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Abstract Return-oriented programming (ROP) and jump-
oriented programming (JOP) are two well-known code-reuse
attacks in which short code sequences ending in ret or jmp
instructions are located and chained in a specific order to
execute the attacker’s desired payload. JOP, comparing to
ROP, is even more effective because it can be invoked with-
out any reliance on the ret instruction and therefore it can
bypass new defense mechanisms against ROP. In this paper,
we continue this line of work by proposing Pure-Call Ori-
ented Programming (PCOP). In PCOP, we drive the control
flow by proposing special gadgets that all end in a call instruc-
tion rather than ret or jmp. We then propose techniques for
chaining gadgets that removes the side-effects arise from the
call-ending gadgets. The idea of having call-ending gadgets
with the term Call Oriented Programming has been noted in
some previous work but using call gadgets in these works,
due to side-effects of the call instruction, was limited to
one or two call-ending gadgets between other ret/jmp gad-
gets. Our work is the first that shows real code-reuse attacks
solely based on call gadgets. We also show that our proposed
approach is Turing-complete, meaning that any functionality
can be driven by PCOP. We have successfully identified some
call-oriented gadgets inside GNU libc library. Our experi-
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ments with the example shellcode show the practicality of the
proposed approach. Finally, we propose a variant of PCOP
named TinyCOP which resists detection by recent code-reuse
defense mechanisms.
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gramming - Return oriented programming - Jump oriented
programming - Exploitation

1 Introduction

In this paper, we propose new techniques for code-reuse
attacks. The main idea in code-reuse attacks is to use existing
code in a process address space to execute arbitrary payloads.
This is a promising approach since it can bypass the write-
xor-execute(WEPX) defense mechanism against classic code
injection attacks and also makes it harder for intrusion detec-
tion systems to detect such attacks on the network. This is due
to the fact that the payload is not injected from outside and
the attacker uses the existing pieces of code in the memory
to launch the attack.

The basic building blocks in code-reuse attacks are gad-
gets. Gadgets are sequence of instructions ending in an
instruction that diverts the control flow to the next gadget
or some other structure that is used for chaining the gadgets.
The last instruction of a gadget can be instructions like ret,
jmp or call. In return-oriented-programming (ROP) [14], all
gadgets are ended with the ret whereas in jump-oriented-
programming (JOP) [1,3] the gadgets are ended with jmp
or sometimes call instructions. In JOP, the reliance on the
ret instruction has been removed to bypass detection mecha-
nisms that are sensitive to frequent use of the ret instruction.

In this paper, we argue that the code-reuse attack can be
launched by solely relying on call-ending gadgets. Using of
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call instruction as the last instruction of gadgets has been
noted before [1,2,10], butin all previous work the call-ending
gadgets are intermixed by jmp or ret gadgets and none of the
previous work presented a real attack that only relies on call-
ending gadgets. In this work, we propose some new types
of gadgets that allow us to chain the call-ending gadgets and
remove the side-effects arisen by frequent use of the call
instruction.
Our contributions in this paper are as follows:

We propose new types of gadgets that allow chaining of
call-ending gadgets. Among those are the strong trampo-
line gadget for removing the problematic values from the
stack and the kernel trapper gadget for invoking a system
call by engaging minimum number of CPU registers.

— We propose two modified attack models using our pro-
posed gadgets. An attack model based on the trampoline
gadget and another model based on the dispatcher gadget.

— We propose the TinyCOP technique, which uses mini-
mum number of gadgets to prevent detection by defensive
mechanisms that relies on the number of attack gadgets.

— We show the proposed PCOP attack is Turing-complete.

— We present a real shellcode that shows the practicality of

our approach.

1.1 Paper organization

The paper is organized as follows. In section 2, we provide a
background on code-reuse attacks and current defense mech-
anisms. Next, in section 3 we present our proposed approach.
In this section, we first argue why the current code-reuse tech-
niques are ineffective in performing a PCOP attack and then
we propose our new gadgets. Using the proposed gadgets,
two new attack models are presented. In section 4, the Tiny-
COP method is presented. In section 5, we discuss the gadget
discovery phase. In section 6, we show that the PCOP method
is Turing complete. In section 7, we show the practicality
of PCOP by showing the possibility of converting existing
shellcodes to PCOP shellcodes. In section 8, the related work
comes. Finally in section 9, we summarize the paper.

2 Background: code-reuse attacks and current
defense mechanisms

By the advent of mitigation techniques such as DEP or
write-xor-execute (WEPX) against buffer overflow attacks,
attackers have demonstrated subtle ideas and new techniques
to exploit software vulnerabilities. One such a technique is
code-reuse attacks in which an adversary exploits the vul-
nerability by chaining small pieces of code already present
in the memory of the vulnerable program instead of inject-
ing malicious code from outside. These code-reuse attacks
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have instituted as so-called return-into-libc attacks [8,17]
and have been later generalized to return-oriented program-
ming (ROP) [14] and jump-oriented programing (JOP) [1,3]
attacks. Since ROP and JOP are directly related to our forth-
coming ideas, in this section we first take a closer look at
these techniques and their underlying ideas.

2.1 Return-Oriented Programming (ROP)

Since in the primitive return-into-Libc technique [8,17] the
attacker was limited to running specific functions and can-
not perform arbitrary computations, a new attack called
return-oriented programming was proposed [14]. The new
technique, aimed at using the available machine code in the
target system, uses a chain of available instructions called
gadgets that all end with a ret instruction. From the attacker
point of view, this technique has two steps:

1. Finding a chain of “ret’-ended instructions, called gad-
gets, that simulates the desired attack payload.

2. Overflowing the memory and filling it out with the start
addresses of gadgets as well as needed parameters of the
target system calls.

To better understand the logic behind the return oriented
programming, one should first study the effects of the ret
instruction on the execution of a program. In the Intel x86
architecture, upon execution of the ret instruction, at first
the top element of the stack, pointed by esp, is copied into
the instruction pointer. Then the esp value is incremented
by 4 (bytes) to point to the next element in the stack. Con-
sidering the ROP technique, each gadget contains a limited
number of instructions ended with a ret. Execution of the
ret instruction at the end of each gadget, causes the gadgets
to chain together and emulate the execution of the attacker
desired payload. The interesting point here is that no exter-
nal payload is injected by the attacker into the vulnerable
program’s memory and the attack merely uses the program’s
own instructions. One of the sources that an attacker can
use to find gadgets is the libraries linked to the program
at the run-time (dynamic libraries) or compile-time (static
libraries). An example of such libraries is the libc which links
to most executable files in the Linux operating system. If a
ROP technique can simulate all possible payloads using the
available instructions in the process address space, then it is
Turing-complete. It means that every possible payload can be
executed by the attacker in the vulnerable application using
the program’s own instructions. The difference between this
technique and Return-into-Libc is that in the latter the control
flow is redirected to some functions in the C library while in
the former we can return to any arbitrary instruction in the
program address space.
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2.2 Jump Oriented Programming (JOP)

The next state-of-the-art technique in the area of code-reuse
attacks is the Jump Oriented Programming (JOP) [1,3]. The
ideais to bypass the proposed defenses against ROP by avoid-
ing the reliance on the ret op-codes and to some extent the
stack. In JOP, the attacker simulates the ret op-code behavior
using other arbitrary registers. For example, the gadgets can
be chained with “pop reg; jmp reg;” instructions [3]. JOP
has some variants and here we review the two most popular:
JOP based on a trampoline gadget [3] and JOP based on a
dispatcher gadget [1]. In the first variant, the ret op-codes
are replaced with either pop+jmp instructions or a single
jmp instruction and a trampoline gadget is used to chain the
gadgets. Rest of the attack logic is similar to the ROP. For
example, the gadget addresses and the system call parameters
are all maintained in the stack.

