
J Comput Virol Hack Tech (2017) 13:109–123
DOI 10.1007/s11416-016-0276-0

ORIGINAL PAPER

Chronicle of a Java Card death

Mozhdeh Farhadi1 · Jean-Louis Lanet2

Received: 10 December 2015 / Accepted: 24 April 2016 / Published online: 17 May 2016
© Springer-Verlag France 2016

Abstract Various attacks are designed to gain access to
the assets of Java Card Platforms. These attacks use soft-
ware, hardware or a combination of both.Manufacturers have
improved their countermeasures to protect card assets from
these attacks. In this paper, we attempt to gain access to assets
of a recent Java Card Platform by combining various logical
attacks.Aswe did not have any information about the internal
structure of the targeted platform, we had to execute various
attacks and analyze the results. Our investigation on the tar-
geted Java Card Platform lead us to introduce two generic
methods to gain access to the assets of Java Card Platforms.
One of the new methods we present in this paper is based on
the misuse of the Java Card API to build a type confusion
and get access to the objects (including cryptographic keys)
of a Java Card applet. The other method is a new approach
to get access to the return address of the methods in Java
Cards with Separate Stack countermeasure. We also propose
a pattern that the targeted platform uses to store data and
code of applets on the card plus the ability to read and write
in the data and code area of the applets in different security
contexts. These new attacks occur even in the presence of
countermeasures such as Separate Stack for kernel and user
data, indirect mapping for objects addressing and firewall
mechanisms.

Keywords Java Card Platform · Attacks · Memory layout ·
Type confusion · Cryptographic key · Change Flow Control

B Mozhdeh Farhadi
mojde.farhadi@gmail.com

Jean-Louis Lanet
jean-louis.lanet@inria.fr

1 Tehran, Iran

2 INRIA, LHS-PEC, 263 Avenue Général Leclerc, 35042
Rennes, France

Attack · Separate Stack · Frame overflow and stack
underflow · Countermeasures

1 Introduction

The smart card is a plastic card equippedwith a securemicro-
controller. These cards are mostly used by applications that
require some user specific data to be stored and retrieved in a
secure way, e.g. identity, banking or e-passport applications.
In most cases, the card may store some sensitive personal
data, such that it becomes necessary to protect this data from
unauthorized access. Smart cards provide several assets like
PIN, keys, cryptographic algorithms and processes to protect
the stored sensitive data from outer world. Accessing the data
is only possible when the accessing entity proves that it is
authorized to have access to them. Unfortunately most cards
are prone to attempt to retrieve these assets.Many efforts have
been made by the smart card manufacturers to increase the
security of cards to mitigate these attacks. In this situation,
there is a type of smart cards called Java Cards which suffer
more attacks due to the possibility to load programs after
issuance. Evaluating the risk and thus the security of such a
product is of a prime importance.

We have developed in the past several attacks [7,16,19]
that target different elements of Java Cards. In this paper,
our goal is to evaluate how a given Java Card mitigates these
attacks and to identify possible ways to break the security
and get information about the Java Card Platform. We use
the paradigm of attack tree [7] as a generic representation of
our know-how on the different scenarios to attack the card.
The attack tree also represents the mitigation mechanisms
implemented. All these possibilities are possible attacks, we
need to characterize the platform to check if a given sce-
nario can be instantiated upon it. Then, we use experiments

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-016-0276-0&domain=pdf

110 M. Farhadi, J.-L. Lanet

to definewhich branch of the tree can be used to insert hostile
code into the card in order to dump the memory.

This methodology helps us to optimize the attack (min-
imizing the time spent to search vulnerabilities). At a first
glance, the card mitigated most of our attacks except one:
the basic getStatic. This attack is no longer used, requir-
ing too much time to dump the memory: 24 h compared to
the couples of minutes of an up-to-date attack for dumping
memory of the card. Nevertheless, we understood several
mechanisms used in the card. Analyzing the results, we dis-
covered a new type confusion in the system. The idea is
related to a weak implementation of the API Util of the
Java Card specification [24]. The platform was vulnerable
against our new attack which we fully describe in experi-
ments section. This vulnerability has allowed us to dump the
memory as expected, but the most important was to perform
in-line code injection in the memory. Thus, we bypassed the
firewall mechanism, which in turn allows us to read data of
other applets and in particular their secret keys. We observed
that this card didn’t implement secure containers and keys
are stored unencrypted in the memory. We also investigated
the possibility to generate a buffer overflow and we develop
the concept of frame overflow that allows us to overcome the
split stack countermeasure.

The chip and the cryptographic libraries of the card we
used for our investigations are certified by a major European
certification center but the platform itself has no certifica-
tion. The Java Card Platform has been launched in 2013,
and implements some up-to-date countermeasures like sep-
arate evaluation stack. We applied our methodology and we
observed that this platform is a weak implementation of the
specification which includes a weak array bound check and
the possibility to use a reference of an instance instead of
a reference of an array. This new attack path and the frame
overflow has been added to our attack tree. We propose sev-
eral countermeasures and in particular the concept of secure
linker tomitigate the possibility to use the basicgetStatic
attack.

The rest of the paper is organized as follows, first we recall
the different elements that participate in the security of the
Java Card Platform. Second we present the different soft-
ware attacks that have been proposed in the literature. Third
we introduce our methodology using attack trees. Fourth we
describe our contribution and the experiments on the platform
to instantiate our methodology. Sixth, we propose counter-
measures in order to mitigate our attack and last we conclude
in the last section.

2 Java Card security

Java Card is a smart card which embeds a lightened ver-
sion of the Java Platform, and whose applications follow the
programming model of applets. They are developed accord-

ing to Java Card specifications and thus the applications are
independent of specific hardware. A Java Card allows differ-
ent applications to be resident in separate environments (i.e.
security contexts) at the same time. It also allows loading
new applets even after card issuance. To install an applet, it
should be converted to CAP (Converted APplet) file format
and then loaded using a dedicated secure loader.

As a Java Card Platform encapsulates the underlying com-
plexity and details of the smart card system [10], a Java Card
applet is normally less complicated than a native program.

The security features of the Java Card Platform is com-
prised of the security of Java language and the security
features defined in the Java Card Platform [10].

The following is a list of Java language security features:

– The Java language is a strongly typed language. The Java
compiler checks all operations against Type mismatches.

– The Java language does not allow array indices to access
memory out of the allocated array boundaries area.

– The Java language does not allow pointer arithmetic.
Thus, The Java language prevents known security risks
of C and C++ languages.

– Access to all classes, methods, and fields is controlled in
regard to the defined level of access. The level of access
can be public, protected or private [27].

The Java Card Platform has security mechanisms such as
Byte Code Verifier (BCV), Firewall and GlobalPlatform
(GP).

– BCV: The Java Card uses a BCV to ensure that applets
respect the semantical constraints. The verification of the
applets can be done either on card or off-card. The off-
card verification of applet is done after the conversion
of the applet to a CAP file. If the file passes the off-
card verification process, it can be loaded and installed.
It is also possible to sign the verified file before loading
it into the card. This ensures that the verified file will
not be changed before the loading process started. The
verification phase can also be done on card before the
CAP file installation. But due to limited resources and
the resource consuming nature of the BCV, this feature is
optional andmost of the timeverification is doneoff-card.

