 2,500 malware and benign samples. Malware
applications included 1,250 apps from Drebin and the same
number of goodware downloaded from Google Playstore.
GSDroid reported 99.0% accuracy and F1. Bernardi et al. [9]
adopted an approach based on model checking for detect-
ing Android malware on 1,200 apk’s from Drebin dataset.
They created a system calls execution fingerprint (SEF); the
obtained SEFs were given as an input to the classifier, report-
ing 0.94 as True Positive Rate. Finally, SAMADroid [8] is

a 3-level malware detection system that operates on a local
host and remote server. Random forestmodel trained on static
features resulted in 99.07% accuracy. However, through our
solution based on hybrid features, the accuracy of DNN and
SVM is 99.59% and 100% respectively which is far better
than the solutions discussed above.

6.3.3 Execution time

The time for detecting samples in our system can be mea-
sured based on the time consumed in each module. Here,
we discuss the time expended for extracting system calls.
Each application is executed for 60 seconds in an emula-
tor, with 200 random events generated by Android Monkey.
Overall an average of 92 seconds is required for the entire
operation, which comprises booting a clean virtual machine,
installing the app, generating the system call logs, copy-
ing logs to the host and finally reloading fresh VM. After
extracting features, we created a data structure known as the
feature vector table (FVT), which is a collection of the fea-
ture vectors. We represent the feature space as a binary tree
that requires O(log n). FVT is presented to the classification
algorithms for building classifiers. Finally, training Random
forest, SVM, CART, LR and DNN requires 5,296 ms, 4,750
ms, 4,076 ms, 899 ms and 6,322 ms respectively.

6.4 Experiment-II: performance of classifiers on
adversarial examples

In the following section, we discuss the performance of clas-
sifiers presented with adversarial samples. These evasive
applications are developed by injecting additional permis-
sions and app components. Additionally, we report the
attributes responsible for transforming malware apk’s to
legitimate applications.

6.4.1 Adversarial applications developed with similarity
measure

Table 4 shows the performance of different classification
models. It can be seen that F1 for predicting applications
in the test set is in the range of 0.964-0.970. We randomly
selected 537 malicious applications from the test set and
determined the similarity with legitimate applications. Extra
permissions absent in malware samples but present in the
benign dataset were added to these malicious applications.
After submitting such tainted (adversarial) applications, the
average detection rate and false-positive rate of classifiers
obtained are 44.13% and 55.86% respectively. Overall 300
tainted malware samples were created from 537 malware
seed samples by merely altering permissions identical to
0.5% of benign applications.

123

160 M. L. Anupama et al.

Table 4 Performance of
classifier on Adversarial
Examples developed using
Hamming Distance

Training Set
Classifiers A F1 P R

Before Attack

LR 0.964 0.958 0.975 0.943

RF 0.964 0.958 0.987 0.930

SVM 0.965 0.960 0.975 0.946

Test Set

LR 0.937 0.967 1.0 0.937

RF 0.931 0.964 1.0 0.931

SVM 0.942 0.970 1.0 0.942

FNR TPR #Evaded sample Mean attributes Standard

After Attack

altered deviation

55.86% 44.13% 300 7.02 6.108

Table 5 Permission-based attack on Deep Neural Network, adversarial
examples have high similarity (Hamming distance) with the legitimate
applications

Dropout A(%) F1(%) P(%) R(%)

Before Attack

0.6 98.38 98.25 99.08 97.32

FNR(%) A(%) F1(%) P(%) R(%)

After Attack

45.94 51.62 68.02 1.0 51.62

Similarly we simulated an identical permission-based
attack on a deep neural network. In this way, the statistics of
permissions in adversarial samples shoould be close to legit-
imate applications. The results in Table 5 show a decrease
in F1 (68.02%) after the attack, consequently an increase in
45.94% of False Negative Rate is obtained. Overall, 300mal-
ware samples in the test set evaded the detection by merely
changing 38 permissions in the malicious applications.

The distribution of evaded malware samples is shown in
Fig. 9. It is seen that 50.27%malicious samples (270nos.) can
bypass DNN by solely changing 1 to 5 permissions, 27.5%
adversarial samples evade detection by altering 6 to 10 fea-
tures. As opposed to this, 2 to 4 samples require the addition
of 20 permissions to escape detection.

In Fig. 10, we show permissions that are frequently
inserted majorly in adversarial samples. In particular, we
show the top 25 permissions injected in malware applica-
tions through which they escape detection.

Fig. 9 Number of evaded samples vs number of permissions inserted

Fig. 10 Inserted permissions in adversarial samples

6.4.2 Adversarial applications generated by estimating the
similarity with clusters of goodware

In the previous scenario, the similarity of malware appli-
cations reserved for generating adversarial samples (A) is
computed with all benign applications (B) which were not
part of the training set. The overall computational cost of

123

Detection and robustness evaluation of android malware classifiers 161

estimating similarity using Hamming distance (discussed in
Sect. 6.4.1) is O(A × B). In this experiment, using the K-
Means clustering approach, we create ρ clusters of benign
samples (B). Now the distance of each malware sample inA
is computed with benign applications in ρ centroids, hence
the complexity is O(A × ρ) which is less than O(A × B).
The centroids are real-valued vectors. As the feature vectors
are in binary form, the centroids are converted to binary-
valued vectors using a sigmoid function. The threshold τ for
the sigmoid function is considered. If a value of the sigmoid
function is greater than τ , then the number is mapped to 1
otherwise is retained as 0. For example, let us consider cen-
troid of a cluster as [3.21, 5.13, 0.77, 6.71, 2.54, 1,78, 7.89,
4.62], and the threshold is assumed as 0.5. Thus, centroid is
transformed to binary vector as [0, 1, 0, 1, 0, 0, 1, 0]. In this
work, the τ is in the range of 0.5 to 0.6 obtained in increments
of 0.02. Experiments are conducted for different cluster size,
i.e., k = 3, 5 and 10, shown in Table 6.

