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Abstract
We have utilized two distinct models to identify the obscure or new sort of malware in this paper. GoogleNet and ResNet
models are researched and tried which belong to two different platforms i.e. ResNet belongs to Microsoft and GoogleNet
is the intellectual property of Google. Two sorts of datasets are utilized for training and validation the models. One of the
dataset was downloaded from Microsoft which is the combination of 10,868 records and these records are binary records.
These records are additionally isolated in nine diverse classes. Second dataset is considerate dataset and it contains 3000
benign files. The said datasets were initially in the form of EXE files and were changed over into opcode, after that changed
over into images. We got a testing accuracy of 74.5% on GoogleNet and 88.36% precision on ResNet.

Keywords Malware detection ·Malware classification · Opcode · ResNet · GoogleNet

1 Introduction

Malicious software which is additionally alluded as mal-
ware is the major threat for computer users. The principal
focal point of malware is, to accumulate the individual’s
data without the consideration of clients and to exasper-
ate the PC activities which makes issues for clients. There
are numerous sorts of malware, for example, Trojan-horse,
Virus, Rootkit, Backdoor, Worms, Spyware, Adware and so
on. Yearly reports from antivirus organizations demonstrate
that a large number of malicious software are made day by
day.Attackers aremaking new software and the new software
turn out to be more advanced that they could never be recog-
nized by the traditional discovery procedures, for example,
signature-based recognition and behavior-based recognition.

Signature-based identification looks for determined bytes
groupings into an object so it can recognize extraordinarily
a specific kind of a malicious software. The main disadvan-
tage is that it can’t identify zero-daymalicious software since
the new software signatures aren’t stored in the database.
Behavior-based recognition was created to fundamentally
conquer the impediment of the signature-based method, in
the way that it filters the framework’s behavior to recognize
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the abnormal exercises rather than looking for the signature
of the malware. The constraint of the behavior-based pro-
cedure is that it influences the execution time of the system
and more storage is required. This method focuses on the
conduct of the program when it executes. The program is
marked as benign if it executes normally, otherwise, it is set
apart as a malware. By breaking down this meaning of the
behavior-based method, we can specifically presume that the
disadvantage of this procedure is the generation of numerous
false positives and false negatives, considering the way that
a legitimate program can be slammed and be set apart as a
malware or malware can execute as a normal program.

1.1 Motivation

Malware is developing in the enormous number consistently.
Image pattern recognition procedure can play an important
role to detect and prevent threats of malware so we used this
methodology to enhance precision and execution. Image pat-
tern recognition method dissects malicious code into images
which are gray-scale images and these gray-scale images are
created through opcode image strategy. Previous research by
Nataraj, et al. [1] proposed a strategy of gray-scale images
for malware classification. Image preparing procedures are
generally utilized for object pattern recognition, for example,
Taobao is a well known online shopping site in China which
discovers the item utilizing image recognition system. In our
investigation, we changed from a twofold code to gray-scale
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pictures for perceivingmalicious software which protects the
similarity variation pictures. Twomodels that are GoogleNet
model and ResNet model were looked to accomplish better
execution regarding velocity and precision.

1.2 Structure of paper

Section 1 of this paper talks about the presentation, inspi-
ration and fundamental commitments of this work. Sec-
tion 2 talks aboutmalware detection procedures, examination
methodswhichwere previously bydifferent researchers. Sec-
tion 3 gives a concise review to the approach of changing over
.exe files into pictures. Section 4 proposes a malware identi-
fication procedure, likewise portrays the execution and trial
brings about terms of speed and precision. Finally, this paper
is concluded with Section 5.

