
Journal of Computer Virology and Hacking Techniques (2021) 17:153–163
https://doi.org/10.1007/s11416-021-00378-y

ORIG INAL PAPER

Enhanced DNNs for malware classification with GAN-based adversarial
training

Yunchun Zhang1 · Haorui Li1 · Yang Zheng1 · Shaowen Yao1 · Jiaqi Jiang1

Received: 10 September 2020 / Accepted: 25 February 2021 / Published online: 10 March 2021
© The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021

Abstract
Deep learning based malware classification gains momentum recently. However, deep learning models are vulnerable to
adversarial perturbation attacks especially when applied in network security application. Deep neural network (DNN)-based
malware classifiers by eating the whole bit sequences are also vulnerable despite their satisfactory performance and less
feature-engineering job. Therefore, this paper proposes a DNN-based malware classifier on the raw bit sequences of programs
inWindows.We then propose two adversarial attacks targeting our trainedDNNs to generate adversarial malware. A defensive
mechanism is proposed by treating perturbations as noise added on bit sequences. In our defensive mechanism, a generative
adversary network (GAN)-basedmodel is designed to filter out the perturbation noise and those thatwith the highest probability
to fool the target DNNs are chosen for adversarial training. The experiments show that GANwith filter-based model produced
the highest quality adversarial samples with medium cost. The evasion ratio under GAN with filter-based model is as high
as 50.64% on average. While incorporating GAN-based adversarial samples into training, the enhanced DNN achieves
satisfactory with 90.20% accuracy while the evasion ratio is below 9.47%. GAN helps in secure the DNN-based malware
classifier with negligible performance degradation when compared with the original DNN. The evasion ratio is remarkably
minimized when faced with powerful adversarial attacks, including FGSMr and FGSMk .

Keywords Malware classification · Deep learning · Adversarial attack · Robust machine learning · Generative adversarial
network

1 Introduction

The pioneering work on modeling malware detection task
as statistical testings in [1] is constructive and lays the
foundation for never-ending battle between attackers and
detectors in the era of virology. Since then, deep learning-
based malware classification is proved to be more effec-
tive than conventional signature-based mechanisms [2] and
many classifiers have been proposed and applied in differ-
ent commercial anti-virus products [3]. Malware gray-scale
image-based classification [4] is the most common tech-
nique by training a deep neural network (DNN) model based
on image texture features. Beside malware images, other
malware features, including API call sequences, operational
codes (OpCode) and raw bit-sequences, are widely used for

B Shaowen Yao
yaosw@ynu.edu.cn

1 School of Software, Yunnan University, Kunming 650095,
China

malware classification. Depending on whether the extracted
features are collected by running malware programs or not,
existing feature extraction algorithms are grouped into either
dynamic or static. It is important to notice that both static
and dynamic methods need an independent feature extrac-
tion procedure and this may introduce high time overhead.
Most kinds of features extracted are organized into binary
feature vectors, such as, APIs and OpCode where 1 means its
appearance and 0 means its absence. As those features share
similar data structure, DNNs trained based on them share
similar architecture. Therefore, adversarial samples gener-
ated by adversarial attack targeting oneDNN-based classifier
are highly transferable to other DNNs.

In contrast, malware classifier by eating the raw bit-
sequence as input without an independent feature extraction
procedure is proved to be more effective. Major break-
throughs are represented by the following three papers. First,
a deep neural networkMalConv [5] [6], is trained on raw bits
of the malware program. This paper proves that only raw bits
are enough to build amalware classifier with satisfactory per-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-021-00378-y&domain=pdf
http://orcid.org/0000-0001-9738-4802

154 Y. Zhang et al.

formance. Second, the authors in [7] designed an adversarial
attack targetingMalConv. This attack is gradient-basedwhile
perturbations are mainly applied on the appended section at
the end of the original file. Third, the authors in [8] proved
that the vulnerability exploited in [7] succeed because the
positional information is not encoded in MalConv. An opti-
mized convolutional neural network (CNN) is then proposed
based on MalConv in [8]. Meanwhile, a slash attack is pro-
posed in [7] to scatter the perturbations evenly in the whole
PE file.

As raw program bits are applicable for malware classi-
fication, following observations are worth noticing. First,
as the beginning section of a PE file is valuable, Mal-
Conv reads up to 2MB bytes from a portable executable
(PE) file as input. Second, the degree of perturbations that
are measured and quantized by the total number of bits
changed should beminimized. Third, to preserve the original
malicious functionalities and semantic meanings, the pertur-
bations are usually applied on a precisely computed section
within PE file, such as the end section in [7]. Fourth, Adver-
sarial attacks targeting binary feature vector-based DNNs are
harder to implement because a larger distortion is required
than other feature-based classifiers. Meanwhile, adversarial
samples with large and infinitesimal perturbations are more
easily to be detected during invasion [9]. Fifth, adversarial
training by combining adversarial samples with the original
training samples has been proven to be helpful in enhancing
the robustness. However, the relationships among the quality
of adversarial samples, cost and performance improvements
by introducing adversarial training are not fully researched.

To secure DNNs from adversarial attacks, some defen-
sive mechanisms are in great demand today. This paper aims
at designing a generative adversarial network (GAN)-based
adversarial malware filtering model and adversarial training
mechanism to secure binary feature-based DNNs for mal-
ware classification. Based on the above observations, this
paper makes the following contributions:

(1) Instead of eating the whole raw bits of a PE program in
Windows, we only use the header 2,000 bytes for analysis by
referring [5]. Then, this paper proposes a raw-bit-sequence-
based deep neural network. The proposed DNN achieves
97.31% accuracy on average and outperforms other classi-
fiers especially MalConv [5] and XGBoost.

(2) Targeting the proposed DNN andMalConv [5], adver-
sarial attacks proposed in [7] and [10] are implemented
to generate adversarial samples. The redesigned adversarial
attack is measured not only by its effectiveness and correct-
ness, but also by its quality and cost on generated adversarial
samples.

(3) To improve FGSMk proposed in [10] and make them
suitable for any binary feature-based DNNs for malware
classification and detection, this paper designed a generative
adversarial network (GAN) for purifying adversarial samples

by selecting samples that have higher probability to mis-
lead the target DNNs. By modeling and solving a minmax
function through redesigning the loss functions of both gen-
erator and discriminator of GAN, perturbations computed
based on the binary features can be effectively optimized.
By input those filtered adversarial samples into DNN, the
evasion ratio of adversarial samples increased by 50.64% on
average when compared with FGSMk and FGSMr [11] by
27.28% and 35.16%, respectively.