From Table 6, 100% evasion of adversarial samples are
obtained at threshold of 0.5 for k = 3, 5 and 10. The aver-
age number of permissions inserted for cluster size k = 3
is higher compared to k = 5 and 10. Further, we observe
as threshold increases the average percentage of evasions
decreases.

6.4.3 Evaluation of poisoning attack on app components

In this scenario we randomly chose 537 malware applica-
tions from the test set and injected different components. The
results obtained is shown in Table 7 and Table 8. The highest
F1 and accuracy is obtained with Random forest, all other
classifiers report poor accuracy. One of the fundamental rea-
son is the lack of attributes to separate applications of target
classes. Generally, DNN needs a large number of features to
extract relevant attributes to perform precise prediction of the
presented samples. Thus, we see that the highest accuracy of
78.1% is obtained with a deep neural network which justifies
the lack of attributes for classification. Also, we observe that
merely increasing the number of app’s components in the
malicious application can easily deceive machine learning
and deep learning classifier. In particular, the increase in the
frequency of a particular component changes the direction
of classification and the learned hypothesis function cannot
appropriately predict the new applications.

6.4.4 Attacks using system calls

In this section, we create adversarial examples (AE) using
system calls to launch evasion attack (where the attacker aims
to affect the target model) and poisoning attack (adversary
has the access to training data, to influence model perfor-
mance). We simulate attacks on a set of machine learning
and deep learning models. For deceiving models, partic-

Table 6 Adversarial examples created using k-means clustering

Threshold Avg. Attributes Evasion FNR TPR
altered (%) (%) (%) (%)

No. of Cluster (k = 3)

0.5 55.1 100 100 0

0.52 0.95 87.15 87.15 12.84

0.54 1.14 77.74 79.08 20.91

0.56 1.33 84.91 96.64 3.35

0.58 1.38 74.23 85.72 14.27

0.6 1 38.36 38.91 61

Threshold Avg. Attributes Evasion FNR TPR
altered (%) (%) (%) (%)

No. of Cluster (k = 5)

0.5 12 100 100 0

0.52 0.84 90.8 98.92 9.66

0.54 0.84 73.03 76.05 33.81

0.56 0.84 73.7 78.69 21.3

0.58 1.38 45.47 48 14.27

0.6 0.707 54.45 67.03 32.9

Threshold Avg. Attributes Evasion FNR TPR
altered (%) (%) (%) (%)

No. of Cluster (k = 10)

0.5 6.47 1 1 0

0.52 0.89 75.34 90.33 9.66

0.54 0.92 59.01 66.18 33.81

0.56 0.51 40.94 46.03 53.96

0.58 0.95 37.7 43.66 56.33

0.6 1 48.41 64.67 35.32

Table 7 Performance of classifier on evasive malware variants injected
with app components

Training Phase
Classifier A (%) F1(%) P(%) R(%)

Before Attack

LR 75.86 76.14 66.14 89.7

RF 86.42 84.76 81.78 87.96

SVM 81.97 78.16 81.44 75.13

Testing Phase

LR 89 94.18 100 89

RF 88.1 93.67 100 88.1

SVM 74.05 85.09 100 74.05

After Attack

FNR TPR Evaded sample

90.13% 98% 484

123

162 M. L. Anupama et al.

Table 8 Performance of DNN on evasive malware variants injected
with app components

Drop out A F1 P R

Before Attack

0.5 78.21% 79.98% 68.75% 95.6%

FNR A F1 P R

After Attack

100% 0% 0% 0% 0%

ularly SVM, Random forest, dense neural networks and
1D-Convolutional Neural Network (1D-CNN). The detailed
configuration deep neural network (DNN) and 1D-CNN is
presented in Table 9. We assume that the attacker has partial
knowledge about the system, in this context the classification
algorithms.However, the attacker has access to alternatemal-
ware dataset frompublic repositories.With these capabilities,
the adversary is capable of deriving discriminant features and
use a subset of attributes to create evasive malware variants.
In particular for simulating this form of attack, discrimi-
nant attributes from the training set are obtained employing
SelectKBest (SK) and Recursive Feature Elimination(RFE)
methods from sklearn.feature_selection mod-
ule.Moreover, for each app, n-gram profiles are created, then
each file is represented as uni-gram and bi-grams of sys-
tem calls. n-grams have been extensively studied in malware
detection [37] [1], and have proven to efficiently identify
malicious samples from a collection of large examples con-
sisting of bothmalware and goodware. Figure 11 provides the
difference in the distribution of n-grams (system call grams)
in malware and benign applications.

Before applying attribute selection methods, we trimmed
the feature space by eliminating n-grams with a score less
than or equal to 0.0001. Later, features are further synthe-
sized using SelectKBest and Recursive Feature Selection. In
the case of uni-gram 96 system calls are reduced to 83, and
finally, 56 uni-grams are extracted through feature selection
methods. Likewise, out of 2,364 bi-grams, 166 call grams are
chosen using the threshold and finally, 83 call sequences are
obtained with attribute selection methods.