To remove the reliance on the stack and to bypass defense
mechanisms which monitor the stack to detect code-reuse
attacks, another JOP attack was proposed which is based on
a so-called dispatcher gadget [1]. In this method, the attacker
is not limited to use stack or the esp register for pointing to
the gadget addresses. To do this, a special dispatcher table
is created that lists the addresses and other data needed for
gadgets. There’s also a “virtual program counter”” which can
be any register that points into the dispatch table. Ateach step,
the dispatcher moves forward the virtual program counter,
and executes the associated gadget. This leads to a code-reuse
attack that does not rely on ret instructions and therefore can
bypass countermeasures that monitor the stack or frequent
ret instructions.

2.3 Defense mechanisms against code-reuse attacks

A number of defense mechanisms have been proposed to
detect or prevent code-reuse attacks. ROPdefender [7] pro-
poses an instruction monitoring based technique which uses
a binary instrumentation framework to check the validity of
each return address by comparing it with its corresponding
value stored in a shadow return address stack. DROP [4]
and DynIMA [6] monitor the execution of short instruction
sequences ending with a ret. The return-less approach [3]
recognizes the need of ret for the gadget construction and
chaining and develops a compiler-based approach to remove
the presence of the ret instruction. By removing the reliance
on the ret instruction in JOP-based attacks [1,3], more elab-
orate techniques was proposed to detect code-reuse attacks.
JOPalarm [18] uses a scoring system which is based on the
distance between jmp/call instruction addresses and the jump
target address. If this score exceeds the defined threshold,
then JOPalarm raises an alarm. Scraps [11] works by count-
ing the number of consecutive gadgets to detect JOP attacks.
If the number of chained gadgets is more than 4, each hav-

ing a maximum length of 7 instructions, SCARP raises an
alarm. Ropecker [5] is another run-time defense mechanism
which is activated whenever a sensitive system call is called
or when an out of scope instruction is executed that is out of
the defined sliding window boundaries. With the launch of
the ROPecker, a “Past and Future Payload Detection” mech-
anism is activated which counts the number of executed
gadgets using the LBR registers and the number of future
gadgets by emulation. If this number is equal or more than
10, and the length of each gadget is at most 6 instructions,
then ROPecker raises an alarm and terminates the process.

3 PCOP (Pure-Call Oriented Programming)

Our proposed method is based on using the call instruction
and some other tricks to create the chain of gadgets. We call
it Pure-Call Oriented Programming or PCOP because here
the gadgets are all ended with the call instruction instead of
ret or jmp instructions. To better illustrate the logic and also
the challenges behind the PCOP attack, note that each call
invocation has the following effects on the program flow:

1. Jump to the address specified in the call register operand.
2. Push the address of the next instruction after call into the
stack.

Using call-ending gadgets in code-reuse attacks is not
straightforward, because the second operation modifies the
stack and makes it quite hard for the stack to be used as
the start address of the gadgets. This seems to be the rea-
son that current code-reuse exploits avoid using call-ending
gadgets. Although researchers have pointed to the possibil-
ity of using call-ending gadgets [1,2,10], using these kinds
of gadget is currently quite limited in exploits because of
the above-mentioned side effects and we have not seen any
working exploit that solely relies on call-ending gadgets.

In the following, after introducing the assumed threat
model, we first show why the current known techniques
used in previous code-reuse attacks [1,3] are ineffective to
launch PCOP attacks. Then we proceed with our ideas to
make PCOP feasible.

3.1 Threat model

In this work, like the similar code-reuse attacks, we assume
the adversary can put a payload (e.g., gadget addresses or
the dispatch table) and other needed attack data into memory
and gain control of a number of registers, such as instruc-
tion pointer. We also assume that the vulnerable program
is protected by a code integrity mechanism such WEPX that
prevents the traditional code injection attacks to be launched.
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3.2 Making PCOP gadgets using currently known
techniques

To show the side-effects arisen from using call-ending gad-
gets in code-reuse exploits, we first discuss the possibility
of using gadget chaining techniques already explained in the
related papers to chain call-ending gadgets.

3.2.1 Ineffectiveness of JOP method of [3] to chain
call-ending gadgets

In the JOP trampoline method of [3], a trampoline gadget is
used between the functional gadgets to make the overall pay-
load works. The trampoline gadget of [3] have a “pop + jmp”
structure. However, in a PCOP attack, we want gadgets that
end with a call instruction. Considering this, we analyzed the
libc library to find trampoline gadgets that have a “pop-+call”
instruction sequence. In the Table 1, two sample trampoline
gadgets extracted from the libc library are shown.

Now, let’s try chaining gadgets based on the trampoline
gadgets of Table 1 which are like gadgets of [3] with the dif-
ference that they end in a call rather than a jmp instruction. In
Figure 1, an assumed PCOP attack based on these trampoline
gadgets is depicted.

Here we show why the trampoline gadgets of Table 1 aren’t
successful in performing a PCOP attack. First, consider the
gadget depicted in Table 1A. As soon as the control flow is
diverted, the first gadget being executed is G1. Since the gad-
gets of the PCOP attack are ended in call, the last instruction
of G1 is a call. Execution of this instruction results in push-
ing of the next instruction address after call into the stack
and jumping to G2 trampoline gadget. The first instruction
of the trampoline gadget G2 is a pop that should pop up the
next gadget address from the stack and jump to it. But since
the call instruction of the G1 gadget has modified the stack,
the G2 trampoline gadget pops-up a wrong address from the
stack and does not jump to the correct address of the next
gadget. This results in a failure of the PCOP attack based on
the trampoline gadget of the Table 1A.

Now considering the next trampoline gadget depicted in
Table 1B, first note the effect of executing popad instruction
on the system. This instruction pops up 32 bytes from top
of the stack and stores in general-purpose registers [12]. The
order of registers being filled by popad instruction is depicted
in Figure 2.

Table 1 Two sample call-ending trampoline gadgets in the libc-2.19

pop eax; popad;
cld; cld;
call dword [eax] call dword [eaxlecxledxlesi]

(A) (B)
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As soon as the control flow of the process is diverted, the
first gadget being executed is G1 which ends in a call instruc-
tion. Like the previous case, execution of this call pushes the
address of the instruction after call into the stack and causes a
jump to the G2 trampoline gadget. The first instruction of G2
is a popad that should pop-up the next gadget (G3) address
from the stack and jump to it. By execution of the popad, 32
bytes are popped from the stack and stored in general-purpose
registers. The first 4 bytes of these 32 bytes, stored in edi, is in
fact the value that had been pushed into the stack due to the
previous call invocation. This makes the edi register unus-
able for gadget chaining. Now assume that the attacker uses
another register such as esi for gadget chaining and stores the
next gadget address from the stack into this register. As the
attack proceeds, with the execution of more gadgets (e.g. G4)
and because of the final call instruction in each gadget, more
trouble-making return addresses are pushed into the stack.
This further reduces the number of usable registers.