– Firewall: The Java Card Platform uses a firewall mech-
anism to separate the applets and their access to other
applets data or resources. The embedded firewall per-
forms dynamic checks to prevent applets from accessing
(reading or writing) data of other applets.When an applet
is created, the system uses a unique Applet IDentifier
(AID) from which it is possible to retrieve the name of
the package in which the applet is defined. From this
AID a security context token is derived. If two applets
are instances of classes from the same Java Card pack-

123

Chronicle of a Java Card death 111

age, they belong to the same security context. Thefirewall
isolates the contexts such that, a method running within
a given context cannot access any attributes or methods
of objects belonging to another security context unless
it explicitly exposes features via a Shareable Interface
Object (SIO). Thus, at runtime, the interpreter verifies
that the owner context of an accessed object is equal (or
compatible) to the current context. Under some circum-
stances, the context can be different, i.e. The runtime can
access any object belonging to application contexts if it
has specific privileges.

– GP: There exists a standard to manage the life cycle of
applets on the Java Card. The GP standard controls the
process of loading, installing and deleting applications
from the card. For example, the GP checks if the load-
ing process obeys the loading protocol defined in the GP
standard, or if the loader is authorized to load new applets
into the card or not.

There are also programming rules which must be respected
by the applications; those rules are statically checked but are
not mandatory (e.g. controlled use of the getKey method,
no use of the method setValidatedFlag,…).

Security certification of a Java Card product comprises the
security certification of card hardware, platform and applets
loaded on the card. But, to account the relation between its
elements, it is necessary to evaluate the security of a device
also as a whole system. In order to have a good security
analysis, it is beneficial to think as an attacker and try to
investigate various methods to threaten the security of the
card under evaluation. An attacker can use hardware, soft-
ware or a combination of these two to break the security of
a Java Card.

Smart card security is a complex problem with different
aspects. Products based on the Java Card Virtual Machine
(JCVM) have successfully passed real-world security evalu-
ations like CommonCriteria [11] for major industries around
the world. During certification, the evaluators apply state of
the art attacks in order to assess the level of resistance of
the product. A certified Java Card Platform has passed high
level security evaluations, for instance, by banking associ-
ations and by leading government authorities. Despite the
above drawbacks, Java Cards still remain the more secure
device for storing secrets.

3 State of the art of software attacks on Java Cards

Software attacks use software or logical methods to get
access to the assets of the card. These attacks are more
common than hardware attacks because they do not need pro-
fessional equipment. Examples of software attacks in the Java
Card are: CAPfilemanipulation, shareable interfacesmecha-
nism abuse and transactionmechanism abuse. An example of

hardware attacks is fault attacks which use physical devices
or physical manipulation to cause an unplanned behavior of
the card which may lead to information leakage [17]. Since
the seminal work of E. Poll in [23], where the author made a
complete survey on different attacks and their countermea-
sures several new attacks have raised targeting different type
of memory or techniques to dump the memory or execute
arbitrary code.

In [1], Barbu et al. proposed a combined attack where in a
preliminary phase they use a laser to allow them the execution
of an ill-typed applet. Their applet is installed on the card
after it has been checked by a BCV. It is then considered as
a structurally and semantically valid applet. The aim of their
attack is to create a type confusion to forge a reference of an
object. The authors also explained the principle of instance
confusion, similar to the idea of type confusion where the
objective is to confuse an instance of object A to an object
B by dynamically inducing a fault using a laser beam during
the checkcast instruction. As they designed the platform,
they have been able to perform easily their attack having a
complete knowledge of the virtual machine internals.

Software based attacks require less instrumentation and
thus cost quite nothing. It relies on the fact that the code has
not been verified or it exploits a vulnerability hidden in it
later. A flaw in the BCV has been found by [15] or more
recently in [20] that has led to a new version of the BCV.

There are many assets in a card that can be either data or
code. Often, one tries to recover or modify the value of keys
which is known to be a hard task. But the code can also be an
asset to protect. If manufacturers succeed to protect data, it is
often much easier to break the integrity of the code as a first
step before attacking the data. In the next section, we present
some successful approaches to gain access to the code stored
inside the card.

3.1 Methods to get access to the EEPROM

There are at least two ways to read the content of the EEP-
ROM memory, using getstatic instruction and array
extension approach. The getstatic instruction allows us
to read a memory address with an offset given as a parame-
ter. The offset is in fact a token that the embedded linker
resolves during the load process. In order to avoid the link-
ing effect, one can modify the Reference Location
Component of the CAP file as explained in [19].

Within this approach, by loading such an applet, it is pos-
sible to gain access to the content of one memory address.
For accessing another one, the attacker must upload a new
applet. To overcome this limitation, several approaches have
been used to allow the execution of a shell code with self-
modifying code, which allows a quick dump of the whole
memory. The most used is the EMAN2 attack [7], where the
authors use an illegal local variable index to have access to the

123

112 M. Farhadi, J.-L. Lanet

return address of the current method, thus allowing them to
execute data contained in an array, after the execution of the
method completes. The hidden code in the array performs
EEPROM dump which leads to information retrieval from
the platform. Another way to update the return address is the
sinc instruction. The sinc instruction aims to increase a
local short variable by a constant value given in its parame-
ter. Normally, during the installation process, the BCV takes
care of checking the index of manipulated local variables.
A lack of checking would lead to a successful control flow
transfer attack.

In [14], Faugeron presented another way to fool the Java
Card runtime based on the dup_x instruction. This instruc-
tion duplicates the top of operands stack words and inserts
them below. If the Java Card operands stack does not contain
enough elements, the runtime uses the system data as words
for the dup_x instruction. Thus, an attacker can shift the
value of the frame header by a custom words pushed on the
stack.

One can find plenty of avatars of these attacks like
swap_x instruction. This instruction swaps words on the
top of stack. The swap_x takes as parameter the value mn
and swaps m words with n words. If the stack contains less
than m+n words, the swap_x instruction will make a stack
underflow.With the appropriate values, the frame header can
be overwritten leading to the execution of a shell code which
will dump EEPROM memory.

Of course several countermeasures have been designed to
avoid an illegal use of the getstatic instruction or control
flow attacks. We can cite at least:

– Some old smart cards refused to load applications con-
taining static instruction. Even if very efficient, such
a card does not implement the specification;

– The pool of static is another encountered countermeasure
where only a subset of the address range can be eligible
to use with the static instruction. The pool can also
be implemented with a linked list of static variables;

– The most implemented countermeasure is the control
flow check. Within this countermeasure each destination
of a jump is checked to remain within the span of the
current method; this should mitigate the execution of a
shell code in an array;

– Secure design of the on board linker. We have found dif-
ferent degrees in the implementation which can be non-
functional, functional but insecure and functional and
secure. Thiswill be explained in Sect. 6, it requires to ver-
ify carefully the token of the Reference Location
component;

Recent cards are implementing at least one of these counter-
measures in such a way that the control flow attack becomes
more difficult.

The race between defender and attacker leads to attacks
against these countermeasures. The one related of the jump
destination has been bypassed easilywith an attack presented
in [13] where the authors manage to extract the control flow
from the shell code in such a way that only sequential parts
stored in an array are executed outside the span of themethod.
They resume the control flow to the caller with enough infor-
mation to perform a semantically equivalent program. To
bypass the Separate Stack counter measure, the authors in
[7] use the specificity of the jsr/ret instructions to exe-
cute a shell code within the span of the current method, thus
avoiding the previous mitigation mechanism. Moreover they
just need to embed and execute dead code.