We performed the prediction on 10%of randomly selected
malware samples (T) excluded from the training set by
appending discriminant system calls. We set the maximum
attack iteration (Imax) to 30%, which means discriminant
system calls are repeated at the end of each sample τ ∈ T
which satisfies the condition that |τ | + gram ≤ Imax . To
evaluate the efficacy of the evasion attack we measured the
amount of system call gram added to each file τ : the percent-
age of calls appended to the file is in the range of 5%-30% ,
while the inserted ones in increments of 5%.

(A) Evasion attacks using system call
Weperformed the experimentswith 247 randomly selected

malware samples as the test set (10% of applications). Fig-
ure 12 provides the results attained by progressively append-
ing system calls to the samples in the test set. Before the
attack, the F1-measure of uni-grammodels (SVM-SK,SVM-
RFE,RF-SKANDRF-RFE) are 0.952, 0.950, 0.981 and 0.99
respectively. A significant drop in F1 is observed for each
model (refer Fig. 12a) by adding 5% of system calls to each
file in the test set. Overall, F1 of the model after the attack is
observed between 0.10 to 0.15.

While in the case of bi-grammodel, F1 score for the above
mentioned classifiers are in range of 0.961 to 0.988 (also
shown as 0% in Fig. 12b). We see a marginal drop in F1 for
RF-RFE model and a maximum overall drop of 1.6% after
the attack. Notably, adding call sequences to uni-gram mod-
els is effective compared to bi-gram ML models. We also
observe that RF-RFE model trained on RFE features can
withstand an evasion attack. RFE being a wrapper-type fea-
ture selection algorithm utilizes a classification algorithm to
measure the importance of attributes. As the stability of RFE
depends primarily on the wrapper(classification algorithm),
thus relatively improved outcome is obtained with Random
Forest (RF). The superior performance of Random Forest is
attributed to the fact that the relevant attributes are filtered by
bootstrapping the samples and features. In this way, several
decision trees are created which contribute to computing the
model performance.

Figure 12(c) present the results of Deep neural network
(DNN) and 1D-CNN on evasion attack. For DNN F1 drops
from 0.967 to 0.375 and 0.562 respectively adding extra 5%
system calls in each malware samples in the test set. The
classifier performance is severely affected by increasing the
number of system calls being added to files. Here, we observe
that a significant misclassification is obtained, however, the
rate of misclassification for bi-gram models are compara-
bly less than models trained on uni-grams. Additionally, we
evaluated the robustness of 1D-CNN; results are shown in
Fig. 12d. The evaluation was conducted on variable stride
lengthwhich canbe considered asn-grams.Before the attack,
the F1 scores on distinct strides are 0.9788, 0.981 and 0.9815
respectively. However, after the evasion attack malware sam-
ples were wrongly labelled as legitimate, thus the drop in F1
by padding 5% discriminant system calls to each file are
5.88%, 2.06% and 2.75% respectively. On comparing indi-
vidual models, it can be seen that the 1D-CNN offer higher
resistance to evasion attacks. 1D-CNN can derive robust
features without the use of a complex feature engineering
process, and have a computational complexity of O(K .N),
where K is the kernel and N is the size of the input.

(B) Poisoning attack using system call
In the following paragraphs, we discuss the evaluation of the
poisoning attack. We simulate the behaviour of an adversary

123

Detection and robustness evaluation of android malware classifiers 163

Table 9 Configuration of DNN and 1D-CNN

Model Input Layers Hyperparameters

DNN (Uni-gram) 96 Layer - 1 (Hidden) Learning rate = 0.0001

Dense(128) + Dropout(0.1) + BatchNormalization Epochs = 100,

Layer - 2 (Hidden) Batch size = 16

Dense(256) + Dropout(0.2) + BatchNormalization Optimizer = Adam

Layer - 3 (Hidden) Hidden layer activation = Relu

Dense(512) + Dropout(0.3) + BatchNormalization Output layer activation = sigmoid

DNN (Bi-gram) 2364 Layer - 1 (Hidden) Learning rate = 0.0001

Dense(64) + Dropout(0.1) + BatchNormalization Epochs = 50,

Layer - 2 (Hidden) Batch size = 16

Dense(32) + Dropout(0.2) + BatchNormalization Optimizer = Adam

Layer - 3 (Hidden) Hidden layer activation = Relu

Dense(16) + Dropout(0.3) + BatchNormalization Output layer activation = sigmoid

1D-CNN (Stride 1 -3) 101681 Layer - 1 (Embedding) Learning rate = 0.0001

Embedding(32) Epochs = 30,

Layer - 2 (Hidden) Batch size = 8

Conv1D(128) Optimizer = Adam

Layer - 3 (Hidden) Kernel size = 3

MaxPooling1D Hidden layer activation = Relu

Layer - 5 (Hidden) Output layer activation = Sigmoid

Conv1D(256)

Layer - 6 (Hidden)

MaxPooling1D

Layer - 7 (Hidden)

Conv1D(512)

Layer - 8 (Hidden)

MaxPooling1D

Layer - 9 (Hidden)

Dense(10)

who manipulates a subset of malware files in the training
set by appending a set of selected system call sequence
(extracted using feature selection methods). The overall
objective is to maximize the classifier confidence in labelling
malicious file as legitimate, or in other words, increase the
probability of tainted samples classified as benign. An alter-
nate scenario of poisoning attack is the label flipping attack,
here the adversary deliberately swaps the original label of a
sample with the target class label. In our study we focused on
developing poisoned samples by adding extraneous system
call to selected malware seed samples. Figure 13 presents the
results of poisoning attack.