In fact, the main limitation here is the small number of
available registers to be used in a code-reuse attack. An anal-
ysis we performed on the ShellStorm data-set [ 13] shows that
83.5% of shellcodes need at least 4 registers eax, ebx, ecx
and edx to perform the desired functionality such as executing
system calls. So from the total of 8 general purpose registers,
the following registers remain to be used in a trampoline-
based attack: esp, ebp, esi and edi. The esp register is the
stack pointer and cannot be controlled by the attacker. Also
the ebp register that points to the current stack frame, cannot
store any values out of the data segment addresses. There-
fore, the attacker has only access to esi, edi and ebp (limited)
registers to perform the attack. As we showed before, these
registers are overwritten by unwanted return addresses that
make them unavailable to be used in the attack. Our analysis
based on the gadgets available in the libc library, reveals that
aPCOP attack based on Table 1 gadgets is not feasible. In fact
we need a subtle way to increase the number of available reg-
isters that can be used in the PCOP chaining and control flow
management. Our proposed method of Section 3.3 solves this
problem.

3.2.2 Ineffectiveness of JOP dispatcher gadget of [1] to
chain call-ending gadgets

In this section, we observe the feasibility of using the dis-
patcher gadget of [1] to chain call-ending gadgets. The
proposed idea of [1] is to use a mixture of gadgets ending
in jmp/call instructions instead of ret instruction which most
defensive systems are sensitive to it. The dispatcher gadget
is used between the functional gadgets to chain the gadgets
and perform the attack. By reviewing the libc library, we only
find one dispatcher gadget ending in call (rather than jmp)
that seems to be suitable for chaining gadgets (Table 2).
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Fig. 1 Using the trampoline
method of [3] to chain PCOP
gadgets
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Table 2 A call-ending
dispatcher gadget in libc-2.19
library

add eax, esi;

call dword [eax];

The design of a JOP attack based on the dispatcher gadgets
is already discussed in section 2.2. Due to the lack of suit-
able call-ending gadgets and also inherent effects of invoking
a call instruction, one cannot chain the functional and dis-
patcher gadgets without using any auxiliary gadgets. Note
that one side effect of using the call-ending dispatcher gad-
gets is that we need more number of general-purpose registers
to perform the attack. As we discussed in previous section,
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only edi, esi and ebp registers are available to do internal
stuff of a code-reuse attack such as maintaining the dispatch
table and program counter addresses.

Considering the dispatcher gadget of Table 2, two regis-
ters are used within the dispatcher gadget itself. Therefore,
only 1 register remains for maintaining the dispatcher gad-
get address which is not enough for making real code-reuse
attacks based on this gadget. Another limitation is that we
need some specific registers for making system-calls in the
shellcode. For example, the eax register should store the
system call number whereas in the Table 2, eax is already
used inside the dispatcher gadget. In conclusion, finding suit-
able call-ending gadgets and launching a practical code-reuse
attack is not feasible using the currently known gadget types
discussed in [1].

3.3 New gadgets and their instantiations in Linux
operating system

As we discussed in previous section, the limitation on the
number of available CPU registers and suitable gadgets,
makes performing the PCOP attack using known techniques
infeasible or at least very hard. To overcome these limitations
and launch a successful PCOP attack, we propose a number
of new gadgets that help in neutralizing the side-effects of
call instructions and allow chaining of call-ending gadgets.
In this section, we discuss the details and the instantiation of
these new gadgets.
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3.3.1 Strong trampoline gadget

The idea is to design a gadget that not only loads and calls the
next functional gadget, but also removes the undesired return
addresses pushed into the stack by previous gadgets’ call
instructions. To do this, this gadget should contain instruc-
tions that pop up the undesirable values from the stack. The
pop and popa instructions in the x86 architecture which pop
4 and 32 bytes from the stack can help to achieve this goal.
We call such a gadget, the strong trampoline gadget.

In a PCOP attack that consists of n functional gadgets, we
need n — 1 strong trampoline gadgets between the functional
gadgets to chain the gadgets and launch a successful attack.

Now to design an effective strong trampoline gadget,
consider a general PCOP attack with 3 functional gad-
gets chained with 2 strong trampoline gadgets (FGI =>
STG] => FG2 => STG2 => FG3). Here FG stands for
functional gadget and ST G stands for strong trampoline gad-
get. The execution of the first functional gadget (FG1) causes
the 4 bytes return address of the instruction after (FG1)’s final
call to be pushed into the stack and jump to ST G gadget. If
STG1 contains instructions “pop x; pop y; call y”, by invo-
cation of “pop x” the previous return address is loaded into
register x. Then the next gadget address is popped from the
stack and loaded into the register y. The “call y” instruction
in the gadget causes the control to be diverted to FG2 and
also a new return address is pushed into the stack. Note thatin
this state two troublesome (from the attacker’s point of view)
return addresses are in the stack. The STG2 gadget pops-up
these two values into variables x and y respectively. Its final
call instruction, instead of redirection to the next functional
gadget, redirects the control into the next instruction after the
STGI’s call instruction which apparently breaks the chaining
of functional gadgets and causes the failure of PCOP attack.

Therefore, we observe that an ideal strong trampoline
gadget should remove at least 4 bytes and at most 8 bytes
from the stack to neutralize the side effects of gadgets’ call
instructions. For this, we need a strong trampoline gad-
get that contains the following instructions sequentially:
“pop x; pop y; pop z;call 7”. If the second trampoline
gadget contains these instructions, the troublesome return
values are placed in x and y variables and the next functional
gadget’s address is placed into z and the attack proceeds.
However, by analysis of the libc library, we found no gad-
get with such structure. Hence, we observed that the only
way to overcome this problem is to use gadgets with popa
instruction.

Note that if the STG2 gadget contains “popa; call x”
instructions, then execution of this gadget pops-up the two
problematic return addresses from the stack and puts them
into the edi and esi registers which makes them unavailable
for PCOP’s gadget chaining. Since, as we discussed earlier,
only edi, esi, ebp and esp registers are available for main-
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Table 3 The only strong

trampoline gadget in libc-2.19 0x00170ff4;

pop eax;
popad;
cld;

call eax;

taining control in the PCOP attack, there only remains the
ebp register which its value should be in the range of pro-
gram’s data segment. These limitations makes performing
PCOP attack using the above-mentioned strong trampoline
gadget very hard.

So to make the PCOP attack feasible, we observe
that an ideal strong trampoline gadget should include
“pop x; pop y; popa; call 7” instruction sequence. We call
it an ideal gadget because the two pop instructions before
popa remove the problematic return values from the stack.
This allows us to use esi, edi and ebp register to maintain the
control flow and gadget chaining in a PCOP attack. Our anal-
ysis on the libc-2.19 library revealed that an exact sequence
of instructions cannot be found but a similar gadget exists in
this library which is depicted in Table 3.

The strong trampoline gadget depicted in Table 3 is not
an ideal one in the sense that we discussed earlier, but it
can remove the problematic return values from the stack.
However, since this gadget has only one pop instruction, the
edi register remains unusable because one of the problem-
atic return instructions remains in the stack and is popped
by popad into the edi register. So with the above-mentioned
gadget, the only available registers for the PCOP’s control
maintenance and gadget chaining are esi and ebp registers.
Designing real PCOP attacks using these registers is still
hard, so we need additional techniques to increase the num-
ber of available registers. In the next section, we introduce
the kernel trapper gadget that makes the eax register to be
available for PCOP’s gadget chaining. Using the eax register
besides ebp and esi registers allows us to performa successful
PCOP attack.

