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Abstract
We construct a new protocol for attribute-based encryption with the use of the modification of the standard secret sharing
scheme. In the suggested modification of the secret sharing scheme, only one master key for each user is required that is
achieved by linearly enlarging public parameters in access formula. We then use this scheme for designing an attribute-based
encryption protocol related to some access structure in terms of attributes. We demonstrate that the universe of possible
attributes does not affect the resulting efficiency of the scheme. The security proofs for both constructions are provided.

Keywords Secret sharing · Attribute-based encryption · Monotone access structures

1 Introduction

In the view of the significant increase in the amount of digital
communications, the problem of efficient protection of data
becomes crucial. An important task is to construct a secured
protocol for controlled access to data. In standard protocols
for solving this problem, which are mostly based on public-
key cryptography, a secret key is required for access to whole
encrypted data. A straightforward modifications of such pro-
tocols for providing partial access to data lead to a significant
increase of the complexity since multiple encryptions of the
same data are needed.
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Attribute-based encryption (ABE) is a relatively new
approach for solving the data access control problem [1–3].
In the ABE schemes, the access to the parts of an encrypted
data is determined by a set of attributes, which are inher-
ent to various participants. Thus, if attributes of a participant
belonging to a particular subset of possible attributes, then
he is able to obtain access to a corresponding particular part
of the encrypted data. The ABE conception appears to be
very promising in a framework of cloud technologies and
distributed ledgers. Over the past decade, a number of mod-
ifications and improvements have been presented [1,4,5].
However, some of the proposed approaches still suffer from
implementation complexity, which increases with the num-
ber of attributes.

We note that the concept of ABE has much in common
with the secret sharing (SS) problem. However, one of the
most common SS schemes [6] has a problem related to a
large number of shares per trustee.

In this work, we propose an advanced ABE protocol with
a sufficiently low computational complexity. One of themain
techniques of our work is a modification of the standard SS
scheme, which allows one to use a single key for generat-
ing the whole set of required shares. This modification is
then used for the construction of the ABE protocol, which is
independent to the size of the set of possible attributes.

The paper is organized as follows. In Sect. 2 we provide
basic definitions. In Sect. 3 we briefly describe the standard
construction of the general SS scheme. In Sect. 4 we present
our modification of the SS scheme, which is then used for
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constructing the ABE protocol in Sect. 5. In Sect. 6 we esti-
mate the required resources for encryption and decryption
for the suggested protocol. We summarize our results and
conclude in Sect. 7.

2 Preliminaries

Let us introduce basic definitions and notations.
Let x ← X ,where x is a randomvalue andX is a probabil-

ity distribution, denote a sampling of x from the distribution
X . Let y ← M(x), where M is an algorithm, denote the out-

put y of M processed on the input x . Let x
$← X , where X is

a set, denote an element x , which is chosen uniformly at ran-
dom from the set X . Let ∨(φ1, . . . , φn) and ∧(φ1, . . . , φn)

stand for φ1 ∨ . . . ∨ φn and φ1 ∧ . . . ∧ φn , correspondingly.
Now we define a pseudorandom function (PRF) family.

Given the oracle f , we denote M( f ) as the execution of the
oracle machine M with an access to f .

Definition 1 (pseudorandom function (PRF) family) We
define FD→E = { fk : D → E}k∈K, where |K| = |D| =
|E | < ∞ to be a function family. We define the advantage of
an adversary A against PRF as

AdvPRF
FD→E (A) = |Pr[1 ← A( fk) : k $← K]

−Pr[1 ← A(h) : h $← HD→E ]|,

where HD→E is a family of all functions from D → E
(|HD→E | = |E ||D|). We define the PRF insecurity of a
function familyFD→E against time-ξ adversaries as themax-
imum advantage of any classical adversary that runs in time
ξ :

InSecPRF(FD→E , ξ) = max
A

{AdvPRF
FD→E (A)}

Definition 2 (m-PRF family game)We say that an oracleω is
initialized with a function f (·) ifω(x) = f (x), and denote it
as ω ← f . The following procedure is called m-PRF family
game

Init: Given FD→E = { fk : D → E}k∈K, where |K| =
|D| = |E |, flip a fair coin b. If b = 1 then Ω =
{ωi ← fk : k

$← K, i ∈ {1, . . . ,m}}. Otherwise
Ω = {ωi ← h : h

$← HD→E , i ∈ {1, . . . ,m}},
where HD→E is a family of all functions from D →
E .