Practical use case of poisoning attack in malware detec-
tion domain is crowd-souring the malware apps for labelling
and generating its signatures. Under such circumstances, a
dishonest user can manipulate the samples or intentionally
modify the label. However, the attack can be defeated in the
presence of a large number of legitimate users, where the

class label of a suspect file is decided relying on majority
voting. Mimicking such a scenario we intended to poison
a very small fraction of malwares in the training set. Fig-
ure 13(a) provides the outcome of ML classifiers on padding
uni-grams. We observe here that a small fraction of samples
in the test set is misclassified. The overall drop in average
F1 for the RF-RFE and RF-SK is 0.068%, 0.25% respec-
tively. Likewise, in the case of SVM-SK and SVM-RFE the
average drop in F1 are 3.32% and 1.596%. We can conclude
that Random forest models are highly resistant to adversarial
attack, specifically, the performance of RFE trained models
show improved results with respect to the models trained on
SelectKbest attributes.

Similar trends in the results are obtained for bi-grammod-
els (refer Fig. 13b. For SVM-SKclassifier the difference inF1
falls in the range of 0.004 to 0.006 compared with the model
in the absence of a poisoning attack, where the F1 is 0.963. In
the case of SVM-RFE the average change in F1 for the entire

123

164 M. L. Anupama et al.

(a) (b)

(c) (d)

Fig. 11 System call grams a uni-gram SelectKBest b uni-grams RFE c bi-gram SelectKBest and d bi-gram RFE

range of padded system calls (i.e., 5% to 30%) is 0.575%
with the standard deviation of 0.0006. A very small spread
in the F1 values indicates the ineffectiveness of poisoning
attacks. Identical observations can be made for Random for-
est models (RF-RFE and RF-SK), where the spread of F1
across a different range of padding is 0.00035 and 0.00031
respectively.

Figure 13(c) and (d) show the performance of DNN and
1D-CNN. It is evident from these figures that the attack is
not severe, and a marginal drop is observed when malware
samples are padded with system calls in a larger amount.
However, a clear trend is not noticed in the case of deep
learning models. Training set with tainted samples in certain
cases also improves the classifier results. On investigating the
confusion matrix we found that for larger padding size mal-
ware samples that were previously misclassified were now
precisely detected by DNN. It is intuitive that malicious data
points statistically closer to the legitimate files are now accu-
rately detected.

7 Evaluation on obfuscated samples

Software developers obfuscate the source code of applica-
tions to avoid manual analysis and violations of intellec-
tual property. Instead, malware writers use obfuscation to
keep new variants of original malicious applications being
detected. A vast majority of malware variants have less than
2% difference in code [22]. Anti-malware products employ-
ing pattern matching techniques fail to detect obfuscated
files. By forcing an application to execute in an emulated
environment, and monitoring system call invocation, obfus-
cated samples are identified. To generate obfuscatedmalware
variants, wemake use of an open-source obfuscator known as
Obfuscapk [5]. Obfuscapk supports obfuscation techniques
like trivial, renaming, encryption, code reorder and reflection.
As the first step, we looked at detecting obfuscated samples
in the dataset. In this step, we represented system call invo-
cation of a file as a system call co-occurrence matrix of size
m×m, wherem is the number of unique calls. Each element
in the matrix corresponds to the occurrence of a pair of calls.
The call frequencies are normalized and mapped to pixels

123

Detection and robustness evaluation of android malware classifiers 165

(a) (b)

(c) (d)

Fig. 12 Evasion attack using a uni-gram SelectKBest b bi-gram RFE c Deep neural network and d 1D-CNN

Table 10 Evaluation of obfuscated malware using system call images

Approach Accuracy Precision Recall F1 Time

Train-Test 0.966 0.936 0.980 0.957 27sec

CV 0.960 0.928 0.972 0.949 33 sec

by multiplying the normalized values with 255. Finally, the
system call images corresponding to malware and benign set
are used for training the 2D-CNN model for prediction. We
chose CNN for developing the model as it extracts relevant
patterns in images even if they are not fixed. To be precise,
CNN is spatially invariant to patches of a given image. This
is fundamental to code obfuscation where the blocks of code
in the program are randomly rearranged by the obfuscator
using branch instructions. Table 10 shows the identification
of obfuscated malware using train_test_spli t and stratified
ten-fold cross-validation (CV) approach.

We can observe that the highest F1 obtained by transform-
ing apps into a system call co-occurrence matrix is 0.959.
Analysis of co-occurrence matrix revealed the presence of
a large number of contiguous blocks of black regions indi-
cating the existence of zeros in this matrix. To improve the

detection, we addressed the problem by transforming mal-
ware as gray-scale images, similar to the approach in [31].
In this context, we map raw bytes of .dex files to pixels and
apply image processing techniques. Initially, we investigated
training ML models on images, especially on image textures
extracted using a bank of Gabor filters formed by varying
the kernel size, standard deviation, angle, wavelength and
aspect ratio. As the feature extraction and training was com-
putationally expensive, we considered employing 2D-CNN,
which extracts features without manual intervention from
raw malware binaries. For retaining the semantic informa-
tion of an image, pairwise probability of bytes(pixels) were
estimated. Subsequently, the probabilities are transformed
into pixel values between 0-255. As a consequence, each
apk is converted to a fixed size image (256×256). We train
tuned Convolutional Neural Network (CNN) (learning rate
= 0.0001, momentum = 0.9, epoch = 100 and batch size =
32) on the generated images of malware and benign samples.
The topology of the network is presented in Table 11.