The second way to get access to the code, is obtained by
array extension attack. If an attacker increases the size of
an array, he will succeed in reading more bytes than those
contained in the original array. In the first publication [18]
on this topic, the authors abuse the shareable interface. The
main goal was to obtain a type confusion without the need to
modify CAPfiles. They created two applets which communi-
cate using the shareable interface mechanism and each of the
applets uses a different type of array to exchange data. Dur-
ing compilation or at load time, there is no way for the BCV
to detect such a problem. The array extension attack has been
solved by counting the number of bytes instead of the num-
ber of elements of the array. The authors suggested another
issuewith the transactionmechanismused tomake a group of
operations become atomic. The specification expresses that
the rollback mechanism should de-allocate any object allo-
cated during an aborted transaction, and reset references to
such objects to null. However, in some cases the cards keep
the references of objects allocated during transaction even
after a roll back which allows them to reallocate a new array
with a different type (this is a type confusion attack) to get
access to the data or code located after. This scenario allowed
the authors of [8] to successfully perform a type confusion
attack. They have been able to modify the size and the area
of a transient array, providing them the ability to dump the
entire EEPROM area.

3.2 Access to the ROM area

If accessing the EEPROMarea is an easy task, even on recent
European smart cards, accessing the ROMarea or the crypto-
graphic processor area is more difficult. The first attempt [5]
refers to the ability to read the content of the ROMon a rather
old model of smart card. The author has found an indirection
table in the EEPROM area where at least one method of the
API was patched. The patch was stored inside the EEPROM
area. He demonstrated the ability to add an entry in this table
that refers to a code he inserted written in native code. This
code just dumps the content of the ROM by bypassing the
virtual machine protections. The author tries to reverse the

123

Chronicle of a Java Card death 113

code, in such a way that some of the methods have been
completely reversed. It seems that the code is not completely
reversed due to a lack of time or the lack of reverse engineer-
ing knowledge. He shows also that some recent cards suffer
from the same issue without being able to exploit it.

In amore recent exploit [20], the authors show that it is still
possible in a modern card, to execute native code. The idea is
to use the inconsistency of a field in the virtual method table.
This allows them to use the header of amethod to generate the
expected offset. Then, while invoking this method, the con-
trol flow jumpswhere the designer expects, leading to execute
a payload. Having an access to the source code of the prod-
uct, the authors are able to derive the control flow to a native
payload executed from the content of the APDU buffer via
an indirection in the communication buffer of the NFC chip.
This allows them to execute any Advanced RISC Machines
(ARM) code, which in turns gives them access to the binary
code of the virtual machine and all the counter measures.

4 Methodology for security evaluation

The first step is identifying the assets that the attacker wants
to have access to, and then verifying the possibility of threats.
From an attacker point of view, the threat analysis can be con-
sidered as its know-how on a generic target. There are several
methods to represent threats but the attack tree model gives
us a global view on the vulnerability of the device. Attack
trees have been introduced by Schneier in [26], they form a
convenient approach to analyze the different ways in which
a system can be attacked. It is an analytical technique (top-
down) where an undesirable event is defined and the system
is then analyzed to find the combinations of basic events that
could lead to the undesirable event. The refinements are com-
bined using conjunctive or disjunctive gates. The undesirable
event represents either the objective of the attacker or a prop-
erty of the asset to protect by the defender. The seminal work
of Schneider has been extended to Defense Trees [4], Attack
Countermeasure Trees [25], Boolean logic Driven Markov
Processes [9] and so on.

With this formalism, it is possible to represent all possible
paths allowing the attacker to succeed in reaching the root
node. Nevertheless, the attack tree represents only a static
view for the attacker, i.e a generic framework for attacking
the device. Thus, it needs to be instantiated for a given prod-
uct. In [7], the authors applied the attack tree analysis to
have a global view on the vulnerability of the smart card.
Having an attack tree for an asset, we need to verify with
experiments if a given branch of the tree is possible, i.e. no
countermeasure will mitigate this attack. Experiments form
the instantiation of the attack tree on a given product. The
assets to be protected are the code and the data. The prop-
erties to be checked on each of them are confidentiality and
integrity. So, we have four attack trees. In this paper, we will

only develop the code confidentiality attack tree which is the
conjunction (OR gate) of two subtrees: Control Flow Attack
(CFA) and Array Extension Attack (AEA). We will develop
in this paper only the CFA subtree. Our new attacks which
is presented in this paper, add new branches to both the CFA
and AEA subtrees.

Such an analysis is closed to the risk analysis commu-
nity with the cause-effect diagrams. An attack tree is a tree
in which the nodes represent attacks. The root node of the
tree is the property that an attacker wants to break. Children
of a node are refinements of this goal, and leafs therefore
represent initial causes. An attack tree is not a model of all
possible combinations but a restricted set. It is related to the
evaluated property. In this case, code integrity is the most
sensible property, because if it is not guaranteed, it enables
the attacker to execute any arbitrary code.

Figure 1 shows the both sides of attack and defense con-
cerning the possibility to execute a shellcode. If the BCV
can be bypassed (D5) and if there is no strict implementa-
tion of the Reference Location verification (D4) and
if the usage of the static is not controlled (D6), then possible
attacks are either the basic getStatic attack (A1) or any
attack related to the return addresses. To execute the latter, it
requires that the card does not implement a Separate Stack
(D1) for system and data. If there is no frame integrity (D2),
then the Faugeron attack is possible (A3). If it does not imple-
ment checks on local values (D3), then the EMAN2 attack
is possible (A2). As one can see, the higher in the tree the
countermeasure is, the better its coverage is.

A strict implementation of the Reference Location
check seems obvious, but it is only implemented by a little
number of JavaCards. The next step is to characterize if some
countermeasures are implemented in order to set up the opti-
mal attack requiring the minimum effort for the attacker. In
a perspective of an evaluation lab, the attack tree points out
the parts of the software that need to be carefully verified.
A simple set of ill-typed applets can verify how the counter-
measures are implemented.

5 Experiments

In this section, we describe various experiments designed to
retrieve information from internal structure of a Java Card
2.2.2 and GP 2.1 platform. The targeted Java Card Platform
has a 32 bit processor, with 256 KB of ROM, 40 KB of
EEPROM and 10 KB of RAM. As we have no information
about the internal structure of this platform, each experiment
improves our understanding about the platform. In order to
retrieve information from our targeted Java Card Platform,
we follow attacks published in recent scientific papers and
define them in the attack treewhich is introduced in the previ-
ous section. Someof the attacks are not completely applicable
because of the countermeasures defined in the JavaCard Plat-

123

114 M. Farhadi, J.-L. Lanet

Fig. 1 A CFA with the
corresponding countermeasures

A1:Basic
getStatic

CFA

A2:EMAN2 A3:Faugeron

D1:Separate
Stack

D2:Frame
integrity

D5:BCVD4:Ref Loc
Check

D3:Check
local

variables

D6:Check
Static Usage

D2:Frame
integrity

form that we are performing experiments on it. Our under-
standing of the targeted Java Card is mostly based on ana-
lyzing results of the card dump which is an exhaustive work,
but we show that this method is the main method that applies
well in our targeted platform. To perform our experiments on
the card, the ability to load and install applets is assumed as
a perquisite, thus we used a development Java Card.

5.1 Limitations of the basic method

We consider that the BCV is not used, this hypothesis
removes the countermeasure (D5). A simple check verifies
that this card does not implement the strict Reference
Location countermeasure (D4). Then, we try to determine
which leaf of the left branch of our tree can be exploited.