Game: Given a set of oracles Ω , the challenge is to distin-
guish whether Ω is initialized with functions from
FD→E or from HD→E

We define the advantage of an adversary A against m-PRF
as

Advm−PRF
FD→E (A) = |Pr[1 ← A(Ω)|b = 1] − Pr[1 ← A(Ω)|b = 0]|.

We define the m-PRF insecurity of a function family FD→E
against time-ξ adversaries as the maximum advantage of any
classical adversary that runs in time ξ :

InSecm−PRF(FD→E , ξ) = max
A

{Advm−PRF
FD→E (A)}

Definition 3 (Decisional Diffie Hellman (DDH) challenge
[7,8]) Consider a (multiplicative) cyclic groupG of the order
q with the generator g. We define the advantage of an adver-
sary A against DDH as

AdvDDHG (A) = |Pr(1 ← A(ga, gb, gab) − Pr(1 ← A(ga, gb, gz))|
(1)

where a, b, z are chosen randomly and independently from
Zq . We define the DDH insecurity of a groupG against time-
ξ adversaries as the maximum advantage of any classical
adversary that runs in time ξ :

InSecDDH(G, ξ) = max
A

{AdvDDHG (A)}

Definition 4 (m-DDHchallenge) Consider a (multiplicative)
cyclic group G of the order q with the generator g, and fol-
lowing two distibutions:

– Ωab = {(ga, gb1 , ga·b1), (ga, gb2 , ga·b2), . . . , (ga, gbm ,

ga·bm )}, where a and bi are chosen randomly and inde-
pendently from Zq for i = 1, . . . ,m,

– Ωz = {(ga, gb1 , gz1), (ga, gb2 , gz2), . . . , (ga, gbm ,

gzm )}, where a, bi , zi are chosen randomly and indepen-
dently from Zq for i = 1, . . . ,m,

We define the advantage of an adversary A against m-DDH
as

Advm−DDH
G (A) = |Pr[1 ← A(Ωab)] − Pr[1 ← A(Ωz)]|

(2)

We define the DDH insecurity of a group G against time-
ξ adversaries as the maximum advantage of any classical
adversary that runs in time ξ :

InSecm−DDH(G, ξ) = max
A

{Advm−DDH
G (A)}

Definition 5 Let P = {P1, . . . Pn} be a set. An access struc-
tureB is a collection of non-empty subsets ofP , i.e.,B ⊆ 2P .
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Definition 6 Given a set P , a monotone access structure on
P is a collection of subsets B ⊆ 2P such that

B ∈ B, B ⊆ B ′ ⊆ P ⇒ B ′ ∈ B.

Definition 7 A Boolean function Φ : {0, 1}n → {0, 1} is
called monotone, if Φ(x1, . . . , xn) ≤ Φ(x ′

1, . . . , x
′
n), when-

ever for every i ∈ {1, . . . , n} xi ≤ x ′
i .

Definition 8 Given an access structure B, define a Boolean
function ΦB : {0, 1}|P| → {0, 1} on |P|-bit strings, where
each bit is indexed by an element fromP , such thatΦ(x) = 1
iff {p : xp = 1} ∈ B.

One can look at the Boolean function ΦB as an indicator
of the set B. It is easy to check that the defined ΦB is a
monotone Boolean function for a proper monotone access
structure B.
Definition 9 For a given set P and a monotone access struc-
tureB onP , defineF(B) to be the set of all Boolean formulae
(expressions consisted of logical operations) on |P| vari-
ables, such that for every formula φ ∈ F(B) the output of φ

is true iff the true variables in φ correspond exactly to a set
B ∈ B (here we assume that each Boolean variable in the
formula is indexed with an element form P).

We note that φ, φ′ ∈ F(B) implies that φ and φ′ corre-
spond to the same functionΦB. Theymay, however, represent
entirely different formula to express this function.

Definition 10 (Random oracle [9]) Random oracle is an ora-
cle (a theoretical black box) that responds to every unique
query with a value chosen uniformly at random from its out-
put domain. If a query is repeated, it responds the same way
every time that query is submitted. We refer a set of inde-
pendent Random Oracles, {RO1, . . . ,ROt }, as a family of
Random Oracles.