Malware samples used in the previous experiments (refer
Section 6.1) [7] are obfuscated, and the performance of the
CNN model is estimated under four scenario (a) malware
(M) vs benign (B) (b) benign (B) vs obfuscated malware

123

166 M. L. Anupama et al.

(a) (b)

(c) (d)

Fig. 13 Poisoning attack employing a uni-gram SelectKBest b bi-gram RFE c Deep neural network and d 1D-CNN

Table 11 Architecture of CNN Layers Filter size Input Shape Output Shape Activation

Conv-1 64(3*3) (64,64,1) (none,62,62,64) ReLU

MaxPooling-1 (2*2) (none,62,62,64) (none,31,31,64) -

Conv-2 64(3*3) (none,31,31,64) (none,29,29,64) ReLU

MaxPooling-2 (2*2) (none,29,29,64) (none,14,14,64) -

Dense-1 (none,128) ReLU

Dense-2(binary) (none,1) Sigmoid

Dense-2(categorical) (none,14) Softmax

(M⊥) (c) malware(M) vs obfuscated malware(M⊥) and
(d) malware family class (FC). Figure 14 shows the classifi-
cation of obfuscated malware family classification. Through
this experimentwe conclude that CNNaccurately labels each
sample in the test set to the appropriate obfuscation class.
Table 12 presents the results obtained using 2D-CNN.

8 Discussion

In this study, we show that machine learning classifiers are
vulnerable to adversarial attack. ML-based Malware detec-
tors trained on static features such as permissions, APIs

and applications components can be easily attacked by care-
fully generating perturbed apps having statistical similarity
with legitimate apps. Generally, the vector corresponding
to an application is represented with boolean values. Iter-
ative addition of features (permission, hardware feature and
intents, etc) generates evasive applications with minimal
effort without compromising app functionality. In this con-
text, an attacker must modify selected attributes with a value
0 to 1. Further, changing minimum subset of attributes will
force linear classifier such as logistic regression, SVM(linear
kernel) tomisclassify files in the test set. However, significant
attempts are required to bypass the classifier trained with the
sequence of system calls, as values of features are continu-

123

Detection and robustness evaluation of android malware classifiers 167

Table 12 Performance of CNN
using different proportion of
training and test set

Data Split M vs B B vs M⊥ M vs M⊥ FC
A F1 A F1 A F1 A F1

70:30 0.996 0.995 0.987 0.989 0.997 0.996 0.997 0.997

80:20 0.994 0.994 0.995 0.996 0.998 0.998 0.996 0.996

90:10 0.995 0.995 0.995 0.990 0.999 0.999 0.997 0.996

Fig. 14 Classification of obfuscated malware variants

ous. This require padding of larger amount of discriminant
calls sequence to each malware sample. Intuitively it means
that themodified applicationswill spend large execution time
compared to its normal functionality. It is worth mentioning
that such suspicious apps will be easily detected by monitor-
ing the power consumption and heat dissipated of the smart
device. Further, if we think in the context of designing intel-
ligent anti-malware systems, adversarial samples generated
by augmenting large number of call sequences would delib-
erately force the application execute longer on the device.
Thus, anti-viruses making use of simple heuristic such as the
utilization of memory (virtual memory, cursor, dalvik), CPU
usage, number of processes created, etc, would identify such
applications.

Poisoning attack using static features can be easily sim-
ulated, but considerable efforts are needed for injecting
dynamic features. Especially in all cases, we observed that
Random forest and non-linear classifiers such as DNN and
1D-CNN are difficult to be attacked. Besides CNN shows a
good detection rate in identifying modified malicious sam-
ples and obfuscated samples, as its convolution operation is
capable of identifying repeated patterns in different regions
of files, be it a chunk of system call sequence or byte stream.
Another important observation emerged from our experi-
ments is that the knowledge of the feature set plays a very
significant role in creating adversarial samples. Randomly

selecting attributes and injecting them into applications does
not create a successful attack.

An attack can be practically demonstrated by modifying
the decompiled source of a malicious app. Top-weighted
features comprising permissions, APIs and app components
can be inserted into the decompiled code. By progressively
adding features in the AndroidManifest.xml and rebuilding
it, and later resigning the app creates a modified version
with extraneous attributes. In our approach feature addition
is considered for maintaining functionality of the applica-
tion. Although, in the case of APIs, we can shield the call
to specific API by substituting the characters by applying
mono-alphabetic substitution (identical to additive cipher).
Here our implication is to replace a characterwith a new char-
acter based on the specific substitution key. Thiswill generate
an encoded representation of the API. Logically, creating a
modified version of encoded API in this way resembles the
creation of an obfuscated application. To maintain the func-
tionality a decoder module can be plugged in the app, which
regenerates the API call name at runtime. Further the original
API is invoked through Java reflection. However, an evasion
attack created by the above-mentioned strategy using API
modification would fail while performing dynamic analysis,
as the classifier designed on dynamic attributes can identify
the call to decoded APIs during runtime. We left the imple-
mentation as an open research problem, which we plan to
address in our future work.