3.3.2 Kernel trapper gadget

The code-reuse shellcodes, depending on their functional-
ity, need to invoke one or more system calls. To invoke a
system call, first the appropriate values are loaded into the
CPU registers and then int 0x80 or systenter instructions are
called. In Linux one might use call * %gs : 0x10 to invoke a
system call too. This instruction invokes kernel_vsyscall in
linux-gate.so.1 library which itself causes the invocation of
int 0x80 or systenter. All the instructions in Intel x86 archi-
tecture that can transfer the control flow from the user space
to the kernel space are depicted in Table 4 [14].

The shellcodes that use only one system-call may use any
of the instructions listed in the Table 4 as the last instruction
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Table 4 All system-call related
instructions in Intel-x86
architecture

int 0x80
sysenter
call *%gs:0x10

Table S Gadgets for syscall

invocation in shellcodes with (A) int 0x80
two or more system calls ret
(B) sysenter
ret
©) call *%gs:0x10
ret

of their payload. Others which use more system calls need
a mechanism to transfer back the control to the rest of the
shellcode. To achieve this, the attacker can use any of the
gadgets depicted in Table 5.

In order to invoke a system call, the target syscall number
should first be stored in eax, then the parameters for that spe-
cific syscall stored in other registers and finally the syscall
invoked using one of the instructions depicted in Table 5. To
store the target syscall number in eax, the attackers gener-
ally use gadgets which creates the appropriate value using
logical or mathematical operators such as XOR, AND, ADD
and SUB. Using this technique for creating the target syscall
number is troublesome because it occupies at least 2 registers
for storing the flag, mask and pointer to the next gadget.

To overcome this problem, our idea is to use a gadget that
without using additional CPU registers, stores our intended
syscall number into the eax and then invoke the desired

Table 6 Discovered kernel-trapper gadgets in the libc-2.19 library

syscall to transfer the control from the user to the kernel
space. After thorough analysis of the libc library, we dis-
covered some gadgets that store the appropriate system call
number into eax register before calling the syscall instruction.
The discovered gadgets do not end in ret, therefore they are
appropriate for shellcodes that use one system call only. We
also searched other libraries in /lib folder, but it seems that
these kinds of gadgets are only found in the libc library. Since
the libc library is linked against all executable files in Linux,
the attacker can virtually use these gadgets in any vulnera-
ble program to launch a PCOP attack. Since these gadgets
first put the syscall number in eax register and then invoke
the syscall instruction, we named these gadgets the Kernel-
Trapper gadgets. In Table 6, 15 kernel-trapper gadgets are
listed that we discovered in the libc library.

3.3.3 Intra stack pivot gadget

Our next proposed gadget is the intra stack pivot gadget thatis
another solution to handle the undesirable effects of invoking
call (Push of a return address into the stack and decrease of
the esp register). This new gadget increments the esp register
by a fixed value and therefore it’s like that no value has been
pushed into the stack. The intra stack pivot gadget can be
placed at any position between other gadgets in order to make
a correct chaining of the gadgets.

In Table 7, a number of these gadgets that we have dis-
covered in the libc library are shown. All of the gadgets in
Table 7 are subtraction gadgets, but we need the esp value to
be added. To overcome this problem, we come up with the

Syscall Gadget offset and instructions Syscall Gadget offset and instructions
Sys_execve b673b:mov $0xb, %eax Sys_exit da6c6:mov $0x1,%eax
call *%gs:0x10 call *%gs:0x10
sys_chmod dbOba:mov $0xf,%eax sys_dup2 dcOba:mov $0x3f,%eax
call *%gs:0x10 call *%gs:0x10
sys_read db707:mov $0x3,%eax sys_unlink dd696:mov $0xa,%eax
call *%gs:0x10 call *%gs:0x10
sys_iopl ec546:mov $0x6e,%eax sys_sethostname e480a:mov $0x4a,%eax
call *%gs:0x10 call *%gs:0x10
sys_rmdir dd726:mov $0x28,%eax sys_setdomainname e48ba:mov $0x79,%eax
call *%gs:0x10 call *%gs:0x10
sys_reboot e4cbd:mov $0x58,%eax Sys_unmount ec83a:mov $0x34,%eax
call *%gs:0x10 call *%gs:0x10
sys_write db7af:mov $0x4,%eax Sys_sync e4ba0:mov $0x24,%eax
call *%gs:0x10 call *%gs:0x10
sys_kill 12c0a2:mov $0x25,%eax

call *%gs:0x10
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Table 7 Discovered intra stack pivot gadgets in the libc-2.19 library

Gadget address Instructions
0x0016aa45 sub esp, edi;
call dword [ebp-0x3A0003D7];
0x0016a8cd sub esp, edi;
call dword [ebx];
0x0016a989 sub esp, eui; call esp;

Table 8 Discovered loader gadgets in the libc-2.19 library

Gadget address Instructions
(A) 0x000030de popad;
call dword [ecx];
(B) 0x00170ft5 popad;
clc;
call eax;
©) 0x0016b3fc popad;
cld;

call dword [esi+0x28FFFC69];

idea to use the two’s complement subtraction which has the
same effect as doing addition.

3.3.4 The loader gadget

The loader gadget is used to load the parameters needed in
the PCOP attack from stack into the general purpose registers
and it is generally the last gadget before invoking a system
call. In x86 architecture, the popa and popad instructions can
be used for this purpose. The popa and popad instructions
pop up 8 values from the top of the stack and store them into
general purpose registers. The order of storing the values
into registers is as follows: edi, esi, ebp, ebx, edx, ecx and
eax. Table 8, shows some PCOP loader gadgets that we have
discovered in the libc library.

We should note that some conditions must be met for
a loader gadget to be functional and therefore some of the
above loader gadgets are inoperable in practice. These con-
ditions are as follows:

1. The first instruction of the gadget should be popad, so the
desired parameters are fetched from stack and saved into
general purpose registers.

2. The gadget should not contain any instruction that mod-
ifies ebx, ecx or edx registers, so the registers are not
tampered with before invoking the system call.

3. The destination register for the call’s instruction should
not be any of ebx, ecx, edx and edi registers, so gen-
eral purpose registers are available for use in system call
invocation. About the restriction on using the edi register;
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note that the previous gadget is ended with a call. This
call instruction adds 4 undesired bytes on the top of the
stack which is popped and stored into edi register when
the loader gadget is executed. Therefore, the edi register
is not under control of the attacker.

By the above explanations the loader gadget (A) in Table
8 cannot be used in a PCOP attack because the destination
register of the call instruction is edx.

Next, we propose our ideas on using the new gadgets to
design and implement real PCOP attacks.

3.4 PCOP attack 1: using strong trampoline gadget to
perform PCOP

Here we propose the first PCOP attack which is based on
our proposed types of gadgets: strong trampoline and kernel
trapper. We discussed the details and instantiation of these
gadgets in the previous section. In summary, the role of the
strong trampoline gadget is to naturalize the side effects of
the previous call instructions. Its functionality is the same as
the normal trampoline gadget but it starts with a number of
instructions which first pops the problematic values pushed
into the stack by previous call invocations. The role of the
kernel trapper gadget is to invoke a system-call with engaging
minimum number of CPU registers.