3 Standard construction of the general SS
scheme

We begin our consideration with a SS scheme, which is pro-
posed by Benaloh and Leichter [6], that we refer to as a
standard SS scheme. For this purpose we first introduce a
definition of the secure generalized SS scheme. It is known
that for certain access structures every secure generalized SS
scheme must be able to assign multiple shares to each trustee
(see Theorem 2 below). In this case, we use sp, j to denote
the j th share given to trustee p.

We define the scheme with the use of the following roles.
We call the dealer, a user who shares a secret according to
some access structure. The trustees are users among which
the secret is shared. A party is a group of trustees. We denote
the set of all trustees as P .

Definition 11 (SecuregeneralizedSS scheme)Given amono-
tone access structure B on a set of trusties P and a set of
possible secrets S, a secure generalized SS scheme for B is a
method of dividing a secret s ∈ S into shares {sp, j }p∈P, j∈N
such that

– for every B ∈ B, there is an algorithm for reconstructing
the secret s from the subset of shares ∪

p∈B ∪
j
sp, j ;

– for every B /∈ B the subset of shares ∪
p∈B ∪

j
sp, j provides

no information (in an information theoretic sense) about
the value of s.

In what is presented below, we define the secret domain
S = Zq , for some positive integer q. We then are able to
construct the secure generalized SS scheme.

It is known that every monotone function Φ can rep-
resented with a formula φ consisted only of ∧ and ∨
operations (without NOT operation). It is then sufficient to
demonstrate how to divide a secret “across” these two oper-
ators. We use X p, j to denote the j th appearance of variable
X p : p ∈ P in a formula φ. We refer it as j-notation. For
example, a formula (X1 ∧ X2) ∨ (X1 ∧ X3) transforms to
(X1,1 ∧ X2,1) ∨ (X1,2 ∧ X3,1)

Let $(s, φ) be a random function, which declares shares
for each trustee p ∈ P for s ∈ S and a monotone formula φ,
that is defined as follows (we assume that φ is represented in
j-notation):

– $(s′, X p, j ) assigns the share s′ to trustee p ∈ P , such
that sp, j := s′;

– $(s′,∨(φ1, . . . , φn)) = ∪
1≤i≤n

$(s, φi );

– $(s,∧(φ1, . . . , φn)) = ∪
1≤i≤n

$(si , φi ), where the si are

chosen uniformly from S, such that s = (
∑n

i=1 si )
(mod q).

It is then possible to show that for every monotone access
structure B, the SS scheme defined by $(s, φ) satisfies the
definition of a secure generalized SS scheme.

Theorem 1 LetB be a monotone access structure on a setP ,
φ ∈ F(B) such that it is represented in j-notaition and con-
tains only operators ∧ and ∨, and let s be a secret from Zq .
The SS scheme determined by $(s, φ) is a secure generalized
SS scheme for B.

Finally, we note that it is shown in [6] that there are access
structures, which cannot be realized without giving multiple
(or extra large) shares to some trustee.

Theorem 2 There exist access structures for which any gen-
eralized SS scheme must give some trustee shares which are
from a domain larger than that of the secret.

See [6] for the proofs of Theorems 1 and 2.
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4 Advanced SS scheme

4.1 General idea

As it is noted in [6], that we are unable to realize most mono-
tone access structures with a standard SS scheme. However,
one can modify the structures that can be realized efficiently,
such that each trustee holds only one secret value, which we
refer as a master key.With the use of the master key, a trustee
is able to calculate all required shares.

We define the scheme with the use of the roles as defined
above.

Let us begin with an illustrative example. Assume that a
dealer wants to share a secret s ∈ Zq between trustees Alice
(A), Bob (B), Charlie (C), and David (D) according to the
following access formula:

((XA,1 ∧ XB,1) ∨ (XB,2 ∧ XC,1) ∨ (XC,2 ∧ XD,1)), (3)

where X p, j is a Boolean variable that represents a trustee p
and appeared j th time in the formula. Let us introduce an
address for each variable as its position in the formula as
follows:

((
0

XA,1 ∧ 1
XB,1) ∨ (

2
XB,2 ∧ 3

XC,1) ∨ (
4

XC,2 ∧ 5
XD,1)) (4)

Thus, XA,1.address = 0, XB,1.address = 1, XB,2.address =
2, and so on.

To share a secret, the dealer first gives each trustee p ∈
{A, B,C, D} a value mk p, which is chosen uniformly at ran-
dom from some domainK. Next we refer to mk p as a master
key belonging to a trustee p.