(4)While GANwith filter based adversarial attack outper-
forms other attacks, as shown in our experiments in Sect. 5,
the generated high quality adversarial malware samples are
selected. We combine those high quality adversarial samples
with the original samples and retrain theDNN.This adversar-
ial training DNN is evaluated by both accuracy and evasion
ratio under three conditions. The results show that adversarial
training with samples generated by GANwith filter achieves
88.33% accuracy on average and is only 6.69% less than the
original DNN classifier without being attacked.

This paper is organized as follows. The background and
major contributions are introduced in Sect. 1. The related
works in the area of binary feature-based DNNs for mal-
ware classification, adversarial attacks and robust defensive
mechanisms are surveyed in Sect. 2. Section 3 provides more
details on our designedDNNsby eating the beginning section
of a program or API features are proposed. What follows are
FGSM-based adversarial attack and improved GAN-based
adversarial sample enhancement mechanism to further opti-
mize existing attacks in Sect. 4. The experiments and results
are fully analyzed in Sect. 5. A conclusive mark and possible
future research directions are presented in Sects. 6 and 7.

2 Related works

When input raw bit-sequence vectors to train a deep neu-
ral network for malware classification, those vectors share
similar characteristics with binary feature vectors, such as
API, operational codes (OpCode), etc. Therefore, this paper
focuses on recent advances on deep learning-based malware
classification with binary feature vectors as inputs. Existing
works on other malware features, including malware gray-
scale images [12], API call sequences, OpCode N-gram and
dynamic behaviors, are not included here.

2.1 Binary feature-basedmalware classification

When conventional machine learning algorithms are applied
on malware classification, an independent feature extraction
process is required. The classifiers trained can be grouped
into two categories: API call-based and raw bit sequence-
based.

(1) API call-based malware classification

123

Enhanced DNNs for malware classification with GAN-based adversarial training 155

As API call sequences are frequently used to detect mal-
ware from benign programs, some well trained models are
available [13–15]. Instead of analyzing theAPI call sequence
patterns that are indicative for both malware and benign pro-
gram, API-based features are usually organized into binary
feature vector. As each attribute takes either 0 or 1, the
conventional gradient-based deep learning models are not
applicable directly. In [10], a feed-forward neural network
with ReLU activation function and LogSoftMax function for
the output layer is proposed by input binary API feature vec-
tors. There are 22,761 unique API calls for their dataset.
By modelling high-level semantic relationships among API
calls, HinDroid [16] is proposed for malware classification.

(2) Raw bit sequence-based malware classification
The pioneering work on using raw bit sequence for mal-

ware classification is proposed in 2015 Microsoft Malware
Challenge.1 The beginning section of a .ASM file is retrieved
as inputs to build a classifier. In [5], malware classification is
done by eating the whole .exe to trainMalConv. InMalConv,
the original whole bytes, together with padding bytes on the
end section of a .exe file, are embedded into a single vector
and then feed into a CNN for training.

2.2 Adversarial attacks against binary feature-based
malware classifiers

When input binary features, attackers aim at leading the clas-
sifier to give a wrong predicted label while minimizing the
number of bits that are perturbed. Asmost adversarial attacks
are gradient-based, input feature vectors are required to be
continuous and derivative. However, binary feature vectors
are discontinuous and thus non-derivative. Consequently,
most existing adversarial attacks cannot be directly applied
on binary feature vector-based DNNs.

As MalConv is the first widely acknowledged classifier
based on raw bit sequences, most adversarial attacks are tar-
geting it. In [7], an adversarial attack that performs on the
appended section at the end of a binary file is proposed. This
gradient-based attack is compared with a method that apply
random perturbation on the same section. While this attack
is proved to be effective, it is, however, changed the file size
and could be detected when comparing its file size with the
original program file. Kreuk et al. [17] designed an adver-
sarial attack on one-hot vector representing the binary file.
The attack is FGSM (Fast Gradient SignMethod)-based [18]
and adversarial samples are generated by reconstructing the
new binary file based on embedding matrix with a revised
surrogate loss function. However, this work heavily relies on
the learned embedding and is shown to be with low trans-
ferability. Hu, et al. [19] proposedMalGAN which works by
generating adversarial samples under black-box attack based

1 https://www.kaggle.com/c/malware-classification.

on binary malware features. The substitute detector is used
to fit the black-box detector and provides gradient informa-
tion to train the generator. However, MalGAN is unstable
and a stabilized training method is still missing. Chen et
al. [20] proposed an automated tool for constructing adver-
sarial Android malware by improving C&W [21] and JSMA
(Jacobian-based Saliency Map Attack) [22] attacks. They
proved that a 99% mis-classification rate was possible by
perturbing 3.5 features on average.Wang et al. [23] proposed
an adversarial attack against deep neural networks for mal-
ware detection by nullification of binary features indicating
whether an event is appeared or not.

While existing adversarial attacks are successful and
effective, it is widely acknowledged that most of them failed
to preserve the original malicious functions. Therefore, the
authors in [24] combined C&W attack with code replace-
ment techniques, including In-place randomization (IPR)
[25] andDisp [26], to generate practical adversarial malware.
Meanwhile, conventional code randomization and binary
manipulation techniques are employed to generate adversar-
ial malware while preserving their original functionalities
[27].

2.3 Secure and robust machine learning

The reasonswhy deep neural networks are vulnerable against
adversarial attacks are not fully researched yet. However,
somedefensivemechanisms have been proposed formalware
detection. First, some machine learning-based malware clas-
sifiers against evasion attacks are proposed [28,29]. Besides,
the recent progress on adversarial malware detection is sur-
veyed in [30]. However, most of the existing mechanisms
are proved to be either with low accuracy or targeting lin-
ear classifiers only. Second, the authors in [10] insist that
it is the model’s blind spots that are responsible for a suc-
cessful attack. By modeling malware adversarial learning as
a saddle point model, a new blind spots coverage metric is
proposed to measure the models’ effectiveness against four
adversarial attacks, including dFGSMk , rFGSMk , BGAk and
BCAk . Third, Chen et al. [31] proposed DroidEye to find the
best trade-off between security and accuracy for malware
classifiers. Meanwhile, SecMD [32] and SecureDroid [33]
are proposed to improve the system security against multiple
adversarial attacks. While some defensive mechanisms are
proposed for securing machine learning models, it is still a
challenging problem to secure DNN-based Malware classi-
fiers.