2 Background

2.1 Deep Learning

Current accomplishments in deep learning innovative work
draw in individual’s consideration. Google released Tensor-
Flow in 2015 [2], a structure of acknowledging deep learning.
All the more particularly, deep learning is a counterfeit neu-
ral network system, in which numerous layers of neurons are
connected to each other with various weights and enactment
capacities to take in the shrouded connection among inputs
and outputs. Instinctively, input information is encouraged to
the primary layer that produces diverse mixes of the informa-
tion [3]. These combinations, after the activation function,
are fed to the second layer, and so on. Under the above
procedures, different combinations of the outputs from the
previous layer can be seen as a different representation of fea-
tures. The weights on joins between layers are balanced by in
reverse propagation, contingent upon the separation between
obviously labeled output. Deep learning approach could be
viewed as a neural system with an expansive layer. After
the above learning process by means of numerous layers, we
can determine a superior comprehension and portrayal of rec-
ognizable features, improving the recognition precision [4].
Additionally, see that the adequacy of deep learning incre-
ments by the systemmeasure. Themost understood profound
systems are convolutional neural systems (CNN) in addi-
tion to the Neural Network system. The portrayal of CNN
incorporates AlexNet, VGG,GoogleNet, and ResNet [5]. All
the more particularly, CNN is made out of concealed layers,
completely associated layers, convolution layers, and pool-
ing layers. The shrouded layers are utilized to expand the
many-sided quality of the model. In the event that a similar
number of neural is related with the information picture, the

number of parameters can be altogether diminished, receiv-
ing to the capacity structure much legitimately.

2.2 Malware analysis

2.2.1 Static analysis

Analysis of the bad code segment ormalicious characteristics
when code is not executing is called static analysis [6–8].
There are many patterns to detect the static malware e.g. n-
grams, string signature, control flow graph, bytes-sequence
etc.

2.2.2 Dynamic analysis

Analysis of the bad code or malicious characters when soft-
ware is running environment i.e. emulator, Virtual Machine,
simulator etc. is called dynamic analysis. Dynamic analy-
sis approach applied for monitoring and tracking system.
Dynamic analysis is a better approach as compared to static
analysis but dynamic analysis consumes more resources e.g.
time and memory and has scalability issues.

2.2.3 Statistical and content analysis

This technique is based on a verity of techniques e.g. n-gram,
n-perms, hash based, file structure.

2.2.4 Hybrid analysis

Analysis of the bad code or malicious characters while per-
forming static anddynamic analysis in anofflinemode [9,10].
It is also useful for the android application. In the first step of
this method, the static analysis takes the image of the appli-
cations into small pieces which are also known as binary
code and search suspicious patterns among the binary codes.
In the second step, the code is executed by dynamic analy-
sis in an Android emulator and logs its system calls. There
are many patterns to detect the static malwares e.g. n-grams,
string signature, control flow graph, bytes-sequence etc.

2.3 Related work

2.3.1 Deep learning-basedmalware detection

Deep learning once it seemed as the cure for the above
problem. However, a preprocessing step, such as feature
engineering, is still needed before the model is learned. Fur-
thermore, the dataset for training the model usually cannot
reflect real-worldmalware accurately. For example, [11] pro-
posed amalware detection inwhich theWindowsAPI inquiry
generates a corresponding ID, which is treated as the input of
the deep learning architecture (eg. stack of Auto-Encoders),
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and then it fine-tunes the model parameters. [12] is a method
that it works on features extracting first, such as contextual
byte features, PE import features, string 2d histogram fea-
tures, and PE metadata features. Then, the extracted features
are fed into the deep neural network (DNN). With the train-
ing of two hidden layers, it is categorized. [13] uses static
analysis to extract features such as required permission, sen-
sitive API, and also uses dynamic analysis to extract features
such as “actiondex class load”, “action recurrent” and “action
service-start”, from 500 samples for about 200 features as the
input for the deep belief network (DBN). There is a similarity
between the execution logic of Android malicious apps and
the order of functions being called. Thus, in addition to the
aforementioned solutions that apply DNN to malware anal-
ysis based on “exploit attack” and “privileged escalation”,
another category of malware detection relies on n-gram anal-
ysis on byte-code or op-code. For example, [14] and [15] first
calculate the n-grams on the binary byte-code and then per-
form themalware detection based on k nearest neighbor. [16]
proposes to do reverse-engineering first and then analyze op-
code. In addition, onemore category of themalware detection
relies on transforming malware into the images. For exam-
ple, [17] proposes to first transform binary byte-code into the
gray-scale image and then applies pattern recognition to the
gray-scale image. All of the above methods achieve a certain
level of detection accuracy. However, as mentioned in the
introduction, the number of malware increased dramatically.
Even worse, more and more anti-debugging techniques are
discovered. The size of the dataset used for training themodel
also has significant impacts on the detection accuracy and the
computing efficiency in the training process. Here, we partic-
ularly note that despite the detection accuracy of the n-gram
approach, Ngram approach consumes substantial computing
resources and time for handling the dynamic growth of the
model parameters required, implying the impracticality [18]
However, if we have limited computing resources and time,
CNN is able to handle the explosive data growth because the
increased number of parameters does not imply the growth
of computing resource and time required. Recently, [10] also
proposes deep learning-based malware detection, where the
sequences of the op-code are encoded as one-hot vectors
for the input of CNN. However, this method needs to dis-
assemble the Android apps via reverse-engineering tools for
deriving small source code from classes.dex, and therefore
cannot handlemalware that with encryption and obfuscation.