Using these new gadgets, we can overcome the complexi-
ties arisen from call-ending gadgets and successfully launch
a code-reuse attack. Figure 3 shows the design of the PCOP
attack using our proposed strong trampoline and kernel trap-
per gadgets. We place a strong trampoline gadget after each
functional gadget to neutralize the effect of previous call
invocation. Finally, we end the chain with a kernel trapper
gadget that invokes the desired system-call.

3.5 PCOP attack 2: using a dispatcher gadget to
perform PCOP

The dispatch-table approach of [1] is beneficial in the sense
that it removes the reliance on stack to some extent. In fact, the
gadget addresses have not to be stored in the stack and they
can be maintained elsewhere in the memory in a structure
called dispatch-table. However, the attacker still needs the
stack for some specific computations such as system calls.
As we discussed in the section 3.2.2, it is not possible to
launch a successful dispatch-table attack simply by chaining
call-ending gadgets. This is due to a number of limitations
including lack of available CPU registers, and modification
of data and control structures (e.g. stack) as a side effect of
invoking call. To overcome these limitations, we propose a
new design that makes use of our proposed new gadgets.
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Fig. 3 PCOP attack based on
the proposed strong trampoline Attacker
gadget
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Control Flow Structure
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Using these 3 new gadgets, it is possible to launch a
successful PCOP attack. Our proposed method for using dis-
patcher gadget in PCOP is depicted in Figure 4.

Using these new gadgets, we can overcome the complexi-
ties arisen from call-ending gadgets and successfully launch
a code-reuse attack. Figure 3 shows the design of the PCOP
attack using our proposed strong trampoline and kernel trap-
per gadgets. We place a strong trampoline gadget after each
functional gadget to neutralize the effect of previous call
invocation. Finally, we end the chain with a kernel trapper
gadget that invokes the desired system-call.

Here the functional gadgets (instruction sequences) are
chained together by the use of the dispatcher gadget. The
functional gadgets’ addresses are maintained in the dispatch
table instead of stack. Therefore, unlike the previous model,
it’s not necessary to frequently remove problematic return
values pushed into stack due to call invocations. However,
whenever the attacker needs to load some values from the
stack, or a system-call has to be invoked, the stack should be
sanitized from the added return addresses. To do this, the Intra
Stack Pivot gadget is used which modifies the esp register
and increments it by a factor of 4 bytes so the side-effect of
arbitrary number of previous calls are reversed. Then to load
the desired values from the stack, the attacker can use loader
or strong trampoline gadgets. If a loader gadget is used, then
the call instruction of the intra-stack pivot is loaded into edi
and makes this register unavailable in the rest of the stack.
However, if a strong trampoline gadget is available to be
used, the edi register would be available too. Finally, the
strong trampoline or loader gadgets have to be used before
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the system call, so the required parameters for the syscall
placed into the general purpose registers.

4 Tiny Call Oriented Programming (TinyCOP)

The main idea behind the TinyCOP is to use techniques to
minimize the number of gadgets in a PCOP attack. The less
the number of gadgets in a code-reuse attack is, the lower the
probability of being caught by defensive mechanisms will be.
When the number of consecutive gadgets is small, the PCOP
behavior is similar to a normal program and thus it is quite
hard to detect the attack based on techniques that count the
number of consecutive gadgets chained together. In our pro-
posed TinyCOP attack, the following gadgets are executed
respectively: the initializer gadget as the first gadget, a num-
ber of functional gadgets to launch the attack and prepare the
parameters for the final syscall and finally the kernel trapper
gadget to store the target syscall number in eax and invoke
the syscall.

Figure 5 depicts our proposed TinyCOP attack. By invok-
ing the initializer gadget all the needed data in the PCOP
attack are popped from the stack and stored in the general
purpose registers. Then by execution of the call instruction in
the initializer, the next functional gadget is invoked. We pro-
ceed by chaining a few functional gadgets with minimal side
effects. Finally, by invoking the kernel-trapper gadget as the
last gadget of the chain, the desired system call is executed
with the proviso that all parameters are loaded correctly in
the appropriate registers. It’s noteworthy to say that in the
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Fig. 4 PCOP attack based on
the dispatcher gadgets

Fig. 5 The design for the
proposed TinyCOP attack
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TinyCOP, the attack is so minimal that we do not need to
adjust the stack by removing problematic values.

4.1 A TinyCOP shell-code (spawning a Linux shell)

In this section, we present a shell code developed using the
TinyCOP model. The shellcode is a typical spawn-shell that
takes advantage of execve() system call. It’s a syscall that
can be used to invoke executables or scripts. The system call
number for execve() is 0x0b. As shown below execve() takes
three parameters as input.

int execve(const char x filename, char * const argv[],
char * const envpl]);

filename is the name of the file that is going to be executed.
argv passes argument strings and envp passes environment
variables into the function. In our attack scenario, we are not
going to pass any argument variable or environment string to
execve().

Based on the above discussion, in our proposed shell-code,
the appropriate parameters should be placed in general pur-
pose registers as depicted in Table 9 and then the execve()
system call be invoked.

Our proposed shell-code is depicted in Figure 6 which
only has two gadgets. Initializer is responsible to load ebx,
ecx and edx with the addresses of unintended bytes of string
/bin/sh that are in the libc library, and two available NULL
Dwords respectively. Then, the Kernel-Trapper will load eax
with 0x0b and make a system call.

Table 9 Appropriate values of CPU registers for spawning a shell

Registers eax & ebx & ecx & edx

Values 0x0b /bin/sh NULL NULL

Fig. 6 A TinyCOP shellcode

4.2 TinyCOP and current code-reuse defense
mechanisms

In this section, we discuss why the current defense mech-
anisms against code-reuse attacks are ineffective against
our proposed TinyCOP method. Since both JOP and PCOP
attacks are based on frequent jumps in the code segment,
the same ideas for defending against JOP can work for the
PCOP attack too. Therefore, we focus on the following three
defense mechanisms against JOP and discuss the behavior of
TinyCOP in their presence: JOP-alarm [18], SCRAP [11] and
ROPecker [5]. These systems have three properties in com-
mon. (1) All of them work under the Linux operating system.
(2) They do not rely on any specific operating system fea-
tures to work. (3) They do not need the program source code
or binary rewriting to defend against code-reuse attacks.

Our proposed TinyCOP shellcode, depicted in Figure 6,
spawns a Linux shell using the execve() system call. Its
length is 36 bytes consisting of 2 gadgets and 5 assem-
bly instructions. We begin the analysis with JOP-alarm. To
detect code-reuse attacks it uses a scoring system which is
based on the distance between jmp/call address and the jump
target address. To do this, if the distance of jump between
two gadgets is more than 4096 bytes, the score parameter
is incremented by 20 and with each non-jump instructions
1 is decremented from the score parameter. Finally, if the
score parameter reaches the value of 120, JOP-alarm raises
an alarm. Now, considering our proposed TinyCOP shell-
code, the first call instruction in the first gadget increases the
score parameter to 20. Then, with the execution of the first
instruction in the second gadget, the score is decremented
by 1 and equals 19. Finally, by the instruction Call Dword
PTR gs:0x10, the system call is executed and the Linux shell
spawns without being detected by JOP-alarm. Note that upon
execution of the system-call, the score is far less than the
defined threshold of 120.

execve(/bin/sh)

that invokes /bin/sh High OxbFFFF10C cax Oxb7ece3b Libc Base Address: B7e18000
Oxbffff108 ecx 0xb7e1823a ¢- — > Points to Null Dword in Libc
Oxbffff104 edx Oxb7e1823a ¢ — > Points to Null Dword in Libc
0xbffff100 ebx 0Oxb7f795a4 ¢- — >Points to unintended “/bin/sh” string in Libc
0xbffffofc esp Oxbffffofc p——
OxbffffOf8 ebp Oxbffffof8 popad ; L
Oxbffffof4 esi Oxdeadbeef ELC” e i
0xbffffofo edi Oxdeadbeef e <
Return Address Oxbffffoec Oxb 77885 |+ i —

ebp —— Oxbffffoes Oxbffff0e8 Py oY G Wb
Oxbffffoed 0x41414141 cl ORIy
Oxbffff0e0 0x41414141

esp —1 OxbffffOdc 0x41414141

Low
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SCRAP [11] works by counting the number of gadgets
to detect JOP attacks. If the number of chained gadgets is
more than 4, each having a maximum length of 7 instruc-
tions, SCARP raises an alarm. Thus our proposed TinyCOP
attack with 2 gadgets and 5 instructions is undetectable by
the SCARP framework.