All in all, both adversarial attacks and defensive mecha-
nisms targeting deep learning-based malware classifiers gain
momentum recently. Adversarial attacks are not only help-
ful in evaluating the models robustness, but also deepen
our understanding of how DNNs work and why adversar-
ial attacks succeed.

123

https://www.kaggle.com/c/malware-classification

156 Y. Zhang et al.

3 Raw bit sequence-based DNN for malware
classification

When given a collection of malware programs, the following
four steps as shown in Fig. 1 are designed to train a robust and
secure DNN for malware classification. First, feature extrac-
tion process is applied to derive a binary feature vector for
each sample. Generally speaking, each sample x is converted
into a binary feature vector. While programs are varied in
length, this paper picks the beginning 2,000 bytes for analy-
sis. Files longer than predefined length are truncated. Second,
adversarial attacks in [10] are introduced to generate binary
adversarial sample x ′. Third, clean sample x and adversarial
sample x ′ are combined and then feed into a GANmodel for
data augmentation and enhancement. Fourth, a secured DNN
model for malware classification is implemented by adver-
sarial training [22] with adversarial samples generated by
GAN-based filter.

3.1 Data preprocessing and feature extraction

Whilemalware is popular in bothWindows andAndroid sys-
tems, variants in different systems vary remarkably. While
Android program shares different file format and architecture
withWindows PE file, we restrict our work onWindowsmal-
ware only. However, our proposedmodels and algorithms are
also applicable onAndroid programswithminor revisions on
data preprocessing step as shown in Fig. 1. InWindows, a PE
file is chosen because its header part contains the most dis-
tinctive features for malware classification. When given .exe
programs for analysis, data preprocessing method is applied
to extract either raw bit sequences or binary feature vectors.
Thus, the models proposed in this paper also applicable on
API calls, OpCodes and other binary features.

Generating the raw bit sequence from a program is sim-
ple. It is also important to notice, however, that programs
are with varied length and cannot be directly input into
DNNs. Considering the input size of a malware program,
we made the following observations. First, the authors in [5]
has already proven that neural network architecture need no
major redesign to take the whole raw bit stream of a program
as input. However, local patterns contribute more than global
patterns for malware classification. Second, one of the win-
ing solutions in 2015 Microsoft Malware Challenge builds
a malware classifier based on the beginning 1,000 bytes of
the ASM and BYTE files. Third, the authors in [10] use only
22,761 bits for malware classification. Based on the above
analyses, this paper chose 8,000 bits from the beginning sec-
tion of a program and organized them into a binary feature
vector. Each feature vector is saved as a .cvs filewith a unique
label derived by VirusTotal.2

2 https://www.virustotal.com/gui/.

3.2 Deep neural network-basedmalware
classification

A deep neural network for malware classification is defined
as a function yi = fθ (xi), where yi ∈ [1,C] and C
represents the total number of malware families, θ is the
weighted parameter that are initialized randomly and opti-
mized through the training process. A typical DNN is
composed of an input layer, multiple convolutional layers,
multiple pooling layers, a fully-connected layer and an out-
put layer. Let f : x → z be a function that takes x ∈ Z

d (
where d is the number of bits for a given sample) as input
and outputs the logit vector z ∈ Z

k , where k ∈ C is the
number of classes. Given a labeled malware sample xi and
corresponding label yi , we defineL(θ, x, y) as the loss func-
tion of our classifier with parameter θ on given (x, y). The
malware classification task is accomplished through finding
the global optimized solution for θ defined as:

θ� ∈ arg M I N
θ∈Zp

E(x,y)∈DL(θ, x, y) (1)

in which,L()measures the deviations of the prediction fθ (x)
from its true label y. The training process stops when Eq. 1
converges.

Considering the differences between discrete binary fea-
ture vectors and continuous features derived from conven-
tional samples (such as images, texts, etc.), the network
architecture formalware classification need to be redesigned.
Specifically, the architecture of DNN with discrete binary
feature vectors as inputs is as bellow:

(1) Input layer accept binary bit vector x ∈ Z
d as input,

where d is the number of bits for a given samples and is set
as d = 8 × 1,000 in this paper. Each input feature vector
is required to be with the same length. While our DNN also
applicable on other binary features, the shorter one is padded
with 0 on its rear end.

(2) Hidden layer is composed of multiple convolutional
layers and pooling layers. Each convolutional layer takes the
outputs from the previous layer as inputs. To solve linearly
inseparable problems from real applications, neural networks
with perception is proposed. The perception is defined as:

y =
K∑

i=1

Wi xi + b (2)

where Wi is a weighted coefficient matrix. We implement 3
hidden layers and each layer is configured with 1,200 neu-
rons. The weighted coefficient matrix is a 1,200 × 1,200
matrix. To learn non-linear decision boundaries precisely,

123

https://www.virustotal.com/gui/

Enhanced DNNs for malware classification with GAN-based adversarial training 157

Fig. 1 Major steps for secure malware classification against GAN-based adversarial attacks

ReLU is used as activation function on neurons defined as:

σ(z) = ReLU (x) =
{
x, i f x > 0

0, i f x ≤ 0
(3)

The proposed DNN uses feed-forward back propagation
and the output aLj of the j-th neuron on the L-th layer is
computed as:

aLj = σ(ZL
j) = σ(

m∑

k=1

wL
jka

L−1
k + bLj) (4)

in which, wL
jk is the weighted parameter and bLj is the bias

added. Then, the output from the L-th layer is derived as:

aL = σ(zL) = σ(wLaL−1 + bL) (5)

The weights on each layer are optimized and updated by
solving the above objective function with stochastic gradient
descent (SGD) as follows:

θ ← θ − ε · ∇θ (
∑

(x,y)∈B
�(fθ (x), y)) (6)

where, B is a subset of randomly selected samples and
adjustable through batch size parameter. The learning rate
ε is used to control the magnitude of how weights θ should
be adjusted.