2.3.2 Machine learning-basedmalware detection

Various machine learning algorithms are proposed for clas-
sification and detecting unknown codes into their families,
for instance, Naive Bayes, Support Vector Machine, Cluster-
ing, and Association Rule. In this section, we will discuss
a few of the good researchers who have worked in the

field of malware detection and classification. M. Damshenas
et al. [19] proposed a technique for detecting malware in
mobile devices. This technique is comprising a server ana-
lyzer and a lightweight client agent. The server analyzer
generates a signature for every application. The proposed
technique is capable of generating standardized mobile mal-
ware signatures based on their behavior and this is the main
contribution of their research. It compares the generated sig-
nature and previously blacklist of malware signature. N.
Milosevic et al. [20] proposed the static analysis approach
to detect and analyze malicious behavior within the code in
Android apps. They use the machine learning approach to
detect the malware families, this is also signature based anti-
malware solution. They used ServiceVectorMachine (SVM)
for finding the accuracy, the results were 95.6

Siddiqui at al. [21] provided a technique for malware
detection. They used malware detection approaches by using
data mining on file features. They categorized into analysis
type, the file properties and the detection stages also used
variable length instruction sequence. They used the decision
tree and random forest algorithm for classification of themal-
ware.

Egele et al. [22] analyzes the behavior of malware. They
have designed the binary obfuscation methods, which trans-
form the malware binaries into self-compressed. They have
also designed a technique that uniquely identifies binary files
which restricted the reverse engineering.

Nataraj et al. [1] used image processing technique to
classify the malwares. They converted binary malware to
gray-scale images. The proposed method of Nataraj et al.
[1] represents executable binary files into gray-scale bitmap
images.

Kong et al. [23] build a model to classify the malware,
based on structural information. For the structural informa-
tion, theyuse the function call graph, this function extracts the
features of each malware sample. they used the discriminate
distance metric learning method which clusters the malware
samples belongs to the same family and also used assem-
ble of a classifier that classifies malware into their respective
families.

Tian et al [24,25] used the Weka [26] library to classify
theTrojansmalware by using frequency length function. This
is measured by the number of bytes in the executable code.
It is observed from their results that the malware family is
identified by frequency function and can be joined with other
features for classification of the malicious code.

Santos et al [27] used the semi-supervised learning for
unknownmalware detection. They used Learning with Local
and Global Consistency (LLGC) semi-supervised algorithm
for reducing the required number of instances while minting
the high precision and also determining the optimal num-
ber of labeled instances which affect the model’s accuracy.
Further, Santos et al, [28] proposed a collective learning
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technique to detect malicious code. It is a semi-supervised
learning type which presents the methodology for optimiza-
tion of the partially labeled data classification. To build
different machine learning classifiers, collective classifica-
tion algorithms are used with a set of unlabeled and labeled
instances.

Zolkipli et al. [29] used the security tools e.g., Honey-
Clients, Amun for analysis the behavior of malwares. They
analysed of the malware behavior of each sample by execut-
ing Cw-sandbox [30] and Anubis. The malware divided into
two families (i) Worms and (ii) Trojans. The main disadvan-
tage of this research is customization is not possible.

3 Environment setup and data preparation

3.1 Dataset

Datasets were downloaded from various sources. Malicious
software dataset (malware) was downloaded fromMicrosoft.
Similarly, we downloaded 3000 benign software’s from
open source websites. In the accompanying discussion, the
datasets are described in details.