Let us then assume that the dealer and trustees have access
to independent random oracles family {ROi : i ∈ Zq} with
an output domain in Zq . In order to generate a share that
corresponds to a variable X p, j , a trustee p has to query the
random oracle ROmk p with X p, j .address. For example, the
shares for the defined access formula are computed in this
way:

sA,1 = ROmkA(XA,1.address) = ROmkA(0),

sB,1 = ROmkB (XB,1.address) = ROmkB (1),

sB,2 = ROmkB (XB,2.address) = ROmkB (2),

sC,1 = ROmkC (XC,1.address) = ROmkC (3),

sC,2 = ROmkC (XC,2.address) = ROmkC (4),

sD,1 = ROmkD (XD,1.address) = ROmkD (5). (5)

Since each random oracle is independent, every share is a
random value from Zq . As a result, a sum of shares, e.g.
s′ := (sA,1 + sB,2)(mod q), is also a uniformly random
variable from Zq . To make it possible to reconstruct a secret

s by trustees A and B, we add a publicly known value y1 to
this bracket, such that (y1 + s′)(mod q) = s.

Consequently, we modify our access formula into the fol-
lowing form:

((
0

XA,1 ∧ 1
XB,1 ∧Y1) ∨ (

2
XB,2 ∧ 3

XC,3 ∧Y2) ∨ (
4

XC,2 ∧ 5
XD,1 ∧Y3)),

(6)

where Yi are Boolean variables that correspond to fictitious
trustees, whose shares yi are considered to be publicly known
to every actual trustee. The value of yi is computed in such
a way that a reconstruction of secret becomes possible. We
note that yi is computed by the dealer, since he knows all the
master keys.

Below we present our scheme in a more formal and effi-
cient way.

4.2 Formal construction

Let n be a security parameter, Fq = { fk : k ∈ K} be a PRF
family, where q ≥ 2n and fk : Zq → Zq with |K| = q. Here
we chose fk : D → E with D = Zq , but one can choose
another domain. Note that E = Zq , so we are able to sum the
shares in Zq . Let Hq be a family of all functions Zq → Zq .
Let l = poly(n) be the maximum size of monotone formula
that we can use efficiently and let l ′ := l/2. Hereby the size
of themonotone formula is the number of times that variables
occur in the formula.

The roles for the scheme (dealer, trustees, and party) are
defined in the previous subsection.

First, we define a modifying function gs(φ), where φ is
an access formula, whose size is less than l ′ + 1 and it is
written in j-notation, and s ∈ Zq . Let X p, j be a variable,
which represents a trustee p and it is appeared j th time in
the formula. Let X p, j .address represents the position of the
variable inφ. Letmk p ∈ K be the value of p’smaster key.We
denote Yi as a variable that corresponds to a fictitious trustee
and yi as the value of his share. We use φi as subformula.
Since every formula can be written in the following form:

◦(φ1, φ2, . . . , φ j , X p1,k1 , X p2,k2 , . . . X pt ,kt ), (7)

where ◦ stands for either ∧ or ∨.
Let is introduce a global counter α, which is initialized

with 1. There are three separate cases to look at:

– gs(X p1,k1 ∧ · · ·∧ X pt ,kt ) = (X p1,k1 ∧ · · ·∧ X pt ,kt ∧Yα),
where t ≥ 1 and yi = s − fmk p1

(X p1,k1 .address) −
· · · − fmk pt

(X pt ,kt .address)(mod q), and the counter α

is incremented α := α + 1.
– gs(X p1,k1 ∧ · · · ∧ X pt ,kt ∧ φ1 ∧ · · · ∧ φ j ) = (X p1,k1 ∧

· · · ∧ X pt ,kt ∧ gs1(φ1) ∧ · · · ∧ gs j (φ j )), where j ≥ 1,
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φi = ∨(·) with at least one operator, si
$← Zq for i ∈

{1, . . . , j − 1} and s j := s − fmk p1
(X p1,k1 .address) −

. . . − fmk pt
(X pt ,kt .address) − s1 − · · · − s j−1 (mod q).

– gs(X p1,k1 ∨· · ·∨ X pt ,kt ∨φ1∨· · ·∨φ j ) = (gs(X p1,k1)∨
· · · ∨ gs(X pt ,kt ) ∨ gs(φ1) ∨ gs(φ2) ∨ · · · ∨ gs(φ j )).

Let us clarify that the address of a variable is the number of
the position of that variable in the formula φ (conventionally,
we count from left to right).