Relying on the lessons learnt by conducting our exper-
iments, in future we plan to propose countermeasures for
evasion attack. Following are our proposal:

– Address N class problem as N + 1 class problem. This
means we must develop a proactive system wherein the
designers of the anti-malware system must simulate the
behaviour of an adversary. By doing this, a large collec-
tion of adversarial samples can be approximated. A set
of created samples can be used to augment the training
set. In other words, classifiers are trained using malware,
benign and adversarial examples.

– Development of ensembles of classifiers randomly trained
on subset of attributes that periodically are modified dur-
ing the re-training process. As the knowledge of features
is critical for crafting attacks, it will hinder attack tac-
tics as an adversary is unaware of classifier revision and

123

168 M. L. Anupama et al.

Table 13 Resume of the Related Work

Paper Contributions

Patel and Buddadev [33] Hybrid Android malware detection Permissions and behaviour-based features Rule generation

Wang et al. [46] Hybrid malware detector Detection of zero days

Damodaran et al. [16] Comparative analysis on malware detection system Static, dynamic, and hybrid analysis

Wu and Hung [47] Static and dynamic features

Saracino et al. [38] Experiment on KNN classifier

Li et al. [27] Malware detection by mining permission SVM and decision trees for classification

Chuang and Wang [15] Classification with frequency of API calls

Burguera et al. [11] Dynamic analysis of Android apps Two means clustering algorithm

Dimjašević et al. [18] Detection of Android malware through system calls

Afonso et al. [2] Detection of Android malware API calls and system call traces

Garcia et al. [21] Detection of Android malware Categorized Android API usage, reflection-based features, and
Features from native binaries of apps

Tam et al. [43] Reconstructing behaviors of Android malware Observing system calls

Almin and Chatterjee [4] Analysis of permissions Clustering and classification techniques

Kim et al. [25] Android malware detection Opcode features, API features, strings, permissions, app’s
Components, and environmental features

Sun and Qian [41] Malware detection model-based on RNN and CNN

Ni et al. [32] Opcode sequences, malware visualization, and deep learning

Saxe and Berlin [39] Deep neural network Static features

Karbab et al. [24] Deep learning techniques Raw sequences of API method calls

McLaughlin et al. [29] Static analysis Raw opcode sequence from a disassembled program

Vinayakumar and Soman [45] Comparison of deep neural networks(DNNs) andMachine learning algorithms for static malware
detection

Le et al. [26] Malware classification method using Visualization and deep learning

Agarap and Pepito [3] Convolutional deep learning models

Sl and CD [36] CNN based windows malware detectorAPI calls

Martinelli et al. [28] Convolutional neural network System calls

Xiao et al. [48] Backpropagation neural network

Chen et al. [14] Two-phase detection system

Xu et al. [49] Genetic programming

Evading PDF malware classifiers

Chen et al. [13] Evaluation of standard classifiers

Grosse et al. [23] Adversarial crafting attacks on neural network

Chavan et al. [12] Experiments on permissions Binary and multiclass classification

Demontis et al. [17] Adversary-aware machine learning detector

Pierazzi et al. [35] Formalization of problem-space attacks Relationships between feature space and problem space

the features used to model the classifiers. Notably, the
conclusion for assigning the labels for a sample under
consideration could be based on OR operations, which
means that if anyone among the pool of classifiers labels
the sample as malware and all the others as legitimate,
the target class label will be concluded as malware.

– Building classifier using a set of attributes that are diffi-
cult to be modified. This would restrict the attack surface
as a modification to the aforementioned feature would
affect the functionality of the program.

9 Conclusion and future work

In this paper, we present a study on malware detectors based
on machine and deep learning classifiers, consisting of two
experiments. In the first experiment, we propose a hybrid
approach for malware detection, that lets us conclude that
hybrid analysis increases the performance of classifiers con-
cerning the independent features. The results show that with
static features the SVM algorithm produces the best out-
comes, and this corroborates the evidence provided by the
literature. With regards to the dynamic analysis, the RF algo-

123

Detection and robustness evaluation of android malware classifiers 169

rithm showed better results, while the highest performances
with the hybrid approach were obtained with CART and
SVM algorithms.We extended our study by investigating the
performances of the deep neural network, which also show
that the hybrid features produced improved results.

In addition, we examined how evasion and poisoning
attacks deteriorate the robustness of the classifiers. We
showed that the evasion attack severely affects classifier
performance with static features, however, evasive exam-
ples created using system calls (dynamic analysis) adversely
affected the classifier outcome. We show a large collection
of adversarial examples which are able to prevent from the
detection. Concerning the classifiers, we observed that Ran-
dom Forest and CNN offer a good resistance to adversarial
attacks.

In the future, we will evaluate the performances of diverse
deep learning models using multiple datasets. Additionally,
we would like to test the reliability of classification systems
on adversarial attacks trained onmalware images techniques.
In particular, we would like to explore how neurons in each
layer participate in the feature extractor process.