3.1.1 Dataset fromMicrosoft Malware Classification
Challenge

The dataset which is collected from Microsoft contains 9
classes. 500GBof data incorporates 21741malware samples.
10868 of tests are utilized for preparing, and the rest of the
samples are utilized for testing.

a) Bytes Files: Byte files in Microsoft dataset include
10,868 training data and 10873 testing data. Each byte file
contains a hexadecimal representation of binary content.

b) Asm Files: Asm files in Microsoft dataset include
10,868 training data and 10873 tasting data. Each Asm file
extracted by the IDA dis-assembler tool and it contains meta-
datamanifest. This information includes assembly command
sequences, strings, function calls and so on.

c) Training Labels: MD5 Hash is the file name in the
actual program and this name is used as a training label. The
file of training label contains each MD5 hash and class of
malware which it maps to. No training labels were provided
for the test data input files.

d) Sample Submission:The sample submission file illus-
trates the valid submission format for 10,873 sample records.

e) Data Sample: The data sample file includes a preview
of the test and training data (Table 1).

3.1.2 Benign files

We gathered 3000 of clean coded files from various sources.

Table 1 Microsoft malware classification challenge dataset

No Family name No of samples

1 Ramnit 1541

2 Lollipop 2478

3 Kelihos_ver3 2942

4 Vundo 475

5 Simda 42

6 Tracur 751

7 Kelihos_ver1 398

8 Obfuscator.ACY 1128

9 Gatak 1013

Fig. 1 Overview architecture of Preparation Dataset using opcode

3.2 Data preparation technique

The accompanying strategy to process the information is pro-
posed in this paper.

3.2.1 Opcode to images

1) We utilized two tools to extract hidden code from binary
files.

a) PEID: This tool is utilized for static code
b) Poly Unpack: This tool is utilized for dynamic code

2) Decompile Opcode: We have decompiled Opcode suc-
cession from assembly code and after that change over
2-tuple opcode grouping.

3) Opcode Sequence: The binary image matrices are recon-
structed by these opcode sequences with their proba-
bilities and information gains.The matrix is shown in
Figure 1, each opcode sequences of length 2 can be
matched to one of the elements in the matrix according to
osi =< op j,opk >,as shown in def 3 , def.. The element
value val(osi | x j ) of the image matrix im(x j ) is calcu-
lated by the probabilities p(osi | x j ) and the information
gains w(os j ) of osi in binary x

val(osi |x j ) = p(osi |x j )w(os j ) (1)
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The probabilities p(osi | x j ) and information gains
w(osi ) are calculated by the frequencies f req(osi | x j ) of
the opcodes sequences of length 2 , as shown in Eq 2 and 3,
where p(osi | y1) be the probability of osi in the trainingmal-
ware binaries, p(osi ) be the probability of osi in the whole
training binaries, and p(y1) be the probability of training
malware binaries.

p(osi |x j ) = f req(osi |x j )
∑

ost Ex j f req(osi |x j ) (2)

w(osi ) = p(osi |x j ) log
(

p(osi |x j )
p(osi )p(yi )

)

(3)

1) Binary Image Re-construction and Enhancement: binary
opcode frequency constructs images. Histogram nor-
malization, dilation, and erosion techniques are used to
enhance the Opcode sequences.

To improve the complexity between malware variation pic-
tures and benign pictures, we utilize histogram standardiza-
tion. enlargement and disintegration techniques to upgrade
the binary pictures. Through picture upgrade, the difference
of these uncommon opcode pictures would be improved.

Let valenhance(osi | x j ) be the pixel-value of the enhanced
image, the histogram normalization method is according to
the equation 4

valenhance(osi |x j ) = α
val(osi |x j )

max(val(osi |x j ))255 (4)

In this strategy of data preparation, we can without much
of a stretch recognize malware and favorable records by
visual investigation as appeared in Figure 1.

3.3 Environmental settings

We have used Ubuntu 64bit operating system and RAM of
8 GB. To play out the experiment we used Python program-
ming language with Python libraries, for example, Tensor
Flow, Docker Server, Anaconda. The Tensor Flow Library
utilizes the architecture CNN.