Finally, the ROPecker detection mechanism is launched
whenever a sensitive system call is called or when an out
of scope instruction is executed that is out of the defined
sliding window boundaries. With the launch of ROPecker, a
Past and Future Payload Detection mechanism is activated
which counts the number of executed gadgets using the LBR
registers and the number of future gadgets by emulation. If
this number is equal or more than 10, and the length of each
gadget is at most 6 instructions, then ROPecker raises and
alarm and terminates the process. Now considering TinyCOP,
it can successfully bypass the detection by ROPecker because
it only contains 2 gadgets and 5 instructions. In section IX.C
of the ROPecker paper [5], it is mentioned that the ROPecker
cannot detect attacks with 1 or 2 gadgets and that the attacks
with 1 or 2 gadgets cannot contain any malicious activity. Our
proposed TinyCOP attack shows that this claim is in fact not
true.

5 Gadget discovery

PCOP needs gadgets that end in an indirect call instruction.
To discover such gadgets, we used the Galileo algorithm
presented in [14]. Note that every x86 binary has some unin-
tended code sequences that can be used by jumping to an
offset not on the original instruction binary [1] and the Galileo
algorithm takes such gadgets into account. By a slight mod-
ification of this algorithm, we extracted all intended and
unintended PCOP gadgets.

By running the Galileo algorithm on the libc-2.19 library,
the total number of suitable gadgets ending in indirect call,
indirect jmp and ret instructions is 20935.
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Figure 7 depicts the frequencies of intended and unin-
tended call, jmp and ret instructions in the libc-2.19 library.
As seen, the number of call instructions is lower than ret
and jmp instructions and this makes designing PCOP attacks
harder than JOP and ROP attacks.

Next, we do a more detailed analysis on intended and unin-
tended gadgets that end in a call instruction. The purpose of
this analysis is to find which register is used more frequently
as the target address of call instructions. As depicted in Fig-
ure 8, the eax register is used in 2210 gadgets as the call’s
target address which is more frequent than the other general
purpose registers. This seems to be problematic, because if
we use gadgets ending in indirect calls with eax register as
the target address, then eax register would not be available
for some other important tasks such as invoking system calls.
Note that for invoking a system call, the system call number
should be stored in eax, and therefore we should look for a
technique that allows us to use eax both for gadget chaining
and system calls. The kernel trapper gadget that we discuss
in section 3.3.2, allows us to do this.

5.1 Gadgets on more recent targets and other libraries

Libc version 2.19 has been initially released on February
2014, however since it has been used in the long-term sup-
port (LTS) version of some major Linux distributions such
as Ubuntu 14.04-LTS, it is still being maintained by Linux
vendors and used widely on many Linux-based machines.
As an example, the Libc-2.19’s latest patch on Ubuntu 14.04
is “2.19-Oubuntu6.11” released on March 21, 2017 which
is quite new. It’s noteworthy to say that Ubuntu-14.04-LTS
will have maintainance support till February 2019 [16] and
hence the Libc-2.19 will be available on many Ubuntu-based
production servers.

However, to assess the feasibility of our approach on the
most recent versions of the Linux operation system, we con-
ducted a number of more experiments. Our new experiments
have been conducted on the latest LTS version of Ubuntu dis-
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Table 10 Availability of PCOP gadgets in recent LTS versions of
Ubuntu

Libc-2.19 Libc-2.23
(Ubuntu 14.04 LTS) (Ubuntu 16.04 LTS)

Strong trampoline 4 X
Intra stack pivot v v
Kernel trapper v v
Loader gadget v v

tribution which is Ubuntu 16.04-LTS (Released on February
2017). We first started by searching for our proposed gadgets
in the Libc-2.23 library which has been used in this version
of Ubuntu. As depicted in Table 10, except for the strong
trampoline gadget, all other gadgets can be found in Libc-
2.23.

To find strong trampoline gadgets in Ubuntu 16.04 LTS,
we wrote a script to search through all available libraries in
Nib folder (total of 398 libraries) and we successfully identi-
fied a number of strong trampoline gadgets in these libraries
which has been depicted in Table 11. There are lots of more
libraries in /usr/lib folder (around 3532 libraries) and our
experiments showed that a high number of these libraries
contain the strong trampoline gadget as well. A number of

such libraries and their corresponding strong trampoline gad-
gets have been depicted in Table 12.

It’s noteworthy to say that another reliable source for find-
ing strong trampoline gadgets, is the the binary code of the
vulnerable program or service.

5.2 PCOP gadgets on other operating systems

Launching a PCOP attack on mobile-based operating sys-
tems such as Android and IOS is not feasible using the
proposed gadgets because of major differences in hardware
architecture and instruction set. Also the kernel trapper gad-
gets are not available in the Microsoft’s Windows family
of operating systems because Windows lacks the virtual
dynamic shared object capability. Therefore performing
PCOP attacks on the current versions of Microsoft Windows
is not feasible using the methods proposed in this paper. How-
ever, it should be noted that launching PCOP attacks in these
operating systems are an interesting field for future research.

Regarding the defensive mechanisms in other operating
systems, consider the recent Microsoft Control Flow Guard
(CFG). Microsoft CFG is a defense mechanism in the Win-
dows family of operating systems and it’s not available on the
Linux systems. However, to assess its effectiveness against
the PCOP attack, assume that a similar mechanism has been

Table 11 Strong trampoline

Gadget address + instructions

gadgets found in /lib libraries on Library
Ubuntu-16.0.4-LTS libslang.s0.2.3.0
libslang.s0.2.3.0
3 libdevmapper.so.1.02.1
4 libdevmapper.so.1.02.1

0x00060ab3: pop eax; popad; cld; call dword [eax-0x18];
0x00059¢3d: popad; pop ebp; cld; call dword [eax-0x18];
0x0004a2e5: pop ecx; add byte [eax], al; inc esp; popad;
cld; call dword [eax];

0x0004a2e4: pop esp; pop ecx; add byte [eax], al; inc esp;
popad; cld; call dword [eax];
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Table 12 A number of strong

trampoline gadgets discovered Library

Gadget address + instructions

in /usr/lib libraries on

libmergelo.so
Ubuntu-16.0.4-LTS

2 libllvm-3.8.s0.1

3 libxul.so

0x02393ef2: pop edx; popad,; call dword [eax+0x6A]
0x022d1505: pop ebp; popad,; add ah, bh; dec ecx; pop esi;

call eax;

0x02c72cf4: pop ebx; inc dword [edi+edi*8-0x007C009B]; popad;
call dword [eax-0x73009F01];

implemented in the Linux operating system. First of all,
Microsoft CFG is a compiler-level protection system and
hence it is needed that all binaries get recompiled for the
protection to work. This may not be possible for the pro-
duction systems or for applications with no access to their
source codes. Secondly, Microsoft CFG is not a bullet-proof
defense mechanism and researchers have proposed a number
of techniques to bypassit[9,15, 19]. For example, if an appli-
cation uses libraries that have not been compiled with CFG
linker flag, it is possible to extract suitable PCOP gadgets
from such libraries and launch a successful PCOP attack. A
similar technique has been used in [9] to bypass Microsoft
CFG.