(3) Output layer receives the outputs from the last pool-
ing layer for final classification. The output layer performs
classification based on a 1 × C vector, indicating its prob-
ability to each specific malware family. To further reduce
the value domain, LogSoftMax function is designed and then
output a probabilistic distribution as:

LogSoftmax(zi) = log

⎛

⎝
∑

j

aLj

⎞

⎠

= log

⎛

⎝exp(zi)/
∑

j

exp(z j)

⎞

⎠

= log

⎛

⎝e(zLi)/
∑

j

ez
L
j

⎞

⎠ (7)

where
∑

j e
zLj is the summed outputs from the L-th layer.

Then, by computing the derivative we got:

∇LogSoftmax(zi) =
(
log

(
exp(zi)∑
j exp(z j)

))′
(8)

= 1 −
(

exp(zi)∑
j exp(z j)

)
(9)

Finally, the onewith the highest probability is assigned as the
predicted label. The above trained DNN is also applicable
on malware detection task with minor modifications on the
number of output layer nodes.

4 GAN-based defensivemechanism against
FGSM-based adversarial attacks

4.1 FGSM-based attack for discrete binary features

Adversarial attacks are common in the context of malware
attacks with the aim of wrongly classify malware as benign
or vice versa. Here, we define adversarial attack in deep
learning-based malware detection as:

Definition: Adversarial Attack. For a given deep neural
network y = fθ (x), the adversarial attack aims at changing
input x with perturbation δ into x ′ = x+δ,where δ ≤ ε with
the maximum perturbation as ε. A successful adversarial
attack is defined as finding at least one x ′ that satisfies y′ =
Fθ (x ′) �= Fθ (x).

As conventionalDNNsandadversarial attacks are gradient-
based, the feature domain should be continuous and deriva-
tive. For attacks targeting the gray-scale image-based CNNs,
many gradient-based adversarial sample generation methods
are applicable, including FGSM [18], FGSMr [11], rFGSMk

and dFGSMk [10]. However, adversarial attacks against
binary feature-based DNNs face the following challenges.

123

158 Y. Zhang et al.

First, as binary features are discrete, gradient-based attacks
cannot be applied directly. Second,malware functions should
not be changed by any adversarial perturbation attacks which
means only adding binary feature is allowed while deletion
is prohibited. Third, the magnitude of perturbation quanti-
fied by distance-based metrics is usually constrained by �0,
�2 and �∞. However, malware belonging to the same family
may have longer distance than those from different fami-
lies when measured by API [34]. Fourth, as adding an API
call into an application without affecting its original func-
tionality is a non-trivial task, it is thus critical to restrict the
number of bits changed. The above restriction also holds on
bit sequence-based features.

To propose an effective adversarial attack targeting previ-
ously trained malware classifiers when faced with the above
challenges, this paper redesigned FGSMr [11] algorithm as
following. Given a selected malware sample x with family
label cx and is correctly classified by classifier as y = F(x),
the perturbed sample x ′ is constructed by maximizing the
loss function L(θ, x, y) as:

x ′ ∈ s∗(x) = arg max
x∈S(X)

L(θ, x, y) (10)

in which, x ′ ∈ S∗(X) is the newly constructed adversarial
sample, S(X) ⊆ X is a set of binary feature vectors generated
by each sample in X , S∗(X) ⊆ S(X) is a set of binary feature
vectors generated by X ′ that maximizing the loss function.

In FGSMr [11], perturbations are applied on a set of com-
puted positions by changing 0s to 1s indicating an added API
call. Tominimize the total number of bits perturbed and intro-
ducing FGSMr on raw bit sequence targeting our previously
designed DNN, the perturbations applied are constrained by

S(X) = X ∈ 0, 1|X ∧ X = Xand|S(x)| = 2(m−xT 1) (11)

in which, xT means transpose operation to x . Finally, a set of
adversarial malware samples are generated. While rFGSMk

is proved to be the best in [10], adversarial malware bina-
ries generated by it are also included in our experiments and
analysis.

4.2 GAN-based adversarial sample enhancement

When adversarial samples are mingled with clean samples
in training and/or testing phases, it is required that adversar-
ial samples should be detected. However, not all adversarial
samples have the same probability to defeat the victim clas-
sifiers. With the aim of choosing high quality adversarial
samples and serving the purpose of enhancing DNN robust-
ness, a GAN-based adversarial sample filter component is
designed. Our design is inspired by the intuition that gen-
erator in APE-GAN [9] is used to sanitize the input before

passing it to the classifier. All samples are required to be
filtered before forwarding them to the target DNN for classi-
fication. The working mechanism and major components in
this GAN-based filter mechanism are as shown in Fig. 2. As
shown in Fig. 2, the GAN-based filter mechanism is com-
posed of the following two major steps.

(1) Adversarial sample filtering
The trainedDNN formalware classification takes the orig-

inal sample x and adversarial sample x
′
generated byFGSMk

and rFGSMk as inputs. Instead of output the predicted labels,
feature maps derived from the last fully-connected layer are
extracted as Z = ẋ1, ẋ2, . . . , ẋn . We define ẋ = aL−1 as
the output feature maps extracted from the last-fully con-
nected layer in DNN. We set ẋmax = MAX(Z) and ẋmean =
MEAN(Z − ẋmax) as the maximum sample in Z and their
averaged value, respectively. Meanwhile, Z = ẋi where ẋi
meet ‖ẋi−ẋmean‖ ≤ θ and θ is a predefined hyper-parameter.
Z is the filtered set of samples that have the highest proba-
bility to fool the target DNN classifier and is then forwarded
to the GAN for data augmentation.