3.4 Proposedmodel

This segment is separated into two parts. Initial part is about
information planning or processing the data and the second
part is tied inwith training/testing themodel. Following steps
describe the model briefly, followed by Figure 2:

1) Download malware and benign softwares from open
source databases and then convert into assembly code

2) Convert assembly code to 2-tuble code
3) Opcode sequence generate the matrix

Fig. 2 Architecture of Proposed Model i.e. from data preparation to
prediction

4) Generate images from binary code matrix
5) For the training and testing, divide dataset into two parts

i.e. training and testing phases
6) Use tensor flowmodels i.e. GoogleNet andResNetwhich

hold the features and labels
7) Implement the relevant model
8) Optimize the model to reduce RMSE
9) Prediction on test dataset

Further, in our design, we partitioned our model in two
stages, that is training and detection. For the preparation
and the discovery of malicious code, we utilized CNN,
as appeared in Figure 3. The outputs of the information
arrangement were “images”. Pictures have paired marks
that is malware or benign. We utilized CNN demonstrate
which extricate the highlights naturally. The recognition
stage appears in Figure 3. In other words, .exe (executable)
files were converted into images and the classifier is used to
detect the malicious code.

In the followings, we explain the procedure of malware
detectionmethodology. First of all, we collected the software
and they are classified as benign andmalware.We decompile
the software to the assembly files, finally, we constructed
gray-scale images. We further applied CNN based models
i.e. GoogleNet model and ResNet model to detect malware
and compute the accuracy. The following sections describe
in both models.
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Fig. 3 Implementation of deep learning

3.5 Malware detection by GoogleNet model

The GoogleNet shows work by Google association in 2014,
which contains 22 concealed layers. We have utilized the
GoogleNet CNN system since it is solid and it can be con-
nected to the whole picture at once and after that, we expect
n effective feature extraction. However the model evolving
in Inception v2, v3, v4. In this approach, we used inception
v4 model. We also found that two approaches might be used
to malware detection.

• Since the traditional filter size of CNN is 3*3 or 5*5, the
uncorrelated byte-code might become correlated when
we transform them into images. we replaced a few filters
with a smaller Perceptron layer with amixture of 1x1 and
3x3 convolutions. In this way, we reduce the dimensions
inside the inception module.

• Pooling is a common approach in the CNN model to
reduce the computation overhead significantly in tradi-
tional image recognition. The detection engine in our
original research inherently uses pooling to achieve the
speedup. However, Gray scale images are not natural
images; instead, they are formed from EXE source code.

• ReLU was used rather than non-linearity work since it
is quicker than sigmoid or tanh and helps in vanishing
inclination issue which emerges in lower layers of the
system.

• It takes a channel and a walk of a similar length at that
point applies it to the information volume and outputs
the most extreme number in sub-district that the channel

convenes around. The intuition behind this was the fact
that our malware image is a gray-scale and the layers like
average max pooling may not help much because there is
a lot of dark space in the image and they don’t contribute
much in the model.

3.6 Malware detection by ResNet model

ResNet is owned byMicrosoft and it was introduced in 2015.
Latest ResNet contains 152 hidden layers. ResNet convolu-
tional neural networks are used in our experiments and the
results show that it is accurate as compare to GoogleNet and
it can be applied to all the images at a time. ResNet model
is a good choice for extracting the features from images.
The dubbing and innovation cost is increased in terms of
time and memory but this also a fact that it gives us a high
accuracy. Here dubbingmeans the transfer or copying of pre-
viously recorded structure of the same or a different type. In
this experiment, we applied the Tensor Flow ResNet Library
which is easy to deploy and achieve more accuracy than
GoogleNet.

4 Implementation and evaluation

We run our experiments on openly sourced datasets from
Microsoft Malware Classification Challenge. The images
contained Malware and benign samples. We adopted the
Deep Neural network model i.e. GoogleNet and ResNet
model for comparison. It was observed that ResNet model
has tremendous performance as compare to the GoogleNet
model. We are tempted to believe that, if the data sets were
larger than we have experimented, ResNet152 would have
performed better. However, ResNet (18, 50 and 101) really
performed better in terms of prediction accuracy which is
observed in Table 2 and Figures 4, 5, 6, 7 and 8. It how-
ever performed poorly in terms of running time on malware
dataset which is observed in Table 2 and Figure 9. Be that as
it may, when just a restricted measure of preparing informa-
tion is accessible, all the more capable models are required
to accomplish an improved learning capacity. It is along
these lines of incredible essentially to think about how to plan
deep models to gain from less preparing information, partic-

Table 2 Comparison results of
GoogleNet and ResNet models

Model Training accuracy Testing acuracy Loss Validation loss Time

GoogleNet 0.84 0.745 0.389 NA 1000s

ResNet18 0.83 0.87 1.0436 1.006 2701s

ResNet34 0.8651 0.8519 1.5983 1.7510 4800s

ResNet50 0.8662 0.8095 4.3967 4.5914 5580s

ResNet101 0.8594 0.7884 8.4274 8.7475 6112s

ResNet152 0.8798 0.8836 11.943 12.05 9248s
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Fig. 4 Model accuracy and model loss of ResNet 18