References

1. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram-
based detection of newmalicious code. In: Proceedings of the 28th
Annual International Computer Software and Applications Con-
ference, 2004. COMPSAC 2004., vol. 2, pp. 41–42. IEEE (2004)

2. Afonso, V.M., de Amorim, M.F., Grégio, A.R.A., Junquera, G.B.,
de Geus, P.: Identifying Android malware using dynamically
obtained features. J. Comput. Virol. Hacking Tech. 11(1), 9–17
(2015)

3. Agarap,A.F.: Towards building an intelligent anti-malware system:
a deep learning approach using support vector machine (svm) for
malware classification. arXiv preprint arXiv:1801.00318 (2017)

4. Almin, S.B., Chatterjee, M.: A novel approach to detect android
malware. Procedia Comput. Sci. 45, 407–417 (2015)

5. Aonzo, S., Georgiu, G.C., Verderame, L., Merlo, A.: Obfuscapk:
an open-source black-box obfuscation tool for Android apps. Soft-
wareX 11, 100403 (2020)

6. APKTool: https://ibotpeaches.github.io/Apktool/install/
7. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.,

Siemens, C.E.R.T.: Drebin: effective and explainable detection of
android malware in your pocket. In: Ndss, vol. 14, pp. 23–26.
(2014)

8. Arshad, S., Shah,M.A.,Wahid, A.,Mehmood, A., Song, H., Hong-
nian, Y.: Samadroid: a novel 3-level hybrid malware detection
model for android operating system. IEEE Access 6, 4321–4339
(2018)

9. Bernardi,M.L., Cimitile,M.,Distante, D.,Martinelli, F.,Mercaldo,
F.: Dynamic malware detection and phylogeny analysis using pro-
cess mining. Int. J. Inf. Secur. 18(3), 257–284 (2019)

10. Biggio, B., Fabio, R.:Wild patterns: ten years after the rise of adver-
sarial machine learning. Pattern Recognit. 84, 317–331 (2018)

11. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid:
behavior-based malware detection system for android. In: Pro-
ceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, pp. 15–26. (2011)

12. Chavan, N., Di Troia, F., Stamp, M.: A comparative analysis of
android malware. arXiv preprint arXiv:1904.00735 (2019)

13. Chen, L., Hou, S., Ye, Y., Xu, S.: Droideye: fortifying secu-
rity of learning-based classifier against adversarial android mal-
ware attacks. In: 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM),
pp. 782–789. IEEE (2018)

14. Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., Li, B.:
Automated poisoning attacks and defenses in malware detection
systems: an adversarialmachine learning approach.Comput. Secur.
73, 326–344 (2018)

15. Chuang, H.Y., Wang, S.D.: Machine learning based hybrid behav-
ior models for Android malware analysis. In: 2015 IEEE Interna-
tional Conference on Software Quality, Reliability and Security,
pp. 201–206. IEEE (2015)

16. Damodaran, A., Di Troia, F., Visaggio, C.A., Austin, T.H., Stamp,
M.: A comparison of static, dynamic, and hybrid analysis for mal-
ware detection. J. Comput. Virol. Hacking Techn. 13(1), 1–12
(2017)

17. Demonits, A., Melis, M., Biggio, B., Maiorca, D.A., Rieck,K.,
Corona, I., Giacinto, G., Roli, F.: Yes, machine learning can be
more secure! a case study on android malware detection. In: IEEE
Transactions on Dependable and Secure Computing, vol.16, pp.
711–723. IEEE (2019)

18. Dimjašević, M., Atzeni, S., Ugrina, I., Rakamaric, Z.: Evaluation
of android malware detection based on system calls. In: Proceed-
ings of the 2016 ACM on International Workshop on Security And
Privacy Analytics, pp. 1–8. (2016)

19. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boost-
ing adversarial attacks with momentum. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9185–9193. (2018)

20. Gandotra, E., Bansal, Di., Sofat, S.: Malware analysis and classi-
fication: a survey. J. Inf. Secur. 2014 (2014)

21. Garcia, J., Hammad, M., Malek, S.: Lightweight, obfuscation-
resilient detection and family identification of android malware.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 26(3), 1–29 (2018)

22. Greengard, S.: Cybersecurity gets smart. Commun. ACM 59(5),
29–31 (2016)

23. Grosse,K., Papernot,N.,Manoharan, P.,Backes,M.l,McDaniel, P.:
Adversarial examples for malware detection. In: European Sym-
posium on Research in Computer Security, pp. 62–79. Springer,
Cham (2017)

24. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer:
automatic framework for android malware detection using deep
learning. Digit. Investig. 24, S48–S59 (2018)

25. Kim, T.G., Kang, B.J., Rho, M., Sezer, S., Im, E.G.: A multimodal
deep learning method for android malware detection using various
features. IEEE Trans. Inf. Forensics Secur. 14(3), 773–788 (2018)

26. Le, Q., Boydell, O., Namee, B.M., Scanlon, M.: Deep learning at
the shallow end: malware classification for non-domain experts.
Digit. Investig. 26, S118–S126 (2018)

27. Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H.: Significant
permission identification for machine-learning-based android mal-
ware detection. IEEE Trans. Ind. Inf. 14(7), 3216–3225 (2018)

28. Martinelli, F., Marulli, F., Mercaldo, F.: Evaluating convolutional
neural network for effective mobile malware detection. Procedia
Comput. Sci. 112, 2372–2381 (2017)

29. McLaughlin, N., del Rincon, J.M., Kang, B.J., Yerima, S., Miller,
S., Sakir, S., et al.: Deep android malware detection. In: Proceed-
ings of the Seventh ACM on Conference on Data and Application
Security and Privacy, pp. 301–308. (2017)

30. MonkeyRunner:https://developer.android.com/studio/test/
monkey

31. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware
images: visualization and automatic classification. In: Proceedings

123

http://arxiv.org/abs/1801.00318
https://ibotpeaches.github.io/Apktool/install/
http://arxiv.org/abs/1904.00735
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey

170 M. L. Anupama et al.

of the 8th International Symposium on Visualization for Cyber
Security, pp. 1–7. (2011)

32. Ni, S., Qian, Q., Zhang, R.: Malware identification using visualiza-
tion images and deep learning. Comput. Secur. 77, 871–885 (2018)

33. Patel, K., Buddadev, B.: Detection and mitigation of android
malware through hybrid approach. In International symposium
on Security in Computing and Communication, pp. 455–463.
Springer, Cham, (2015)

34. Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., Cavallaro, L.:
TESSERACT: eliminating experimental bias inmalware classifica-
tion across space and time. In: 28th USENIX Security Symposium
(USENIX Security 19), pp. 729–746. (2019)

35. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intrigu-
ing properties of adversarial ML attacks in the problem space. In:
Proceedings of IEEE Symposium on Security and Privacy, 2020,
pp.1332–1349. IEEE (2020)

36. SL, S.D., Jaidhar, C.D.:Windowsmalware detector using convolu-
tional neural network based on visualization images. IEEE Trans.
Emerg. Top. Comput. (2019)

37. Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based
file signatures for malware detection. ICEIS 9, 317–320 (2009)

38. Saracino, A., Sgandurra, D., Dini, G.,Martinelli, F.:Madam: effec-
tive and efficient behavior-based android malware detection and
prevention. IEEE Trans. Dependable Secure Comput. 15(1), 83–
97 (2016)

39. Saxe, J., Berlin, K.: Deep neural network based malware detec-
tion using two dimensional binary program features. In: 2015 10th
International Conference on Malicious and Unwanted Software
(MALWARE), pp. 11–20. IEEE (2015)

40. Sen, S., Aydogan, E., Aysan, A.I.: Coevolution of mobile malware
and anti-malware. IEEE Trans. Inf. Forensics Secur. 13(10), 2563–
2574 (2018)

41. Sun, G., Qian, Q.: Deep learning and visualization for identifying
malware families. IEEETrans.Dependable SecureComput. (2018)

42. Surendran, R., Thomas, T., Emmanuel, S.: GSDroid: graph signal
based compact feature representation for android malware detec-
tion. Expert Syst. Appl. 159, 113581 (2020)

43. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: Copperdroid: auto-
matic reconstruction of android malware behaviors. In: Ndss.
(2015)

44. Ucci, D., Leonardo, A., Roberto, B.: Survey of machine learn-
ing techniques for malware analysis. Comput. Secur. 81, 123–147
(2019)

45. Vinayakumar, R., Soman, K.P.: DeepMalNet: evaluating shallow
and deep networks for static PE malware detection. ICT Express
4(4), 255–258 (2018)

46. Wang, X., Yang, Y., Zeng, Y., Tang, C., Shi, J., Xu, K.: A
novel hybridmobilemalware detection system integrating anomaly
detection with misuse detection. In: Proceedings of the 6th Inter-
national Workshop on Mobile Cloud Computing and Services, pp.
15–22. (2015)

47. Wu, W.C., Hung, S.H.: DroidDolphin: a dynamic Android mal-
ware detection framework using big data and machine learning. In:
Proceedings of the 2014 Conference on Research in Adaptive and
Convergent Systems, pp. 247–252. (2014)

48. Xiao, X., Wang, Z., Li, Q., Xia, S., Jiang, Y.: Back-propagation
neural network on Markov chains from system call sequences:
a new approach for detecting Android malware with system call
sequences. IET Inf. Secur. 11(1), 8–15 (2017)

49. Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers. In:
Proceedings of the 2016 Network and Distributed Systems Sym-
posium, vol. 10. (2016)

50. Xue, Y., Meng, G., Liu, Y., Tan, T.H., Chen, H., Sun, J., Zhang,
J.: Auditing anti-malware tools by evolving android malware and
dynamic loading technique. IEEE Trans. Inf. Forensics Secur.
12(7), 1529–1544 (2017)

51. Zhang, S., Xiao, X.: Cscdroid: Accurately detect android malware
via contribution-level-based system call categorization. In 2017
IEEE Trustcom/BigDataSE/ICESS, pp. 193–200. IEEE (2017)

52. Zhou, M.: A hybrid feature selection method based on fisher score
and genetic algorithm. J.Math. Sci. Adv.Appl. 37(1), 51–78 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Detection and robustness evaluation of android malware classifiers
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Static analysis
	3.2 Dynamic analysis
	3.3 System call bigram generation
	3.4 Fisher score algorithm
	3.5 Features vector table generation
	3.6 Machine learning unit
	3.6.1 Training and testing
	3.6.2 Classifiers

	4 Adversarial attacks on classifier
	4.1 Feature extraction

	5 Evasion attack
	5.1 Attack using hamming distance
	5.2 Evasion attack using KMeans clustering
	5.3 Evasion attack using app's components

	6 Experimental evaluation
	6.1 Dataset and experimental setting
	6.2 Evaluation metrics
	6.3 Results of experiment-I
	6.3.1 Performance of deep neural network
	6.3.2 Comparative analysis
	6.3.3 Execution time

	6.4 Experiment-II: performance of classifiers on adversarial examples
	6.4.1 Adversarial applications developed with similarity measure
	6.4.2 Adversarial applications generated by estimating the similarity with clusters of goodware
	6.4.3 Evaluation of poisoning attack on app components
	6.4.4 Attacks using system calls

	7 Evaluation on obfuscated samples
	8 Discussion
	9 Conclusion and future work
	References