Now we can describe our advanced SS scheme. To share
a secret the dealer should follow these steps:

1. Choose a secret s
$← Zq .

2. Choose a master key for each trustee in the union P
uniformly at random fromK (for each p ∈ P : mk p

$←
K).

3. Choose a monotone formula φ of size less or equal to
l ′, which represents an access structure.

4. Evaluate φ′ = gs(φ).
5. Publish φ′, so that the values yi are available for every-

one.

To reconstruct a secret a party should follow these steps:

1. Each trustee p in the party has to evaluate their shares:
sp, j = fmk p (X p, j .address).

2. Using the corresponding shares and public values yi , a
verified party can calculate the secret s according to the
way it is shared.

Definition 12 Given a setP and a monotone access structure
B onP , an advanced SS scheme forB is a method of dividing
a secret s into shares sp, j such that the following statements
hold true:

– When B ∈ B, the secret s can be reconstructed from the
shares ∪

p∈B ∪
j
sp, j and public values y1, . . . , yt .

– When B /∈ B, the secret s can be reconstructed only with
a negligible probability from the shares ∪

p∈B ∪
j
sp, j and

public values y1, . . . , yt .

4.3 Security proof

Here we introduce a notion of the security model that is used
for our scheme, which is similar to the Selective-Id model
[10–12].

Definition 13 (Selective-Id model for advanced SS scheme)
The following procedure is called Selective-Id model for
advanced SS scheme.

Init: The adversary chooses an access structureBwith
a corresponding formula φ and gives it to the
challenger.

Phase 1: The adversary declares the set of trustees γ ,
which does not satisfy the formula φ and obtains
master keys of trustees from γ from the chal-
lenger.

Challenge: The adversary submits two secrets s0 and s1. The
challenger flips a fair coin b and shares the secret
sb.

Phase 2: The challenger gives to the adversary φ′ =
gsb(φ) and corresponding values y1, . . . , y j .

Guess: The adversary outputs a guess b′ of b.

The advantage of an adversary in this game is defined as
|Pr[b′ = b] − 1

2 |.
Theorem 3 Consider the advanced SS scheme for a set of
parties P based on PRF family Fq = { fk : Zq → Zq}k∈K
with |K| = q. The advantage ε′ in the Selective-Id model
of any classical adversary A that runs in time ξ ′ satisfies
the inequality ε′ ≤ InSecPRF(Fq , ξ) · |P|, where ξ ′ ≈ ξ

assuming that time needed for sampling no more than |P| +
l ′ random variables is negligible, where l ′ is the maximum
size of the formula which can be efficiently processed by the
advanced SS scheme.

Proof First of all, one can easily notice that the reconstruction
of the secret happens the same way as in the standard SS
scheme. We also note that if B /∈ B (i.e. B does not satisfy
the formula φ), then B ∪ (∪

i
Yi ) does not satisfy the access

structure defined by φ′ = gs(φ) as X p, j ∧ 1 = X p, j .
Consider, a modification of the advanced SS scheme

(modified advanced SS scheme), where PRF family Fq is
replaced with a set of random oracles. One can see that this
scheme is exactly the standard SS scheme based on formula
φ′ = gs(φ). So there is no chance for an adversary to com-
pute the secret, which possesses the shares from B /∈ B.

Now suppose that there exists a probabilistic polynomial
time adversary A, which has an advantage ε′ in Selective-Id
model for advanced SS scheme. Without loss of generality,
we assume that it’s probability of guessing a correct value is
Pr[b′ = b] = 1/2 + ε′. Then we show that it is possible to
distinguish the PRF family Fq from truly random function
family with a probability at least ε′/|P|. To show this we
construct an oracle machineMA that has an advantage ε′ in
|P|-pseudorandom function family game (see Algorithm 1).
Let us calculate the probabilities to obtain v′ = 0 and v′ = 1
(v′ is defined in Algorithm 1).

Suppose that the challenge Ω is initialised with func-
tions from the family Fq . In this case, the situation for the
adversary is completely the same as in the case of the (non-
modified) advanced SS scheme. Therefore, the adversary
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Algorithm 1: MA
Input : Security parameter n, function family Fq ,

|P|-pseudorandom function family challenge
Ω = {ωp1 , . . . , ωpN }, where {p1, . . . , pN } = P .