As described in Sect. 3.1, one of the methods to dump
memory is using getstatic op-code (A1). Using
getstatic op-code with different memory addresses as
operands to dump the card has some drawbacks. For exam-
ple: a high stress on the twomemory cells that store operands
of getstatic op-code and also low speed of dump oper-
ation. The authors in [19] proposed a new technique (A2)
to read memory content of different addresses using a mali-
cious code which is stored inside a transient array. In their
method, getstatic op-code and its operands are stored
as elements of an array which is called malicious array. In
order to read memory content of a desired address, we only
need to change the two array elements which correspond
to the operands of getstatic op-code. To complete this
attack, it is needed to redirect program flow to the content of
the malicious array using invokestatic op-code leading

to a self-modifying code. Thus we need to know the refer-
ence of this malicious array first. In our targeted platform,
we intend to use the described technique to dump the card
and then to analyze the results. We get a reference of the
malicious array and then change array elements correspond-
ing togetstatic op-code inmalicious array. After several
experiments, we conclude that memory content at returned
reference does not contain malicious array data. Also read-
ingmemory content of addresses around this reference do not
contain our malicious array data. As we do not have access to
the actual reference of the malicious array in our applet code,
the methods that are based on finding a reference of an array
to redirect program into its contentwill notwork.As themen-
tioned smart approaches described in [7] and [14] do notwork
with our platform, we decide to dump whole memory using
getstatic. We search the content of our malicious array
in the dump to find relation between array reference and the
actual reference that the array elements are stored there. As
the platformdid not implement the pool of static countermea-
sure (D6), we are able to usegetstatic op-codewith vari-
ous addresses to readmemory content of them. Thus, we start
with a static array and search for its content in the memory.

5.2 Access to static data

Based on the experiments, we could not get access to the
content of an array in our targeted platform. Thus, in this
section we try to dump the whole memory of the card in
order to find the relation between the returned reference of
an array and the actual reference where the array elements
are stored. We write an applet which uses getstatic op-

123

Chronicle of a Java Card death 115

Fig. 2 Memory layout of the
targeted platform

code and then modify the corresponding CAP file in order
to read the memory content at the desired addresses. The
getstatic op-code has two operands which construct an
index into the constant pool component of a package. As
we want to directly read memory contents at addresses that
are presented as operands of getstatic op-code, we cut
the link between getstatic operands and items of Con-
stant Pool component (bypass D4). We remove this linkage
data which is stored in the Reference Location component.
After thesemodifications of the CAPfile, we obtain an applet
which has memory dump capability for desired addresses in
the range of 0 to 65535. We insert a static array in our applet
and fill the array with some distinct values in order to search
the dump result for these indicated values. In the dump result
of the card, we find the area where the code of our applet is
stored, but we can not find data of the defined static array.
Thus, two hypotheses are raised. The first one is that the data
of the static array are encrypted. The second hypothesis is
that array data are stored in plain in the card but not in the
scope of our dump. In order to check the first hypothesis, we
change the value of our static array and dump the card again
to see if the dump result is changed. But in the dump result
we do not observe any remarkable change. So the second
hypothesis should be tested. In our experiments, we did not
find any trace of the array’s data in the area that the reference
of the static array were pointing to it. Thus, we conclude that
there might be an indirection table that maps these references
into other addresses where the array data is actually stored.

5.3 Get access to the other security contexts

In this section, our objective is to change the scope of our
dump by dumping memory of the card using another applet.
With this method, we want to investigate if the second raised
hypothesis in the previous section is correct. Thus, we install
another applet with the same code in another package while
the previous applet also exists on the card.We dumpmemory
of the card from address 0 to 65535 using the second installed
applet. At the dump result, we see applet code of the first and

second installed applet. As AIDs in the CAP file of the two
applets are different, code of applets can be distinguished
from each other. In the dump result, we recognize an area
which contains the static array data. As the content of the
static array for the two installed applets are the same, we
iterate the experiment with a change in the array content of
the applets to verify to which applet belongs the found array
data. It reveals that the found array content belongs to the
firstly installed applet in the card.

We repeat this experiment with more than 2 applets in
different cases. Finally we conclude that the data of an applet
is stored at places which are non-accessible for the applet.
So, if we start dumping the card using getstatic op-code
from address 0, the first thing we get is the code of the applet,
while the data of the applet is stored in addresses before the
code section. So, this is the reason why the data of the applet
is not accessible in the dump result of the dumper applet.
This inability to obtain the applet’s data can be considered as
a countermeasure. The Fig. 2 represents layout of the applets
in the targeted Java Card Platform.

We conclude that, while we may not be able to observe
the static data related to our applet in the dump, it is pos-
sible to get access to data of other installed applet in the
card as long as they are installed before our applet even if
they belong to another security context. This ability to see
data and code of previously installed applets highlights the
importance of blocking attackers from installing applets after
card issuance. As stated in previous sections, the presence of
firewall mechanism will not stop attacks based on misuse of
the getstatic op-code. With the use of the information
retrieved from analysis of the dump result and putstatic
op-code, we are able to change the code and the data of pre-
viously installed applets on the card.

5.4 A novel approach to build type confusion using Java
Card API

Type confusion is a technique that uses an unexpected type in
order to illegally access the content of an object. In JavaCard,

123

116 M. Farhadi, J.-L. Lanet

the specification of the API expresses which type has to be
used for calling a method. The arrayCopyNonAtomic
method of the class Util which belongs to the pack-
age framework is of a particular interest. Its signature
is as the following: arrayCopyNonAtomic(byte[]
src, short srcOff, byte[] dest, short
destOff, short length).

It copies the content of source array src which is of type
byte, into another one of the same type dest. The idea is to
change the type of the src object and to try other types like
instances of classes. The type system of Java Card specifies
that an array inherits from object. In Java Card, each kind
of array (byte, short, etc.) is on distinct branches of the tree
separated from the classes. To the best of our knowledge, this
type confusion has never been published.

The virtual machine relies on the BCV to ensure the type
correctness of the parameters. Due to our threat model, this
verification is not performed. Thus, if there is no BCV and
no run time checks, a type confusion concerning the first
parameter is possible. If the src belongs to another branch
of the type system and in particular an instance, it becomes
possible to copy the instance into the APDU buffer. On a
few smart cards, there is a run time check to ensure the type
compatibility. We discover that this card does not protect
itself against this attack vector. This attack can be added to
the attack subtree: Array Extension Attack (AEA) related
with array type confusion (not presented here).

5.5 Retrieving the key

As described in the previous section, when a card did not
implement a BCV or a run time check to ensure type com-
patibility, there would be a possibility to get access to the
data of one type as another type. In this section, we describe
our method to get access to a key object as an array. Due to
the fact that there are various ways to read data of an array,
we use this type confusion to read value of a key. To perform
this attack, we define a Triple DES key in an applet and
insert the code described in Listing 1 into the applet:

Listing 1 Method used to retrieve key

public short CopyObject(byte[]
dummyArray , DESKey deskey ,
APDU apdu){

Util.arrayCopyNonAtomic(dummyArray , (
short)0, dummyArray ,
(short)0, (short)16);

apdu.setOutgoing ();
apdu.setOutgoingLength ((short)(16));
apdu.sendBytesLong(dummyArray ,(short)

0, (short)16);}

The corresponding opcode of Listing 1 is changed as
shown in the Listing 2. In the modified version, the key is

provided to the arrayCopyNonAtomicmethod as source
parameter.