6 PCOP is turing-complete

An important parameter in evaluating a code-reuse method is
to see if it has the ability to execute any arbitrary operations,
i.e., being Turing-complete. To show that our proposed PCOP
method is Turing-complete, we must show that all desired
functionalities in a shellcode can be driven by chaining the
proposed call-ending gadgets. These functionalities include
storing and loading data into memory, arithmetic and logi-
cal operations, conditional and non-conditional jumps, and
system call invocation. In this section, we show the Turing-
completeness of PCOP by identifying appropriate functional
gadgets solely from the Libc library which is linked to all
executable files in Linux operating system. For each opera-
tion the gadget offset in the libc-2.19 library as well as its
instructions is depicted.

6.1 Methodology

The proof for the Turing-completeness property, was per-
formed based on an analysis on the Libc library (version:
2.19 size: 1718 KB) which is linked to all executable files in
Linux operating system. We used rp++ tool to extract gadgets
and used regular expression to search for the desired gadgets.
The Intel semantic is used to express instructions (e.g. mov
destination, source) and we’ve used semicolon to separate
instructions.
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Table 13 Gadgets for loading registers

Register Gadget address + instructions

eax 0x0015al2e; pop eax; call dword
[edi+0x4656EE7E];

ebx 0x0015e6e9; pop ebx; call dword
[esi+0x67FFF258];

ecx 0x0018ce01; pop ecx; call dword [esi+0x00];

edx 0x0017£f08; pop edx; sub bh, ch; call dword
[eax];

ebp 0x0018cebd; pop ebp; call dword [eax+0x00];

esi 0x0016b3f1; pop esi; cld; call dword [eax+0x5F];

edi 0x0018cf2d; pop edi; call dword [eax];

All general purpose 0x000030de; popad; call dword [ecx];
registers

0x00170ff4;pop eax; popad; clc; call eax;

6.2 Gadget repository

In this section, for each category of basic instructions, we
present the equivalent PCOP gadgets that have been extracted
solely from the libc library.

6.2.1 Loading registers

The loader gadget is used in PCOP exploits to load values
form stack into CPU registers. In x86 architecture, there are
8 general purpose registers that can be used for storing and
loading data. To store a value in registers from stack, the pop
and popa instructions can be used. If no problematic return
value is in stack, one can simply use the pop instruction; oth-
erwise the popa instruction can be used. In the worst case, the
edi and esi registers contain the problematic values. To store
the desired values into this registers, we can put the values
in other registers then use mov or xchg instructions to save
the values into esi/edi registers. Table 13 depicts the gadgets
extracted from the libc-2.19 library for loading values into
various CPU registers.

6.2.2 Loading and storing from memory

In x86 architecture, the load and store instructions are used
to load values from system memory into CPU registers and
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Table 14 Gadgets for loading from and storing to memory Table 15 Gadgets for arithmetic operations
Type Gadget address + instructions Type Gadget address + instructions
LOAD (eax) 0x00124d50; mov eax, dword [ebp-0x54]; ADD 0x0019¢ef79; add esi, edi; call dword [eax];
call dword [edi+0x000001ACT; ADD 0x0015e9f4; add dword [edi-0xOE],ebp;
LOAD (edi) 0x001248d6; mov edi, dword [ebx-0x000000EOQ]; call dword [ecx+0x6D];
call dword [edi+0x000001B4]; ADD immediate ~ 0x0000370b; add eax, 0x572808A8;
STORE (edx) 0x00124af1; mov dword [ebp-0x58], edx; call call dword [esi+0x6F];
cax; SUB 0x0019ff15; sub edi, esi; call dword [ebp+0x00];
STORE (eax) 0x00110198; mov dword [esp+0x04], eax; SUB 0x0018cf2c; sub dword [edi-OxOE], ebx;
call dword [edi+0x14]; call dword [eax];
SUB immediate 0x0016acd5; sub eax, 0x2D65FFFC; cld;
call dword [ebp-0x2A0003D3];
vice versa. To use these instructions in a PCOP shellcode, we INC 0x0018e€e69; inc ebx; call dword [eax+0x00];
need some gadgets that use these instructions. In Table 14, = DEC 0x0015ac3a; dec ebp; call dword [esi+0x30];
a number of such gadgets that we extracted from libc-2.19 NEG 0x00073d55; neg edx; mov dword [esp], edx;
library is depicted. call dword [eax];
As an example, for loading values from memory into eax NEG 0x0019bcb0; neg dword [eax-0x0A];

register, we found a gadget that loads the memory address
pointed by (ebp-0x54) in the eax. To use this gadget the
attacker has to only store the appropriate address in the ebp.
Moreover, for storing values into the system memory a num-
ber of gadgets has been discovered. For example by storing
an appropriate address in ebp, the value of edx can be stored
in the desired address.

6.2.3 Arithmetic gadgets

The gadgets for performing arithmetic operations are listed
in Table 15. The basic arithmetic operations are add and sub
instructions. These instructions can do addition and subtrac-
tion in three forms. In the first case, the operation is performed
on two CPU registers specified as instruction operands. In the
second case, one of the source or destination operands are in
memory and in the third case one of the operands are a static
value and the second operand is either a register or a memory
address. For each of these cases, Table 15 depicts a suitable
gadget. The gadgets for other instructions like inc, dec and
neg are also depicted in this table.

6.2.4 Logical gadgets

The instructions AND, OR, XOR and NOT perform the prim-
itive logical operations in x86 platform. In order for a PCOP
shellcode to use these operations, we need appropriate gad-
gets thatinclude these instructions. A number of such gadgets
are listed in Table 16. The AND, OR and XOR gadgets take
their operand values from register or memory addresses and
store the result into a register or memory address. One of the
widely used instructions for zeroing the memory is XOR.
When the source and destination of this instruction is equal,
the result would be zero. In Table 16, we have listed a gadget

call dword [eax];

Table 16 Gadgets for logical operations

Type Gadget address + instructions
AND 0x00180c49; and edi, ebp; call dword [edx];
AND 0x0015db28; and dword [ebx-0x10], ecx; call
edx;

OR 0x0015cd78; or ebx, esi; call dword [eax];
OR 0x0018cf5¢; or dword [edi-0x0E], ebx;

call dword [eax];
XOR 0x0019a9c¢5; xor esi, esi; call dword [eax];
XOR 0x00171955; xor ecx, edi; call dword [eax-0x13];
XOR 0x000d4b1b; xor dword [ebx-0x01], ecx;

call dword [eax-0x0008CC17];
NOT 0x0016€e60c; not ecx; call dword

[eax+0x03000152];

for zeroing the value in esi register. This value can be stored
in other registers as well as the memory by taking advantage
of other gadgets. Moreover for doing 1’completement (NOT)
of a value, one can use the NOT instruction as depicted in
Table 16.