(2) GAN-based adversarial malware construction
When ẋi ∈ Z is computed, it is forwarded to this GAN

network that responsible for data augmentation. For filtered
dataset Z and the original dataset X , we define G(Z) and
D(X) as the generator and discriminator in GAN, respec-
tively. The data augmentation works as following. First, the
discriminator D is trained by solving the following optimiza-
tion function as

V = 1

m

m∑

i=1

logD(ẋi) + 1

m

m∑

i=1

log(1 − D(ẋi)) (12)

To optimize the objective function as shown in Eq. 12, θd is
adjusted by Eq. 13 as

θd ← θd + η∇ Ṽ (θd) (13)

where θ is adjusted using gradient descending method.
Second, the GAN’s generator is G trained by optimizing

the objective function defined in Eq. 14 as

V = 1

m

m∑

i=1

log(D(G(żi))) (14)

in which, żi ∈ Z is the filtered sample. Meanwhile, θg is
adjusted based on Eq. 15 as

θg ← θg + η∇V (θg) (15)

To summarize, the designed GAN achieves data augmen-
tation by solving a minmax optimization problem defined in

123

Enhanced DNNs for malware classification with GAN-based adversarial training 159

Fig. 2 GAN-based data
augmentation for adversarial
malware filtering

Table 1 Malware samples used from BIG 2015 dataset

Malware family Types No. of samples

Ramint Worm 1,541

Lollipop Adware 2,478

Kelihos_ver3 Backdoor 2,942

Obfuscator.ACY Obfuscated malware 1,228

Eq. 17 as

ẍ = minGmaxD = Ex Pdata(x)[log(D(x))] (16)

+Ez pz(z)[log(1 − D(G(z)))] (17)

in which, a set of ẍs computed by GAN are also adversar-
ial samples but with higher probability to succeed. Those
enhanced adversarial samples are mingled with the original
clean samples xs for adversarial training. This adversarial
training-based classifier is supposed to be more robust and
secure than the original DNN.

5 Experiments and analyses

5.1 Datasets and running environments

To make sure that our proposed models work well on Win-
dows programs, two datasets are used: BIG 20153 and
WindowsPEfiles in [35]. Each sample is converted into a raw
bit sequence and the beginning 8,000 bits are preserved and
saved in .csv format. As samples contained in BIG 2015 is
unbalanced and some families are not common in Windows,
we chose only 4 major types in our experiments as shown
in Table 1. Besides, we include more than 19,000 malware
and 19,000 benign programs in [35] because its wide pop-
ularity in malware domain. All PE files in [35] contain all
necessary information including API call sequences when
reloading .exe program. We use 80% samples for training
and 20% samples for model validation.

When all samples are collected, an independent program-
to-bit-sequences program written in Python is applied. Each

3 https://www.kaggle.com/c/malware-classification.

binary feature vector, together with a malware family label,
is stored in a .csv file. The label is either assigned by
professional experts or assigned by tools, such as VirusTo-
tal.4 When different labels are given by various anti-virus
engines, the one with the highest probability is chosen.
All programs, including the pre-processing program, DNN,
XGBoost, FGSMr , rFGSMk and GAN, are tested under the
same operating system and computing configurations. The
running operating systems are configured with Intel Core i7
7500, Nvidia GeForce GTX1060 with 8G memory and run
on Ubuntu 16.04. All programs are running on Python 3.6
and TensorFlow 1.7. To accelerate the running speed, both
DUDA 9.1 and CUDNN 7 are applied simultaneously.When
configured with GPU or with more memory resources, all
models would be accelerated.

To evaluate and compare the designed DNNs, the fol-
lowing performance metrics, including accuracy, precision,
recall and F1, are computed as shown in Eqs. 18–21.

Accuracy = TP + TN

TP + FP + TN + FN
(18)

Recall = TP/(TP + FN) (19)

Precision = TP/(TP + FP) (20)

F1 = 2 × (Precision × Recall)

Precision + Recall
(21)

5.2 Classification performance and analysis

To evaluate DNN’s classification performance, we also
implemented XGBoost for malware classification. In BIG
2015 (MicrosoftMalware Challenge) competition, XGBoost
is proved to be the best and achieves 98.0% accuracy onmax-
imum when massive samples are provided. Therefore, the
comparisons among XGBoost and our proposed DNN are
sound and persuasive. Both classifiers are trained with the
same training and testing samples. The results are obtained
by running the model for at least 10 times and averaged. The
experimental results are summarized in Table 2.

It is observed that existing deep learning-based malware
classifiers generally achieve 90.0%–95.0% accuracy on aver-
age [3]. As shown in Table 2, both the proposed DNN and

4 https://www.virustotal.com/gui/.

123

https://www.kaggle.com/c/malware-classification
https://www.virustotal.com/gui/

160 Y. Zhang et al.

Table 2 Performance under
Different Classification Models

Classifier Accuracy Precision Recall F1 Specificity

DNN 97.31% 98.00% 96.50% 24.31% 94.36%

XGBoost 93.89% 94.00% 91.50% 23.18% 92.33%

Bold value indicates the best value for each performance measure among different models

Table 3 Performance comparison under GAN-based attack proposed
in this paper

Victim classifier Accuracy Precision Recall

Net1 (1000, 1000, 1000) 46.66% 30.44% 42.33%

Net2 (2000, 1000, 1000) 46.31% 37.66% 42.44%

Net3 (2000, 2000, 1000) 46.00% 37.63% 42.68%

Net4 (2000, 2000, 2000) 47.57% 37.54% 43.88%

Bold values indicate the best value for each performance measure
among different models

Table 4 Performance comparison under FGSMr attack proposed in
[11]

Victim Classifier Accuracy Precision Recall

Net1 (1000, 1000, 1000) 62.15% 54.05% 49.81%

Net2 (2000, 1000, 1000) 63.55% 54.91% 47.74%

Net3 (2000, 2000, 1000) 63.96% 54.82% 47.14%

Net4 (2000, 2000, 2000) 63.67% 55.52% 47.53%

Bold values indicate the best value for each performance measure
among different models

XGBoost achieve quite satisfactory accuracy. Both classi-
fiers are applicable and can be implemented in real network
environments.