Listing 2 Code snippet of CopyObject method

19 aload_1 -> 1A aload_2
03 sconst_0
19 aload_1
03 sconst_0
... ...

We execute the applet which contains the modified code. As
the applet is not stopped with an error, we notice that the
stack of the platform is not typed and we can continue with
the type confusion attack. The data returned from the code
might be the keymeta-data or the key in an encrypted format.
As the platform did not detect any type confusion attack, we
check addresses around the reference of the key to see if there
is any valuable information there. We need to find reference
of the key and to read addresses around this reference as an
array. It is shown in Listing 3; the code used to retrieve the
key reference.

Listing 3 Method used to get key reference

public short getKeyAddress(DESKey
deskey){

short dummyValue = (byte)0xAA;
return dummyValue;
}

The corresponding code of method getKeyAddress is
represented in Listing 4. Listing 5 represents the malicious
modification of Listing 4.

Listing 4 Original code of getKeyAddress method

Public short getKeyAddress
(DESKey deskey){

03 // flags: 0 max_stack :1
21 // nargs: 2 max_locals :3
10 AA bspush 0xAA
31 sstore_2
1E sload_2
78 sreturn
}

Listing 5 Modified code of getKeyAddress method

Public short getKeyAddress
(DESKey deskey){

03 // flags: 0 max_stack :1
21 // nargs: 2 max_locals :3
10 AA bspush 0xAA
31 sstore_2
19 aload_1
78 sreturn
}

With the use of getKeyAddress method, we find
0x00B7 as the key reference. Next, we need to use the op-
code represented in Listing 6 to read references around this

123

Chronicle of a Java Card death 117

address. In the corresponding listing, XX represents address
of the objects that we read as arrays .

Listing 6 Malicious code to retrieve information as array object at spec-
ified addresses

11 sspush XX
28 astore 04
15 aload 04
03 sconst_0
19 aload_1
03 sconst_0
10 bspush 0x10
8D invokestatic arrayCopyNonAtomic
0B pop
1B aload_3
8B invokevirtua lsetOutgoing
0B pop
1B aload_3
10 bspush 0x10
8D invokevirtual setOutgoingLength
1B aload_3
19 aload_1
03 sconst_0
10 bspush 0x10
8D invokevirtual sendBytesLong
7A return

At the address 0x00B8, we find the key data. At a first
glance, we may think it might be the array that we used for
key initializing, but after investigation on the reference of
the key initializer array, we observe that the reference of this
array is different than 0x00B8. Also, if we change the value
of the key initializer array after key initialization; the result
shows no change in the value returned as key value. Thus,
We conclude that, the gained value belongs to the key value
and no other object in the applet.

As in the buildKey method of KeyBuilder class,
the key encryption parameter is set to false, we change this
Boolean to true and expected to get the key in encrypted
format. But the key is always returned in plain format. We
conclude that, no secure storage for the keys is implemented
in this Java Card Platform.

5.6 Object overflow

Using the arrayCopyNonAtomic, we observe that the
size of the original source array is not checked. This opens
the possibility to break the confidentiality of the data. We
experiment this weakness while copying an object into the
destination array. We observe a strange behavior of the card.
If we copy This object into the APDU buffer, we get data
stored after This and in particular the CAP structure as
shown in Fig. 2. So the embedded code is visible which
allows us to understand how the card manipulates inter-
nally the references. Moreover, reversing the elements of
the arrayCopyNonAtomicmethod (change the src and
dest) allows us to write from the buffer APDU directly into
the memory. This leads to store our own code directly into

Fig. 3 A portion of the dump

the card, just with an API call to the adequate function with
a single APDU command. This adds a new branch into the
CFA tree, which will be discussed in Sect. 5.8.

In the Fig. 3, we have used the described method to
dump 256 bytes of the this object. This applet contains
three static fields and two instance fields. We observe that
0x00C8, 0x00C9 and 0x00CA are offsets corresponding
to these three static fields, and 0x00C6 and 0x00CB are
the instance fields. Normally the size of the This object
should be limited to the offsets of the instance fields. We
can remark that, thanks to the absence of bound checks,
we can read in orange the AID of the applet. The bytes
in red correspond to the header of a method 0x01 0x11,
says flags: 0, max_stack: 1, nargs: 1 and max_locals: 1.
Then, in green we can reverse the code of the method:
0x11 0xCA 0xFE 0x30 0x1D 0x78 says sspush
0xCAFE, sstore_1, sload_1, sreturn.

More interesting is the way the static fields are man-
aged with the second method: 0x04 0x80 0x00 0x00
0x05 0x80 0x00 0x01 etc. We reversed the binary
to obtain the following code sconst_1 putstatic_b
0 sconst_1 putstatic_1 etc. With the help of the
source code, we understood that the value 0x00 0x00
corresponds to the first index of the static fields says
0x00C8, and the second to 0x00C9. This has been con-
firmed by overwriting this code with another one, using
the arrayCopyNonAtomic as a write function, reading a
field and storing it into another one.

The next step is to understand how the memory is man-
aged within this card. We try to instantiate twice the applet

123

118 M. Farhadi, J.-L. Lanet

Fig. 4 Description of the
memory management of the
targeted platform

in the constructor. To understand if the this are managed
within a linked list or an array. Surprisingly, this card does
not support multi instances of Applet and returns an error
while executing the second instance creation. Thus, the card
is not compliant with the standard Java Card 3.0 [24].

We use the dumper/dumped approach to gain access to the
data stored before the CAP values, as described in Sect. 5.3.
We load into the card an applet which has static arrays
and one non static array. After dumping the memory, we
observe that the memory management is unconventional.
The heap is located in the same memory segment of the
CAP.

Figure 4 illustrates how the memory is managed within
this card. Objects are allocated from MinObjAddress to
MaxObjAddress. The first allocated object is the unique
this. Then, we observe a yet unknown area, then, the static
data are allocated from min to max offset. After that, we
have the pool of instances, a set of offset followed by the
values of the instances. If an instance is dereferenced, then
the entry is erased from the pool of Instances, while the value
is still present. This seems to be a basic form of garbage
collector.

This approach allows a quick uninstall of the applet having
in the same segment the heap and the code. We can remark
that, this chip has aMemoryManagementUnit, but the devel-
opers did not use this facility or restricted it to the native
layers of the card.

5.7 Frame overflow

In the Java Card, each method call leads to a new frame cre-
ation. The frames which are stored in the Java Card stack,
are temporary data structure which has a set of local vari-
ables and an operand stack. Local variables are the variables
defined in the current method body. In the area of the local
variables, JCVMalso stores variables which are passed to the
method. The operand stack is the areawhich the JCVMstores
variables related to the current method execution includ-
ing constants, reference to static fields, reference to objects

and also values from local variables area. The sizes of the
operand stack and the local variables area are determined
and are hard coded into the header of each method at com-
pile time [21]. The size of the operand stack is referred to as
max_stack.

The Java frame is a non-persistent data structure imple-
mented in different manners and the specification gives no
design direction for it [6]. The JCVM should also store return
addresses of methods as well as other system data like cur-
rent context and frame pointer to control the execution flow.
Various implementations for storing return address structure
can be used. One of the simplest implementations is to store
this data in the method frame. Storing the return address data
in the method frame has the drawback of more convenient
access to this data which leads to the EMAN2 attack. In other
Java Card implementations, Separate Stack for system and
data is introduced. In this way, EMAN 2 attack will not be
applicable in such cards.