Output: A guess v′.
The adversary A declares an access structure, a corresponding
formula φ, and a set of trustees γ , which does not satisfy the
formula φ.
A queries the master keys of trustees from γ .
Generate a master key uniformly at random for each trustee in γ

and response to the adversary with those keys.
The adversary submits two secrets s0 and s1.
Flip a fair coin b and share the secret sb according to the
advanced SS scheme, but instead of generating master keys for
trustees in P \ γ and calculating the shares with fk ∈ Fq , use an
oracle ωp from Ω for trustee p ∈ P \ γ and calculate the shares
as sp. j = ωp(X p. j .address). We call this modification g′

s(φ).
Give to the adversary φ′ = g′

sb (φ) and corresponding values
y1, . . . , y j .
The adversary outputs a guess b′ of b.
if b′ = b then

return v′ = 1
else

return v′ = 0

correctly guesses the value b′ with an advantage ε′ or what
is the same with probability 1

2 + ε′.
If the challenge Ω is initialized with functions from the

family Hq , then the shares of the trustees fromP \γ are cho-
sen uniformly at random. And the situation is the same as in
the standard SS scheme. Since γ does not satisfy the formula,
it is required to obtain at least onemore share to get the secret,
but all the remaining shares are chosen uniformly at random.
Therefore, according to the Theorem 1 the adversary has no
information about the secret in this situation. Thus, in this
case the adversary can only randomly guess the value b, so
b′ is correctly guessed with a probability 1

2 .
Let v = 0 corresponds to the challenge Ω initialized with

functions from the family Hq and v = 1 to the challenge Ω

initialized with functions from the pseudorandom function
family. Then the overall advantage in the |P|-pseudorandom
game is |Pr[v′ = 1|v = 0]−Pr[v′ = 1|v = 1]| = | 12 − ( 12 +
ε′)| = ε′.

By the hybrid argument [13] we can distinguish a pseudo-
random function family with probability ε′/(|P|). In order
to apply the hybrid argument consider two distributions,

D1 = {D1.i = fk : k $← K, 1 ≤ i ≤ |P|, fk ∈ Fq}, (8)

and

D2 = {D2.i = h
$← Hq : 1 ≤ i ≤ |P|}. (9)

Define a sequence of hybrid distributions D1 = T0, T1, . . . ,

T|P | = D2, where Ti = {Ti . j = h
$← Hq : 1 ≤ j ≤

i} ∪ {Ti . j = fk : k $← K, i < j ≤ |P|, fk ∈ Fq}. So we
have AdvD1,D2(MA) = ε′. Let us remind that

AdvTi ,Ti+1(MA) = |Pr[x $← Ti : MA(x) = 1] −
−Pr[x $← Ti+1 : MA(x) = 1]| (10)

By the triangle inequality, it is clear that

AdvD1,D2(M) ≤
|P |−1∑

i=0

AdvTi ,Ti+1(M)

Thus, there exists some η, such that 0 ≤ η < |P| and

AdvTη,Tη+1(M) ≥ AdvD1,D2(M)/|P| = ε′/|P|. (11)

Suppose that we have a sample ω
$← Fq or ω

$← Hq . Let

us construct a distribution T ′ = {Ti $← Hq : 1 ≤ i ≤
η} ∪ {Tη+1 = ω} ∪ {Ti ← fk : k

$← K, η + 1 < i ≤
|P|, fk ∈ Fq}. If ω

$← Fq then T ′ is distributed the same as
Tη, otherwise it is distributed as Tη+1. Thus, we can distin-
guish samples from Fq and Hq with probability ε′/|P|.

Finally, we obtain: ε′ ≤ InSecPRF(Fq , ξ)·|P|, where ξ is a
total time of runningMA plus initialization of an appropriate
hybrid. Neglegting the time needed for preparing data for A
and the hybrid T ′ we obtain ξ ≈ ξ ′. ��

5 Advanced ABE scheme

5.1 Formal construction

Consider a group of users, where each user posses a list of
attributes. Let P be a set of all existing attributes. Let us call
a community a subgroup of users, who possess a particular
attribute p ∈ P . In what follows, we refer to the community
p as a subgroup of users that possess an attribute p. We note
that a user can belong to several communities if he has more
than one attribute.

Let n ∈ N be a security parameter, G be a multiplicative
group of a prime order q, where 2n < q < 2n+1 in which
DDH assumption is considered to be true, g is a generator
of that group, Hq is a family of all functions Zq → Zq , and
Fq = { fk : Zq → Zq}k∈G is a PRF family. We construct the
advanced ABE scheme based on the advanced SS scheme in
the following form.