5.3 Performance analyses under different
adversarial attacks

While all classifiers achieve satisfactory performance, it
is thus critical to evaluate their robustness against adver-
sarial attacks. The adversarial attack, either targeted or
non-targeted, aims at reducing the classifiers’ accuracy
remarkably. As this paper focuses on binary feature-based
malware classification, we compare the proposed filter-based
GAN attack with FGSMr [11]. While FGSMr works directly
on binary features with fixed dimension, our proposed GAN-
based attack is applicable on varied-length binary feature
vectors. All models are accelerated by Adam while hyper
parameter Z is set to be 15 representing the dimensions of
the noise vector z. The generator of GAN designed is a 3-
layer and configured with 180, 256 and 160 neurons in each
layer, respectively. The discriminator is also a 3-layer neural
networkwith 160, 256 and 1 neurons in each layer. The learn-
ing rate for both generator and discriminator is set as 0.001.
The epoch is set as 100 and each model is trained 100 times
on the training datasets. The attack performances under the

Table 5 Performance comparison for three adversarial attacks under
accuracy

Victim Classifier GAN-based FGSMr FGSMk

Net1 (1000, 1000, 1000) 46.66% 62.15% 70.03%

Net2 (2000, 1000, 1000) 47.57% 63.67% 70.94%

Net3 (2000, 2000, 1000) 48.47% 66.40% 74.63%

Net4 (2000, 2000, 2000) 48.79% 67.77% 77.81%

Bold value indicates the best value for each performance measure
among different models

Table 6 Evasion cost and the number of generated adversarial malware
samples under three adversarial attacks

Attack Cost Adversarial samples

FGSMr 41.44 3,040

GAN-based attack 37.10 2,134

Filter+FGSMr 34.10 1,274

Bold value indicates the best value for each performance measure
among different models

above two algorithms, evaluated under 4 different network
settings, are as shown in Tables 3 and 4, respectively.

Based on the results shown in Tables 3 and 4, follow-
ing observations are made: (1) As adversary attack aims at
defeating the victim classifier with accuracy decline, GAN-
based attack outperforms FGSMr with 16.70% accuracy
decline on average. To consolidate our observations, we took
another adversarial attack FGSMk [10] for reference. As
shown in Table 5, the GAN-based attack achieves 17.125%
and 25.48% accuracy decline on average than FGSMr and
FGSMk , respectively. (2)When configured with varied num-
ber of neurons in each convolutional layer, the accuracy
under all adversarial attacks only changed slightly. While
convolutional layers are responsible for feature extraction,
perturbations applied by adversarial attacks are preserved
and forwarded to the final output layer for classification. (3)
Both precision and recall under GAN-based attack are lower
than other attacks. Therefore, the evasion ratio under GAN-
based attack is higher than FGSMr and FGSMk .

TheGAN-based attackworks byfiltering generated adver-
sarial samples while those that have the highest probability
to successfully mislead the target model are preserved and
enhanced. Therefore, we included FGSMr and FGSMr with
filter (abbreviated as Filter + FGSMr) attacks for compar-
ison. First, we applied FGSMr to generate 3,040 adversarial
samples derived from the original 15,200 training samples.

123

Enhanced DNNs for malware classification with GAN-based adversarial training 161

Table 7 Performance comparison under three conditions, including the original DNN without attack (Original-DNN), DNN when attacked by
GAN with filter based attack (GAN-DNN) and DNN with adversarial training (Adv-DNN)

Networks Original-DNN GAN-DNN Adv-DNN

Accuracy Accuracy Evasion Ratio Accuracy Evasion Ratio

Net1 (1000, 1000, 1000) 95.03% 46.66% 24.77% 87.44% 16.67%

Net2 (2000, 2000, 2000) 94.74% 47.57% 21.64% 87.07% 14.76%

Net3 (3000, 3000, 3000) 95.00% 48.47% 21.80% 88.60% 13.77%

Net4 (4000, 4000, 4000) 95.31% 48.79% 20.77% 90.20% 9.47%

Bold values indicate the best value for each performance measure among different models

Then, we apply Filter + FGSMr and GAN-based filter on
those adversarial samples and output 2,134 and 1,274 sam-
ples, respectively. It is observed that almost 41.91% of the
generated adversarial samples are chosen by GAN-based
attack. While the number of adversarial samples are halved
by GAN, the cost to generate adversarial samples also mat-
ters. As far as binary features are concerned, the attack cost
is defined as the number of changed bits between the original
clean sample and computed adversarial sample. One unit of
cost is defined as the change from 0 to 1 in each feature vec-
tor. Based on the above definition, we compared three attacks
under evasion cost. As shown in Table 6,FGSMr requires the
highest cost to successfully craft an adversarial sample while
Filter + FGSMr is the best with the lowest cost. All in all,
changing 42 bits on average in a feature vector is trivial and
thus acceptable for adversarial attackers.

5.4 Secure defense by adversarial training

We tested four DNNs with different number of neurons in
the range of [1000, 4000]. Each DNN is evaluated under
three conditions, including the original DNN without attack
(abbreviated as Original-DNN), DNN when attacked by
GAN with filter based attack (GAN-DNN) and DNN with
adversarial training (abbreviated as Adv-DNN). The results
are shown in Table 7.

It can be seen in Table 7 that adversarial training with
samples generated by GAN with filter based attack algo-
rithms secures our DNN classifier. The detection accuracy
achieves more than 90.00% on average. The robustness of
adversarial training based DNN classifier achieves at the cost
of slight accuracy decline. This cost is affordable especially
when evasion ratio drops below 10.0%. All in all, the GAN
with filter based adversarial attack is not only effective in pro-
ducing high quality adversarial samples, but also effective in
enhancing the classifiers’ robustness.

6 Discussions and limitations

First, the raw bit sequence-based DNNs for malware classifi-
cation are popular. The proposedDNNs are capable of detect-

ing packed malware and PDF malware with minor revision
while the malicious codes are usually located in the scripting
code section. However, Android malware is not exploited in
this paper because their different file format (apk file).

Second, the proposed DNNs are also applicable to any
binary features, includingAPI calls andOpCoden-gram.The
extracted feature vectors are required to be with fixed length.
Retraining DNN is required while network architecture and
parameter initialization are left unchanged.

Third, most of the existing adversarial attacks, including
dFGSMk and rFGSMr [10], are proved successful. However,
functionality-preserving attacks are not thoroughly analyzed.
The biggest challenge is how to bridging the gap between
the adversarial samples and the original programs on their
malicious functionalities.

Fourth, this paper further proves that GAN is effective
on adversarial malware detection. It is unquestionable that
GAN’s involvement in both adversarialmachine learning and
secure machine learning can be deeper and wider.

Last, a largerDNNwith adversarial training ismore robust
than a shallow one, as shown in Table 7. However, the linear
parts of a DNN are still problematic. To design a robust and
secure DNN classifier, the linear parts should be changed in
essence.