In this section, we introduce a new attack to get access to
the return address in the cardswhichhave implemented aSep-
arate Stack countermeasure. This attack is based on the frame
overflow and stack underflow. This work is inspired of a pre-
viously published countermeasure [12] where the operand
stack was split in two parts in such a way we obtain a typed
stack.

In our experiments, we want to get access upper the stack
boundaries and investigate if the return address is stored
above the stack area. In order to do this, we write a recursive
method and call it until a frame overflow occurs. If we call
the recursive method one time before memory error occur-
rence (the frame overflow), then we are near to the maximum
stack boundaries. Thus, we expect that in some transient area,
the return addresses of this chain of recursive methods are
stored. We also know that as the return addresses for all of
these recursivemethods are the same,we shouldfind a pattern
of return addresses in an area of memory where an address
is iterated. The number of iteration should be the same as the
number of the recursive methods call. In the Listing 7 the
recursive method is listed.

123

Chronicle of a Java Card death 119

Listing 7 The recursive method

private void exploreFrame(byte
numberofCalls){
if(numberofCalls ==0)

return;
else

if((numberofCalls ==(byte)1))
{

//an arbitrary code;
//we will change it
//to a malicious code before

loading
//the CAP file into the card
}
exploreFrame(--numberofCalls)

;
}

To understand how the card manages its frame and stack
boundarieswedesign someexperiments. In all of these exper-
iments there is no on card BCV, so a malicious code can be
successfully installed on the card.

5.7.1 Frame overflow and stack overflow

In this experiment, we call a recursive method until we reach
to the maximum allowed numbers of frames. Then we push
more elements on the stack than the max_stack prop-
erty of the method. This chain of push operations cause to
exceed max_stack property of the method. Figure 5 rep-
resents this operation. The dotted line specifies the boundary
of max_stack of the current method.

As the result of the experiment, we find that the card
checks max_stack property of the method and blocks
exceeding themax_stack property by0x6F00 error code.
On the other side, if the number of push operations do not
exceed max_stack property, the method is successfully
executed. As a conclusion, the stack overflow is blocked in
this card. This corresponds to a run time test regarding the
top of stack.

5.7.2 Frame collision

Frame collision occurs if a frame which requires more mem-
ory than available can be built by an invoke op-code. This

Fig. 5 Frame overflow and stack overflow

corresponds to a check while building the frame.We suppose
that the kernel stack is above the data stack and launch some
experiments. In the targeted JavaCard Platform,we could not
cause a frame collision because the max_stack property
of each method is checked by the JCVM. As experiments do
not succeed, the check is correctly implemented. So frame
collision is also blocked in this card.

5.7.3 A new CFA using frame overflow and stack underflow

In this experiment,we check ifwe can access upper than stack
limits by using sload op-code. Thus, when we reach to
the maximum allowed frame numbers, we put various index
values to sload op-code. We call the recursive method in
the Listing 7 one time before frame overflow occurrence,
and then apply sload op-code with various indexes. We
iterate this experiment for 256 times and store the result. The
resulted data obeys a pattern with some fixed values, which
we guess these fix values are return addresses. The number
of these fixed values are equal to the number of calling the
recursive method. After some experiments, we find a pattern
as depicted in the Fig. 6.

Listing 8 The recursive method with an invalid condition

private void exploreFrame(byte
numberofCalls){
if(numberofCalls ==0)

return;
else

if((numberofCalls ==(byte)1))
{

//an arbitrary code;
//we will change it
//to a malicious code before

loading
//the CAP file into the card

}
exploreFrame(--numberofCalls);
if(numberofCalls == (byte)(

MAX_numberofCalls +1))
//this condition will never be

satisfied
ISOException.throwIt ((

short)0x6234);
}

We also change the return address field using sstore
op-code to see if it causes a change in the program flow. We
insert a throwIt line in our recursive method, which is
listed in the Listing 8. This line of code throws an specified
exception. Then we bind this exception to an if condition
that will never be satisfied. Normally we can never receive
the specified exception because the condition is never valid.

In this experiment, we want to check, if changing a byte
in the kernel stack that we recognize as the return address,
will cause a change in the program flow (i.e. cause to receive
the exception at the output). Thus, we change this of the

123

120 M. Farhadi, J.-L. Lanet

Fig. 6 General pattern for
kernel stack

return address to the address of the line of code that throws
an exception.

In the kernel stack, the return addresses of the recursive
methods corresponds to the if condition line. Thus, find-
ing the address of the throwIt line was easy. We change
the return address in the kernel stack to the address of the
throwIt line, using sstore op-code and then we receive
the expected exception at the output. It proves that the recog-
nized byte in the kernel stack, corresponds to the return
address of the method and we are able to change the program
flow by manipulating the kernel stack’s data. The introduced
Frame Overflow and Stack Underflow attack allows us to
replay old attacks like EMAN2 even in the presence of coun-
termeasure like split kernel anddata stack.This shows that the
implementation of a security codemust be carefully designed
and all the issues tackled.

5.8 New branches added to the tree

The arrayCopy attack and frameOverflow attack are
described respectively in Sects. 5.4 and 5.7.3. These two
attacks can be added to the previous tree at a higher level.
For the arrayCopy attack, D4 or D5 or a new one D7 can
mitigate this attack. The D7 countermeasure checks the type
of the element at src and dest of the API call. Other API
methods must be carefully checked and can suffer the same
kind of attack. It must ensure that the elements passed to the
API have a compatible type with the API definition. More-
over a secure implementations of the API must ensure that

the boundaries of the arrays are correctly verified. It must
not be possible to generate a buffer overflow in the memory,
as we did in this exploit. Surprisingly, we have successfully
performed this attack on several smart cards available on
the web stores. Putting this as a parameter instead of an
array, works on different cards, while the absence of the array
bounds checks seems to be specific to this product. The Fig. 7
represents the new branch added to the tree.

The frameOverflow attack, which is introduced in
Sect. 5.7.3, can be mitigated by two countermeasures: D5
or D8 countermeasures must be implemented to prevent this
attack. The D8 countermeasure prevents access beyond the
stack boundaries. The D5 countermeasure which is a BCV,
may not be present on the cards because of its high cost algo-
rithm.

5.9 Conclusion

In this section, we have described various methods to get
information from the internal structure of a Java Card Plat-
form. First, we tried to perform known Control Flow Attacks
to redirect program flow to a malicious code stored in an
array. As in the targeted Java Card Platform, the gained refer-
ence for an array does not directly refer to the array elements,
we were not able to perform such attacks. In order to find the
reference of our intended array in the card, we have proposed
a method based on gaining access to the memory areas using
other applets (i.e. the reference of our intended array can not
be accessed by the applet which the array is defined within).
By the use of this method, we are able to gain access to the
area that is inaccessible from within the targeted applet. We
can get access to the applets code and data by the use of the
getstatic op-code. We also can modify code and data of
the applets by the use of the putstatic op-code even in
the presence of the firewall mechanism in the card.

These experiments highlight the importance of imple-
menting countermeasures against malicious use of
getstatic-putstatic op-codes. By performing
exhaustive analysis of the data gained from this attack we
have an in-depth understanding of the platform internals.