Setup: Each community p in the
universe P generates their

secret key sk p
$← Zq and a

correspong public key pk =
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gsk p . Then the public key
is shared among the whole
group of users. So that the
set of public keys PK =
{pk p = gsk p : p ∈ P}
is assumed to be known to
every user in the group.

Encryption (M, PK , φ,Fq): To encrypt a message M ∈
Zq under public keys PK
and formula φ, which repre-
sents some monotone access
structure, one generates s

$←
Zq , e

$← Zq and computes
the ciphertext in the follow-
ing form E = {E ′ = M +
s(mod q), ge, φ′ = gs(φ), y1,
. . . , yt }, where gs(·), y1,
. . . , yt come from the
advanced SS scheme based
on PRF family Fq and the
corresponding master keys
are calculated as mk p =
gsk p ·e.

Decryption (E, SK , Attr ,Fq):, where SK is a set of all
secret keys known to a con-
crete user and Attr is a set
of attributes he posseses. For
each sk p ∈ SK , a user calcu-
lates the master key mk p =
(ge)sk p . Then if Attr satis-
fies the access structure, then
the secret s can be recon-
structedusingMK = {mk p},
φ′ and y1, . . . , yt . The mes-
sage is obtained from E ′ as
M = E ′ − s(mod q).

5.2 Security proof

In order to provide a formal security analysis of the advanced
ABE scheme, we introduce the following definition.

Definition 14 (Attribute-based Selective-Set model) The fol-
lowing procedure is called attribute-based Selective-Set
model:

Init: The adversary chooses an access structure and
a corresponding formula φ and sends φ to the
challenger.

Phase 1: The adversary declares the set of communities γ ,
which does not satisfy the formula φ and obtains
secret keys of communities fromγ from the chal-
lenger.

Challenge: The adversary submits two secrets s0 and s1. The

challenger flips a fair coin b and encrypts m
$←

Zq : E ′ = m + sb(mod q).
Phase 2: The challenger gives to the adversary public keys

of all communities and E , which is a ciphertext
of m generated according to the advanced ABE
scheme.

Guess: The adversary outputs a guess b′ of b.

The advantage of an adversary in this game is defined as
|Pr[b′ = b] − 1

2 |.
Below we prove that the security of our scheme in the

attribute-based Selective-Set model reduces to the hardness
of the DDH challenge and pseudorandomness of the function
family.

Theorem 4 Consider the advanced ABE scheme based on an
PRF familyFq and set of communitiesP . The advantage ε′ in
the the Attribute-based Selective-Set model game of any clas-
sical adversary A that runs in time ξ ′ satisfies the following
inequality: ε′ ≤ InSecDDH(G, ξ)·|P|+InSecPRF(Fq,Q̧)·|P|.
With ξ ≈ ξ ′ ≈ ξ̃ assuming that time required for sampling
no more than 3|P|+ l ′ random variables is negligible, where
l ′ is the maximum size of the formula which can be efficiently
processed by the advanced ABE scheme.

Proof First, suppose that the master keys are replaced with
uniformly random keys. In this case, let us denote the advan-
tage in breaking the modified advanced ABE protocol in the
attribute-based Selective-Set model as ε̃. If (ε′ − ε̃) is not
negligible, then we can construct a machine that breaks |P|-
DDH challenge with an advantage of at least (ε′ − ε̃).

We assume that ε̃ < ε′, since we limit the value of ε̃ by
the pseudoradnomnes property and if ε′ is less than ε̃ then
we can limit them both.

Let us denote a |P|-DDHchallengeΩ = {wp1 , . . . , wpN },
whereN = |P|, {p1, . . . , pN } = P and wpi is a tuple either
(ga, gbi , ga·bi ) or (ga, gbi , gzi ). We use wi . j to denote the
j th element of the tuple. To prove the theorem, consider the
following algorithm.