6.2.5 Branching gadgets

Since in code-reuse attacks, the gadget addresses are stored
in stack a branch is done by changing the stack pointer [3].
This is contrary to a normal program which a branch is done
by changing the instruction pointer to an absolute or rela-
tive address. In Table 17, an unconditional jump gadget is
depicted which modifies the esp value by performing a sub-
traction or two’s complement addition. Then using gadgets
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Table 17 Gadgets for branching

Type Gadget a ddress + instructions

Unconditional 0x0016a8cd; sub esp, edi; call dword [ebx];
0x00171955; xor ecx, edi; call dword [eax-0x13];
0x00170a66; clc; call dword [eax];

0x001947dd; cmp esi, ebp;call dword
[ecx+eax+0x00];
0x0015ce51;sbb esi, ebx; call dword [eax];

0x00117b9b;mov dword [esp], esi;call dword
[eax+0x04];

Conditional

like strong trampoline or loader, the next gadget address is
read from the stack and the control flow is diverted to it.
Therefore, with combining an unconditional and loader gad-
get, the unconditional operation can be done.

Another type of jump is conditional jump. The x86 archi-
tecture contains a number of instructions for conditional
jump, but since these instructions modifies the eip register
instead of esp register, they are not suitable to be used in
code-reuse exploits. We take the same strategy as in [3] that
changes the stack pointer conditioned on the word stored in
memory at a known address. Our proposed branching gad-
gets are depicted in Table 17.

7 Experiments with converting classic shellcodes
into PCOP shellcodes

In this section, we show the practicality of PCOP by showing
the feasibility of converting the shellcodes available in Shell-
Storm library [13] into their equivalent code-reuse PCOP
shellcodes. Till 28 July 2016, the Shell-Storm library con-
tains 247 shellcodes. As shown in Figure 9, 200 of these
shellcodes are plaintext and the rest are polymorphic. Our
evaluation is based on these 200 plaintext shellcodes that
have different sizes and functions. The most important factor
for converting these shellcodes into their equivalent PCOP
shellcodes is the number of used syscalls. This is important
since our proposed TinyCOP method only supports shell-
codes with one system call.

250
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200

47

Non-polymorphic Polymorphic

Fig. 9 The frequency of shellcodes in Shell-Storm library on July 2016
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By disassembling non-polymorphic (plain) shellcodes, we
counted the number of system-calls in each shellcode. As
shown in Figure 10, 68 shellcodes invoke only 1 system call,
and 53 shellcodes invoke 2 system-calls. The maximum num-
ber of system calls invoked in the analyzed shellcodes is 14.
According to the high number of shellcodes with 1 system-
call only (68), the proposed TinyCOP method seems to be
quite practical, since it can be potentially used to convert
these shellcodes into their equivalent PCOP shellcodes.

This allows us to convert 67 out of 68 shellcodes with 1
system-call, into their equivalent PCOP shellcodes !. There-
fore, this evaluation shows that 42% of the Shell-storm library
shellcodes can be used in a PCOP attack.

8 Related work

In this section, we review a number of works that are closely
related to our work. In 2010, Bletsch, et.al introduced the
jump oriented programming (jop) method [1]. They proposed
a so-called dispatcher gadget as well a dispatch table and
claimed that in JOP control flow can be driven without rely-
ing on the stack. But by analyzing their proposed sample
attack in [1]’s technical paper, we observed that JOP uses
the stack at least for loading the appropriate pointers to the
dispatch table. They also mentioned (probably for the first
time) that the call-ending gadgets can be used in a code-
reuse attack. However, since in their method no mechanisms
is incorporated to naturalize the side effects of call-ending
gadgets (e.g. removing the undesired return values from the
stack), the call-ending gadgets can only be placed at the end
of the gadget’s chain, so they do not have any negative effects
on the control flow. In fact, having intermediate call-ending
gadgets if not impossible is quite hard. Their sample JOP
attack depicted in Fig. 5 of [1]’s technical report shows this
fact too.

In 2014, Goktas et.al, proposed to use call gadgets to
bypass the CCFIR [20] detection method and call functions
in Windows operating system [10]. They introduced entry
point (EP) gadgets that are blocks of instructions starting at
a function’s entry point and ending with an indirect call or
jump. By chaining such gadgets, they can invoke arbitrary
function in Windows. Using the Goktas’s proposed EP gad-
gets in Linux operating system to build a chain of call-ending
gadget is mostly infeasible due to some reasons. First, the
large number of instruction in the EP gadgets rises the prob-
ability of disrupting the control flow structure of the attack

! One question that might come into mind is that why one of the
1-syscall shellcodes cannot be converted into its equivalent PCOP shell-
code. The reason is that this shellcode code used in Forkbomb attack,
uses the sys_fork syscall (No. 0x02) and In the libc library (ver.2.19),
there is no kernel-trapper gadget with sys_fork syscall.
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(e.g. in the stack frame). Second, it has a similar limitation
as of return-to-libc because it can only call functions not any
desirable functionality. And finally, this mechanism cannot
be used in Linux operating system because the EP gadgets
are not available in the beginning of functions. By analyzing
all the functions in libc-2.19 library, we found that all the
gadgets that begin from the start of a function are ended with
a direct call instead of indirect call or jump. And since the
target address in such calls are direct (specified in compile
time), performing a PCOP attack using such EP gadgets are
impossible or at least quite hard.

In 2014, Wagner and Carlini, proposed an idea for using
call-ending gadgets and called it call oriented programming
[2]. Their idea is to use gadgets that end in double indi-
rect calls (The target address is in a memory address which
is pointed by the register specified in the call’s operand).
They also mentioned that a PCOP attack does not need a
dispatcher gadget and it suffices that each of the functional
gadgets points to the next functional gadget. Moreover, they
explained that to launch a successful code-reuse attack, one
cannot solely rely on call-ending gadgets and ret-ending gad-
gets are still needed. Note that limiting the PCOP gadgets to
those with double indirect calls, lowers the number of avail-
able gadgets and thus lowers the possibility of designing and
launching a successful PCOP attack. Moreover, the invoca-
tion of the call instruction pushes a return address to the stack,
and disrupts the PCOP’s control structure, but no solution has
been proposed in this paper to address this problem. Because
of these limitations, the authors conclude that launching a
PCOP attack without using the classic ret-ended gadgets is
quite hard and no proof-of-concept PCOP exploit has been
proposed in the paper.

9 Conclusion

In this paper, we presented techniques for pure-call oriented
programming (PCOP), a new class of code-reuse attacks that
solely relies on call-ending gadgets. We discussed the side-
effects of frequent use of the call instruction, and proposed
new gadgets that allow us to neutralize these side effects and
chain the gadgets. Using the proposed gadgets, we redesigned
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two attack models to take advantage of the proposed gadgets
and perform PCOP attacks. We then presented TinyCOP, a
form of a PCOP attack that uses minimal number of gad-
gets to avoid being detected by defensive mechanisms. We
also introduced a real PCOP shellcode that spawns a Linux
shell using only two call-ending gadgets. Finally, based on an
analysis of the Shellstorm library and the fact that PCOP is
Turing-complete, we showed that our proposed PCOP attack
model is quite practical by demonstrating that many classi-
cal shellcodes can be converted into their equivalent PCOP
shellcodes.
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