Fig. 7 The new CFA tree

123

Chronicle of a Java Card death 121

We have also proposed a new method to get access to the
applet’s object by misusing arrayCopyNonAtomic API
of the Util package. By the use of the proposed method, we
are also able to retrieve key data from an installed applet on
the card in unencrypted format. It reveals the importance of
secure implementation of standard JavaCardAPI anddesign-
ing secure storage for the applet’s keys.

In this section, we have described our new method to
get access to the kernel stack of the cards. In the proposed
method, we use frame overflow in conjunction with stack
underflow to get access to the return addresses of the meth-
ods. We have used this method to perform a successful CFA
in the cards that are resistant to EMAN2 attack.

6 Countermeasures

This card presents severalweaknesses that allowus to retrieve
the cryptographic keys in plain text. This has been possible
due to the following vulnerabilities which combined provide
this successful scenario:

– Ill-typed applet, this can be mitigated using the BCV
which is the standard procedure. Nevertheless, this
important piece of code must not have any vulnerability
like the one pointed out by Faugeron in [15] or the weak-
ness discovered by [20]. It seems reasonable to embed
run time countermeasures to mitigate any of the afore-
mentioned vulnerabilities,

– It can be seen, that relying on the BCV is not enough
to guarantee the confidentiality of the code segment. We
need to clearly inhibit the getstatic-putstatic
weakness. The pool of static (D6) is of course a good
countermeasure which can be implemented with an indi-
rection table butmore efficient is a secure implementation
of the linker,

– Tomitigate thearrayCopyNonAtomicweakness, the
type of the object to be copied in the array should be
correctly verified. This can be obviously done at run time,
each object carries its type in its meta data,

– Secure container must be implemented according to the
state of the art.When creating a key, it has to be encrypted
whatever the Boolean value in buildKey method is.
The key used for encryption must not be visible to the
attacker, even the header is stored sometime some where
else (ROM, Crypto processor memory, etc),

– Any function that manipulates an array must check the
validity of the array bounds(the number of used memory
cells).

– The frame management must be correctly implemented
(i.e., completely checked) in such a way the stack under-
flow can not generate a frame overflow.

The right countermeasure against a bad usage of the
getstatic-put-static is a secure linker. The Java
Card specification defines the linking step, which is per-
formed in two step one is external (generation of the token)
and one is during the loading of CAP file (resolution of
the token). When the software is loaded into the card, the
Java Card Virtual Machine provides a way to link the CAP
file to install with the installed Java Card API. This step is
performed thanks to a token link resolution references in
the Constant Pool component. To friendly find where
each token is used, the Reference Location compo-
nent keeps a list of offsets, in the Method Component. The
Reference Location componentmakes a link between
each token and theConstant Pool component. There are
two ways to perform the link process.

The linker analyzes linearly the byte array and determines
if the parameter has to be linked. If yes it uses theConstant
Pool component to refer to its internal value and replace it.
Such an algorithm has a complexity of O(n), n being the
number of byte codes in the byte array. The second option
is to use directly the Reference Location component
which directly provides the offset of the token to be linked.
Then, the complexity is O(p), p being the number of tokens
in the Reference Location component.

The value of n is largely greater than p and most imple-
mentations of the linker optimizes the process with the
second approach. This raises two issues: if a token to be
linked is not referred in the Reference Location com-
ponent, the token is let unchanged (principle of the basic
getStatic attack). To be functional, i.e. all the tokens
must be linked, the linear approach must be implemented,
but it is not sufficient. Another issue has been pointed out
in [16] where the authors use the linker to retrieve informa-
tion from the card. Another constraint is that, only the tokens
that follow an instruction requiring a token must be linked.
Then, each time a token is resolved, the algorithm has to
check that the byte code belongs to the set of 43 instructions
requiring a token as parameter. Then, the complexity of the
secure algorithm becomes O(n + 43 ∗ p) which of course is
more costly than the basic algorithm but it is performed only
once. Few implementations respect the first constraint and
only one smart card manufacturer has also implemented the
second one, leading to a secure linker. Implementing a secure
linker completely mitigates the CFA. Other countermeasures
have been proposed in the literature [2] and [3] but most of
them are related to fault injection attacks. In [22] the authors
propose a formal framework for correctly implementing the
transactional mechanism.

This study shows that, although it seems obvious that
several counter measures have to be implemented, but
a correct design of a Java Card Virtual Machine is not
an easy task. Several mistakes have been made on this
product.

123

122 M. Farhadi, J.-L. Lanet

7 Conclusion and future works

In this work, we have presented the evaluation of a develop-
ment card. We have used a black box approach, discovering
step by step the vulnerabilities in the targeted Java Card Plat-
form. At the end, we have been able to get access to the
cryptographic keys by combining the different vulnerabili-
ties. Moreover, we have found a means to directly write our
own code into the Java Cardmemorywith a single command.
This finding offers us the ability to have a sort of an on-line
debugger which gives us the ability to completely explore the
targeted Java Card. Then we have characterized the memory
management understanding the implementation of the pool
of statics and the pool of instances. Several parts of the heap
are still unknown and need further work to finish the charac-
terization. We can also get access to the kernel stack and the
return addresses to perform a successful CFA. As mentioned
before, this card had implemented Separate Stack counter-
measure against CFA, but using the new method introduced
in this paper, we can successfully bypass this countermea-
sure.

In this paper, we have presented two main methods to
attack the cards. The first one is Java Card API type con-
fusion attack and the second is the frame overflow attack
in conjunction with the stack underflow to get access to the
kernel frame.

We have verified that this card is not compliant with the
specification because it does not allow multiple instances of
the applet.

This card has been announced to have successfully passed
European certification at CC level EAL4+. By Reading the
certification report, it can be found that only the chip and
the cryptographic library have been certified. The Java Card
Platform itself has never been part of the TOE.

It is surprising, that such a recent card offers so many
vulnerabilities that have been patched for a long time by
other smart card manufacturers. Some parts of the Java Card
implementation are definitely not at the state of the art. Of
course, we have worked on a development card, which can
differ slightly from a product. For example, we think that
products based on such a card will have the keys encrypted
by default, but we are not sure that the check of the array
bounds differs in a product.

Although the evaluated Java Card Platform had imple-
mented some recent countermeasures like Separate Stack, it
was vulnerable to an old and publicly known attack like the
basic getstatic attack. The targeted Java Card Platform
implemented a rather recent version of Java Card specifica-
tion with support of various cryptographic algorithms, but on
the other side we were able to retrieve its applet keys in plain
text. The card was implemented the Separate Stack coun-
termeasure, while the frame management implementation
allowed stack underflow and frame overflow. These results

show a weak Java Card which lacks a consistent plan for its
security. The results also highlight the importance of using
a general threat analysis in designing platforms security to
hinder even old attacks.