If ωp.3 is sampled uniformly at random (v = 0), then
the master keys are chosen uniformly at random. Hence the
adversary has no information about themaster keys he did not
query. Remind that we denote the advantage of the adversary
in this situation as ε̃. Otherwise (v = 1) the situation is the
same as in the original ABE protocol. Thus, we have the
overall advantage in the |P|-DDH game as follows:

InSec|P |−DDH(G, ξP )≥|Pr[v′ = 1|v = 0] − Pr[v′ = 1|v = 1]|
= |(1

2
+ ε̃) − (

1

2
+ ε′)| = ε′ − ε̃, (12)

where ξP is a running time of Algorithm 2. Neglegting the
time for preparing data for A we obtain ξP ≈ ξ ′.
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Algorithm 2: MA
Input : Security parameter n, |P|-DDH challenge Ω .
Output: A guess v′.
The adversaryA chooses an access structure and a corresponding
formula φ and sends it to the challenger.
A declares the set of communities γ , which does not satisfy the
formula φ, whose secret keys he wishes to get and queries them.
Generate a secret key for each community in γ and response to
the adversary with those keys.
The adversary submits two secrets s0 and s1.

Flip a fair coin b and encrypt a message m
$← Zq according to

the advanced ABE scheme with s = sb, but instead of secret keys
for communities in P \ γ use sample ωp from Ω for community
p ∈ P \ γ . Take ωp.2 as his public key and ωp.3 as his master
key. We call this modification g′

s(F).
Give to the adversary
E = {E ′ = m + s(mod q), ω1,1, φ

′ = g′
s(φ), y1, . . . , y j }.

The adversary outputs a guess b′ of b.
if b′ = b then

return v′ = 1
else

return v′ = 0

In analogy to the proof of Theorem 3, one can see that due
to the hybrid argument

InSecDDH(G, ξ) ≥ (ε′ − ε̃)/|P|,

where ξ ≈ ξP neglegting the time, needed to prepare an
appropriate hybrid.

Finally, we limit the value of ε̃. Due to the fact the master
keys are chosen uniformly at random, the security of such a
scheme reduces to the security of the advanced SS scheme
straightforwardly. Therefore, according to Theorem 3: ε̃ ≤
InSecPRF(Fq, ξ̃ ) · |P|, with ξ̃ ≈ ξP .

Thus, we arrive to the final result:

ε′ ≤ InSecDDH(G, ξ) · |P| + InSecPRF(Fq, ξ̃ ) · |P|,

with ξ ′ ≈ ξ ≈ ξ̃ . ��

6 Efficiency estimation for advanced ABE
scheme

Here we analyze the efficiency of the proposed advanced
ABE scheme in terms of sizes of ciphertext, public parame-
ters, and private key, and the computation time for decryption
and encryption.

Consider a ciphertext E = {E ′ = m+s(mod q), ge, φ′ =
gs(φ), y1, . . . , y j } and a plaintext PT = {m, φ}. We note
that it is required to publish the rules of the access structure,
hence we assume that the plaintext is accomplished by the
formula φ. One can see that φ′ is no more than twice bigger
than φ. This is due to the fact that the number of additional

Boolean variables corresponded to fictitious trustees (com-
munities) can not exceed the number of Boolean variables
corresponded to the actual trustees (communities). We then
note that φ and φ′ make a major contribution into the size of
PT and E . Hence, the overhead of the ciphertext compared
to plaintext is of the size linear in the size of the formula φ.

The public parameters of the system are of size linear
in the number of existing attributes. The private key of the
community consists of a single value from Zq .

The encryption procedure generates two random values,
performs one addition in Zq and one exponentiation in the
group G, l calls to functions from Fq , where l denotes the
size of the formula φ. The modification of the formula φ into
φ′ is performed in the linear time with the usage of syntax
tree.

Thus, the amount of the communities in the scheme is
|P|. The decryption procedure needs to perform at most |P|
exponentiations, l ′ sums and pseudorandom function calls,
where l ′ is the size of formula φ′. Finally, one subtraction is
required.

7 Conclusion

Here we summarize the main results of our work. First, we
have presented the modification of the SS scheme, which
allows a user to store only one value to calculate the cor-
responding shares. Based on this modification, we have
proposed the advanced ABE protocol. We have provided the
security and efficiency analysis of the proposed scheme.

One of the most significant impacts of this paper is rejec-
tion of bilinear mappings, which evidently increases the
efficiency of the proposed scheme and allows to dimamicaly
add new attributes.

One can see that the proposedABEscheme is not collusion
resistant as well as some other ABE schemes (e.g. see [14]).
We note, that all known collusion resistant schemes are based
on using of trusted centers which are absent in our scheme.

There are several ways to improve the proposed scheme.
The first one is based on adding new logical elements, e.g.
threshold, so that the formula φ can be constructed more
efficiently. The second question is related to modification of
this protocol with respect to the use of other key exchange
schemes.
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