7 Conclusion

A GAN-based adversarial sample filtering mechanism is
introduced in this paper to secure DNNs for malware classifi-
cation. This paper ismeaningful in the following two aspects.
First, various of features are employed for malware classifi-
cation. While static features are proved to be less accurate,
dynamic features are with high cost and complexity. Thus,
we proved that raw-bit-sequence-based DNN is effective and
possible. Second, while GAN is introduced for data augmen-
tation and adversarial sample sanitizing, this paper proves
that GAN also succeeds in choosing high quality adversarial
samples. Those high quality adversarial malware are used in
adversarial training to further enhance theDNN’s robustness.

123

162 Y. Zhang et al.

The battle between adversarial attack and robust defense
will last forever. In malware classification, the problem is
even worse. First, new malware variants are generated with
higher quantity and quality. Therefore, existing DNNs for
malware classification need to be updated incrementally. Sec-
ond, more powerful adversarial attacks will be published.
Protecting all DNNs from adversarial attacks is challenging.
Recent progress on DNN verification and compressed DNN
may provide some possibilities.

Acknowledgements This work has been supported by the Open Foun-
dation of Key Laboratory in Software Engineering of Yunnan Province
under Grant Nos. 2020SE401, 2020SE306 and 2020SE305.

References

1. Filiol, E., Josse, S.: A statistical model for undecidable viral detec-
tion. J. Comput. Virol. Tech. 3(2), 65–74 (2007). https://doi.org/
10.1007/s11416-007-0041-5

2. Gavrilut, D., Cimpoesu,M., Anton, D., Ciortuz, L.:Malware detec-
tion using machine learning. In: International Multiconference on
Computer Science & Information Technology, pp. 735–741. IEEE
(2010). https://ieeexplore.ieee.org/document/5352759

3. Gibert, D., Mateu, C., Planes, J.: The rise of machine learning for
detection and classification of malware: research developments,
trends and challenges. J. Netw. Comput. Appl. 153, 102536 (2020).
https://doi.org/10.1016/j.jnca.2019.102526

4. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath B.S.: Malware
images: visualization and automatic classification. In: VizSec 11
Proceedings of the 8th International Symposium on Visualization
for Cyber Security, pp. 1–7. ACM (2011). https://doi.org/10.1145/
2016904.2016908

5. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B.,
Nicholas, C.: Malware detection by eating a whole exe (2017).
arXiv:1710.09435

6. Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., Tracy,
A.,McLean,M., Nicholas, C.: An investigation of byte n-gram fea-
tures for malware classification. J. Comput. Virol. Hacking Tech.
14(1), 1–20 (2018). https://doi.org/10.1007/s11416-016-0283-1

7. Kolosnjaji, B., Demontis, A., Biggio, B.,Maiorca, D., Giacinto, G.:
Adversarial malware binaries: evading deep learning for malware
detection in executables. In: 2018 26th European Signal Processing
Conference (EUSIPCO), pp. 533–537. IEEE (2019)

8. Suciu, O., Coull, S.E., Johns, J.: Exploring adversarial examples
in malware detection. In: 2019 IEEE Security and Privacy Work-
shop (SPW), pp. 8–14. CEUR-WS (2019). https://doi.org/10.1109/
SPW.2019.00015

9. Jin, G., Shen, S., Zhang, D., Dai, F., Zhang, Y.: APE-GAN:
adversarial perturbation elimination with GAN. In: 2019 IEEE
international conference on acoustics, speech and signal processing
(ICASSP), pp. 3842–3846. IEEE (2019). https://doi.org/10.1109/
ICASSP.2019.8683044

10. Al-Dujaili, A., Huang, A., Hemberg, E., O’Reilly, U.M.: Adversar-
ial deep learning for robust detection of binary encoded malware.
In: 2018 IEEE Security and PrivacyWorkshops (SPW), pp. 76–82.
IEEE (2018). https://doi.org/10.1109/SPW.2018.00020

11. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.:
Towards deep learning models resistant to adversarial attacks. In:
6th International Conference on Learning Representations (ICLR
2018), pp. 1–28 (2018)

12. Mercaldo, F., Santone, A.: Deep learning for image-based mobile
malware detection. J. Comput. Virol. Hacking Tech. 16(6), 1–15
(2020). https://doi.org/10.1007/s11416-019-00346-7

13. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level fea-
tures for robust malware detection in android. In: International
Conference on Security and Privacy in Communication Systems,
pp. 86–103. Springer (2013). https://doi.org/10.1007/978-3-319-
04283-1_6

14. Jerlin, M.A., Marimuthu, K.: A new malware detection system
using machine learning techniques for API call sequences. J. Appl.
Secur. Res. 13(1), 45–62 (2018)

15. Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware android
malware classification using weighted contextual API dependency
graphs. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1105–1116. ACM
(2014). https://doi.org/10.1145/2660267.2660359

16. Hou, S., Ye, Y., Song, Y., Abdulhayoglu, M.: HinDroid: an intel-
ligent android malware detection system based on structured
heterogeneous information network. In: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discov-
ery andDataMining, pp. 1507–1515. ACM (2017). https://doi.org/
10.1145/3097983.3098026

17. Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas, B.,
Keshet, J.: Adversarial examples on discrete sequences for beating
whole-binary malware detection (2018). arXiv:1802.04528v1

18. Goodfellow, I.J., Shlens, J., Szegedy,C.: Explaining and harnessing
adversarial examples. In: 3rd International Conference onLearning
Representations (ICLR 2015), pp. 1–11 (2015)

19. Hu, W., Tan, Y.: Generating adversarial malware examples for
black-box attacks based on GAN (2017). arXiv:1702.05983

20. Chen, X., Li, C., Wang, D., Wen, S., Zhang, J., Nepal, S., Xiang,
Y., Ren, K.: Android HIV: a study of repackaging malware for
evading machine-learning detection. IEEE Trans. Inform. Forens.
Secur. 15, 987–1001 (2020)

21. Carlini, N., Wagner, D.: Adversarial examples are not easily
detected: bypassing ten detection methods. In: Proceedings of the
10th ACM workshop on artificial intelligence and security, pp. 3–
14. ACM (2017). https://doi.org/10.1145/3128572.3140444

22. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B.,
Swami, A.: The limitations of deep learning in adversarial set-
tings. In: 2016 IEEEEuropean SymposiumonSecurity and Privacy
(EuroS&P), pp. 372–387. IEEE (2016). https://doi.org/10.1109/
EuroSP.2016.36