References

1. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0
combining fault and logical attacks. In: Smart Card Research and
Advanced Application, pp. 148–163. Springer, Berlin (2010)

2. Barbu, G., Andouard, P., Giraud, C.: Dynamic fault injection
countermeasure. In: Mangard, S. (ed.) Smart Card Research
and Advanced Applications, Lecture Notes in Computer Sci-
ence, vol. 7771, pp. 16–30. Springer, Berlin (2013). doi:10.1007/
9783642372889_2

3. Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., Regazzoni, F.:
Countermeasures against fault attacks on software implemented
aes: effectiveness and cost. In: Proceedings of the 5th Workshop
on Embedded Systems Security, WESS ’10, pp. 7:1–7:10. ACM,
New York (2010). doi:10.1145/1873548.1873555

4. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic
evaluation of security investments. In: The First International Con-
ference onAvailability, Reliability and Security, 2006.ARES2006,
IEEE (2006)

5. Bouffard, G.: A generic approach for protecting java card smart
card against software attacks, Ph.D. thesis, University of Limoges,
123 Avenue Albert Thomas, 87060 LIMOGES CEDEX (2014)

6. Bouffard, G., Lanet, J.-L.: The next smart card nightmare - log-
ical attacks, combined attacks, mutant applications and other
funny things. In: Cryptography and Security: From Theory to
Applications—Essays Dedicated to Jean-Jacques Quisquater on
the Occasion of His 65th Birthday (2012)

7. Bouffard, G., Lanet, J.-L.: The ultimate control fow transfer in a
Java based smart card. Comput. Secur. 50, 3346 (2015). doi:10.
1016/j.cose.2015.01.004

8. Bouffard, G., Lackner, M., Lanet, J.-L., Loinig, J.: Heap ... Hop!
Heap is also vulnerable. In: Joye, M., Moradi A. (eds.) Smart Card
Research and Advanced Applications—13th International Confer-
ence, CARDIS 2014, Paris, France, November 5-7, 2014. Revised
Selected Papers, LectureNotes inComputer Science, vol. 8968, pp.
18–31. Springer, Berlin (2014). doi:10.1007/9783319167633_2

9. Bouissou, M., Bon, J.: A new formalism that combines advantages
of faulttrees and markov models: Boolean logic driven markov
processes. Rel. Eng. Syst. Saf. 82(2), 149163 (2003). doi:10.1016/
S09518320(03)001431

10. Chen, Z.: Java Card Technology for Smart Cards: architecture and
programmer’s guide.Addison-Wesley. https://books.google.co.uk/
books?id=4WDj4H6pT50C (2000)

11. Common Criteria, Common Criteria for Information Technology
SecurityEvaluation, Part 1: Introduction andGeneralModel (2009)
version 3.1, Revision 3 (CCMB-2009-07-001) (2009)

12. Dubreuil, J., Lanet, J.-L., Bouffard, G., Thampi, B.N.: Mitigating
type confusion on Java Card. Int. J. Secure Softw. Eng. (IJSSE)
4(1), 19–39 (2013)

13. El-Idrissi, N.E.J., El-Hajji, S., Lanet, J.-L.: Countermeasures miti-
gation for designing rich shell code in Java Card. In: Codes, Cryp-
tology, and Information Security - First International Conference,
C2SI 2015, Rabat, Morocco, May 26-28, 2015, Proceedings—
In Honor of Thierry Berger, pp. 149–161 (2015). doi:10.1007/
9783319186818_12

14. Faugeron, E.: Manipulating the frame information with an under-
flowattack. In: SmartCardResearch andAdvancedApplications—
12th International Conference, CARDIS 2013, Berlin, Germany,

123

http://dx.doi.org/10.1007/9783642372889_2
http://dx.doi.org/10.1007/9783642372889_2
http://dx.doi.org/10.1145/1873548.1873555
http://dx.doi.org/10.1016/j.cose.2015.01.004
http://dx.doi.org/10.1016/j.cose.2015.01.004
http://dx.doi.org/10.1007/9783319167633_2
http://dx.doi.org/10.1016/S09518320(03)001431
http://dx.doi.org/10.1016/S09518320(03)001431
https://books.google.co.uk/books?id=4WDj4H6pT50C
https://books.google.co.uk/books?id=4WDj4H6pT50C
http://dx.doi.org/10.1007/9783319186818_12
http://dx.doi.org/10.1007/9783319186818_12

Chronicle of a Java Card death 123

November 27- 29, 2013. Revised Selected Papers, pp. 140–151
(2013). doi:10.1007/9783319083025_10

15. Faugeron, E., Valette, S.: How to hoax an on-card verifier,Accepted
Talk at e-Smart, vol. 10 (2010)

16. Hamadouche, S., Bouffard, G., Lanet, J.-L., Dorsemaine, B.,
Nouhant, B., Magloire, A., Reygnaud, A.: Subverting Byte Code
Linker service to characterize Java Card API. In: Seventh Confer-
ence on Network and Information Systems Security (SAR-SSI),
pp. 75–81 (2012)

17. Hogenboom, J., Mostowski, W.: Full memory read attack on a
Java Card. In: 4th Benelux Workshop on Information and System
Security Proceedings (WISSEC09) (2009)

18. Hubbers, E., Poll, E.: Transactions and Non-atomic api Calls in
Java Card: Specification Ambiguity and Strange Implementation
Behaviors. Radboud University Nijmegen, Nijmegen

19. Iguchi-Cartigny, J., Lanet, J.-L.: Developing a Trojan applets in a
smart card. J. Comput. Virol. 6(4), 343–351 (2010). doi:10.1007/
s11416-009-0135-3

20. Lancia, J., Bouffard, G.: Java Card virtual machine compromising
from a byte code verified applet. In: Smart Card Research and
Advanced Applications—14th International Conference, CARDIS
2015, Bochum (2015)

21. Laugier, B., Razafindralambo, T.: Misuse of frame creation to
exploit stack underflow attacks on Java Card. In: Smart Card
Research and Advanced Applications—14th International Confer-
ence, CARDIS 2015, Bochum (2015)

22. Mostowski, W.: Formal development of safe and secure java card
applets, Tech. rep. (2005)

23. Mostowski, W., Poll, E.: Malicious code on java card smartcards:
attacks and countermeasures. In: Grimaud, G., Standaert, F.-X.
(eds.) Smart Card Research and Advanced Applications, Lecture
Notes in Computer Science, vol. 5189, p. 116. Springer, Berlin
(2008). doi:10.1007/9783540858935_1

24. Oracle, Java Card 3 Platform, Virtual Machine Specification,
Classic Edition, no. Version 3.0.4, Oracle, Oracle America, Inc.,
Redwood City (2011)

25. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees
(act): towards unifying the constructs of attack and defense trees.
Secur. Commun. Netw. 5(8), 929–943 (2012)

26. Schneier, B.: Attack trees. Dr. Dobb J. 24(12), 21–29 (1999)
27. Sun Microsystems, Java Card Platform Security, Technical White

Paper, October 2001

123

http://dx.doi.org/10.1007/9783319083025_10
http://dx.doi.org/10.1007/s11416-009-0135-3
http://dx.doi.org/10.1007/s11416-009-0135-3
http://dx.doi.org/10.1007/9783540858935_1

	Chronicle of a Java Card death
	Abstract
	1 Introduction
	2 Java Card security
	3 State of the art of software attacks on Java Cards
	3.1 Methods to get access to the EEPROM
	3.2 Access to the ROM area

	4 Methodology for security evaluation
	5 Experiments
	5.1 Limitations of the basic method
	5.2 Access to static data
	5.3 Get access to the other security contexts
	5.4 A novel approach to build type confusion using Java Card API
	5.5 Retrieving the key
	5.6 Object overflow
	5.7 Frame overflow
	5.7.1 Frame overflow and stack overflow
	5.7.2 Frame collision
	5.7.3 A new CFA using frame overflow and stack underflow

	5.8 New branches added to the tree
	5.9 Conclusion

	6 Countermeasures
	7 Conclusion and future works
	References