Fig. 5 Model accuracy and model loss of ResNet 34

Fig. 6 Model accuracy and model loss of ResNet 50

ularly for discourse and visual acknowledgment frameworks.
This was apparent in our explore different avenues regarding

Fig. 7 Model accuracy and model loss of ResNet 101

Fig. 8 Model accuracy and model loss of ResNet 152

Fig. 9 Execution time of different models

ResNet uses of optimization algorithms to adjust the net-
work parameters: The technique to modify the parameters in
machine learning calculations is a rising theme in software
engineering. In DNNs, an extensive number of parameters
should be balanced. Additionally, with an expanding number
of shrouded hubs, the calculation ismore probably get caught
in the nearby ideal. Enhancement procedures, for example,
the PSO, are hence required to maintain a strategic distance
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from this issue. The proposed preparing calculation ought
to have the capacity to extricate the highlights naturally and
diminish the loss of data to moderate both the scourge of
dimensional and the local optimum.

From the plot in Figure 4, we observed that the model
could likely be prepared more, as the drift for accuracy on
both datasets is rising for the last couple of epochs. We also
observed that the final training accuracy of the model is 0.83
and the testing accuracy is 0.87. Further. we observed that
the model has different execution results on training and val-
idation datasets i.e. labeled test. If these parallel plots begin
to depart reliably, it may be an indication to quit training at
a prior epoch. In this analysis, final training loss is noted as
1.0436 and validation loss is noted as 1.006. The execution
time of ResNet18 model was noted as 2701 seconds.

From the plot in Figure5, we observed that the model
could likely be prepared more, as the drift for accuracy on
both datasets is rising for the last couple of epochs. We also
observed that final training accuracy of the model is 0.8651
and the testing accuracy is 0.8519. Further. we observed that
the model has different execution results on training and val-
idation datasets. The final training loss is noted as 1.5983 and
validation loss is noted as 1.7510. The execution time was
noted as 4800 Seconds.

From the plot in Figure 6, we observed that the model
could likely be prepared more, as the drift for accuracy on
both datasets is rising for the last couple of epochs. Further,
We observe that themodel’s last preparing accuracy is 0.8662
and testing accuracy is 0.8095. We also observed that the
model has equivalent execution on both training and testing
datasets. If these parallel plots begin to depart reliably, it
may be an indication to quit training at a prior epoch. In this
analysis, final training loss is 4.3967 and validation loss is
4.5914.Add up to execution timewas noted as 5580 Seconds.

From the plot in Figure 7, we observed that the model
could likely be prepared more, as the drift for accuracy on
both datasets is rising for the last couple of epochs. Further,
We observe that themodel’s last preparing accuracy is 0.8594
and testing accuracy is 0.7884. Further. we observed that the
model has different execution results on training and valida-
tion datasets. If these parallel plots begin to depart reliably,
it may be an indication to quit training at a prior epoch. In
this analysis, final training loss is 8.4274 and validation loss
is 8.7475. Add up to execution time of ResNet101 was noted
as 6112 Seconds.

From the plot of model accuracy in Figure 8, We can see
that the model’s final training accuracy is 0.8798 and valida-
tion accuracy is 0.8836. In this experiment, training loss is
11.943 and validation loss is 12.05. The execution time for
ResNet152 was noted as 9248 Seconds (Fig. 10).

Fig. 10 Comparison of the training and testing accuracy of different
models

5 Conclusion

Having the capacity of visualizing the vindictive code as
images has been an awesome accomplishment. Numerous
analysts have been utilizing this procedure for the errand
of malware grouping and identification. We have shown in
this works how a small change in the image could lead to
miss-classification of images and how a small change in the
image could lead an effective classification. The greatest test
is to locate a proficient method to defeat the vulnerability
of Neural Networks. This could be accomplished via pre-
cisely malware binaries. We observed in our study that the
GoogleNetModel took less time in execution but ResNet152
model is more accurate. The execution time of ResNet152
model is themost highly taken time as compare toGoogleNet
and other models of ResNet family.
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