23. Wang,Q.,Guo,W.,Zhang,K.,Ororbia, II.,Alexander,G.,Xing,X.,
Liu, X., Giles, C.L.: Adversary resistant deep neural networks with
an application to malware detection. In: Proceedings of the 23rd
ACMSIGKDDInternationalConference onKnowledgeDiscovery
and Data Mining, pp. 1145–1153. ACM (2017). https://doi.org/10.
1145/3097983.3098158

24. Mahmood, S., Keane, L., Lujo, B., Michael, K.R., Saurabh, S.:
Optimization-guided binary diversification to mislead neural net-
works for malware detection 2019. arXiv:1912.09064

25. Pappas,V., Polychronakis,M.,Keromytis,A.D.: Smashing the gad-
gets: hindering return-oriented programming using in-place code
randomization. In: 2012 IEEESymposiumonSecurity and Privacy,
pp. 601–615. IEEE (2012). https://doi.org/10.1109/SP.2012.41

26. Koo, H., Polychronakis, M.: Juggling the gadgets: binary-level
code randomization using instruction displacement. In: Proceed-
ings of the 11th ACM on Asia Conference on Computer and
Communications Security, pp. 23–34. ACM (2016). https://doi.
org/10.1145/2897845.2897863

27. Song,W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., Yin, H.: Auto-
matic generation of adversarial examples for interpreting malware
classifiers (2020). arXiv:2003.03100

28. Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck,
K., Corona, I., Giacinto, G., Roli, F.: Yes, machine learning can

123

https://doi.org/10.1007/s11416-007-0041-5
https://doi.org/10.1007/s11416-007-0041-5
https://ieeexplore.ieee.org/document/5352759
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2016904.2016908
http://arxiv.org/abs/1710.09435
https://doi.org/10.1007/s11416-016-0283-1
https://doi.org/10.1109/SPW.2019.00015
https://doi.org/10.1109/SPW.2019.00015
https://doi.org/10.1109/ICASSP.2019.8683044
https://doi.org/10.1109/ICASSP.2019.8683044
https://doi.org/10.1109/SPW.2018.00020
https://doi.org/10.1007/s11416-019-00346-7
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1145/3097983.3098026
https://doi.org/10.1145/3097983.3098026
http://arxiv.org/abs/1802.04528v1
http://arxiv.org/abs/1702.05983
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1145/3097983.3098158
https://doi.org/10.1145/3097983.3098158
http://arxiv.org/abs/1912.09064
https://doi.org/10.1109/SP.2012.41
https://doi.org/10.1145/2897845.2897863
https://doi.org/10.1145/2897845.2897863
http://arxiv.org/abs/2003.03100

Enhanced DNNs for malware classification with GAN-based adversarial training 163

be more secure! A case study on android malware detection. IEEE
Trans. Depend. Secure Comput. 16(4), 711–724 (2019). https://
doi.org/10.1109/TDSC.2017.2700270

29. Incer, I., Theodorides, M., Afroz, S., Wagner, D.: Adversarially
robust malware detection using monotonic classification. In: The
Fourth ACM International Workshop, pp. 54–63. ACM (2018).
https://doi.org/10.1145/3180445.3180449

30. Maiorca,D., Biggio, B.,Giacinto,G.: Towards adversarialmalware
detection: lessons learned from PDF-based attacks. ACM Com-
put. Surv. (CSUR) 52(4), 1–36 (2019). https://doi.org/10.1145/
3332184

31. Chen, L., Hou, S., Ye, Y., Xu, S.: DroidEye: fortifying secu-
rity of learning-based classifier against adversarial android mal-
ware attacks. In: 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM),
pp. 782–789. IEEE (2018). https://doi.org/10.1109/ASONAM.
2018.8508284

32. Chen, L., Ye, Y.: SecMD: make machine learning more secure
against adversarial malware attacks. In: AI 2017: Advances in Arti-
ficial Intelligence, pp. 76–89. Springer (2017). https://doi.org/10.
1007/978-3-319-63004-5_7

33. Chen, L., Hou, S., Ye, Y.: SecureDroid: enhancing security of
machine learning-based detection against adversarial android mal-
ware attacks. In: Proceedings of the 33rd Annual Computer
Security Applications Conference, pp. 362–372. ACM (2017).
https://doi.org/10.1145/3134600.3134636

34. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in
adversarial settings: exploiting feature evolutions and confusions in
android apps. In: Proceedings of the 33rd Annual Computer Secu-
rity Applications Conference, pp. 288–302. ACM (2017). https://
doi.org/10.1145/3134600.3134642

35. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify mali-
cious executables in thewild. J.Mach. Learn. Res. 7(4), 2721–2744
(2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/TDSC.2017.2700270
https://doi.org/10.1109/TDSC.2017.2700270
https://doi.org/10.1145/3180445.3180449
https://doi.org/10.1145/3332184
https://doi.org/10.1145/3332184
https://doi.org/10.1109/ASONAM.2018.8508284
https://doi.org/10.1109/ASONAM.2018.8508284
https://doi.org/10.1007/978-3-319-63004-5_7
https://doi.org/10.1007/978-3-319-63004-5_7
https://doi.org/10.1145/3134600.3134636
https://doi.org/10.1145/3134600.3134642
https://doi.org/10.1145/3134600.3134642

	Enhanced DNNs for malware classification with GAN-based adversarial training
	Abstract
	1 Introduction
	2 Related works
	2.1 Binary feature-based malware classification
	2.2 Adversarial attacks against binary feature-based malware classifiers
	2.3 Secure and robust machine learning

	3 Raw bit sequence-based DNN for malware classification
	3.1 Data preprocessing and feature extraction
	3.2 Deep neural network-based malware classification

	4 GAN-based defensive mechanism against FGSM-based adversarial attacks
	4.1 FGSM-based attack for discrete binary features
	4.2 GAN-based adversarial sample enhancement

	5 Experiments and analyses
	5.1 Datasets and running environments
	5.2 Classification performance and analysis
	5.3 Performance analyses under different adversarial attacks
	5.4 Secure defense by adversarial training

	6 Discussions and limitations
	7 Conclusion
	Acknowledgements
	References

