J Comput Virol Hack Tech (2016) 12:69-100
DOI 10.1007/s11416-015-0247-x

@ CrossMark

ORIGINAL PAPER

Network malware classification comparison using DPI and flow

packet headers

Amine Boukhtouta! - Serguei A. Mokhov? - Nour-Eddine Lakhdari® -

Mourad Debbabi® - Joey Paquet*

Received: 1 December 2014 / Accepted: 6 July 2015 / Published online: 29 July 2015

© Springer-Verlag France 2015

Abstract In order to counter cyber-attacks and digital
threats, security experts must generate, share, and exploit
cyber-threat intelligence generated from malware. In this
research, we address the problem of fingerprinting malicious-
ness of traffic for the purpose of detection and classification.
We aim first at fingerprinting maliciousness by using two
approaches: Deep Packet Inspection (DPI) and IP packet
headers classification. To this end, we consider malicious
traffic generated from dynamic malware analysis as traf-
fic maliciousness ground truth. In light of this assumption,
we present how these two approaches are used to detect
and attribute maliciousness to different threats. In this work,
we study the positive and negative aspects for Deep Packet
Inspection and IP packet headers classification. We evaluate
each approach based on its detection and attribution accu-

B<I Amine Boukhtouta
a_boukh@encs.concordia.ca

Serguei A. Mokhov
mokhov @cse.concordia.ca

Nour-Eddine Lakhdari
n_lakhda@encs.concordia.ca

Mourad Debbabi
debbabi @ciise.concordia.ca

Joey Paquet
paquet@cse.concordia.ca

NCFTA Canada and Electrical and Computer Engineering,
Concordia University, Montreal, Canada

NCFTA Canada and Computer Science and Software
Engineering, Concordia University, Montreal, Canada

NCFTA Canada and Concordia Institute for Information
Systems Engineering, Concordia University, Montreal,
Canada

Computer Science and Software Engineering, Concordia
University, Montreal, Canada

racy as well as their level of complexity. The outcomes of
both approaches have shown promising results in terms of
detection; they are good candidates to constitute a synergy to
elaborate or corroborate detection systems in terms of run-
time speed and classification precision.

1 Introduction

We present a combined study using data mining techniques to
classify malicious packets produced by malware comparing
the header approach and full packets classification and com-
pare their strengths and weaknesses. The primary intent of
both approaches is to detect malicious traffic at the network
level. In [11], authors showed that singular packet headers
can be used to fingerprint maliciousness at the network level.
In this paper, we extend the aforementioned research by using
flow packet headers to detect and attribute malware families
(see Section 4.2.1 and Appendix 9), as well as investigating
DPI-based maliciousness fingerprinting capabilities.

1.1 Motivations

Perpetrating cyber-attacks negatively impacts organizations
as well as individual people. In the recent past, IT secu-
rity experts have observed a rise in cyber-attacks against
individuals, corporations, and government organizations.
Hackers tend to elaborate more sophisticated attacking and
threatening tools. Malware are frequently subjected to meta-
morphosis and are targeting more sensitive networks. For
instance, vulnerabilities have been discovered in infrastruc-
tures controlled by SCADA systems. These systems can
control nuclear energy, water distribution, and electricity
systems. A particular malware known as Flame [14] has
infected computers linked to SCADA systems mainly in Mid-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-015-0247-x&domain=pdf

70

A. Boukhtouta et al.

dle Eastern countries. This malware can spread through local
networks or USB keys. It has the ability to record screenshots,
keystrokes, and Skype conversations, and can change the
behavior of industrial controllers. According to Kaspersky,
Flame struck approximately one thousand machines [107]
including those belonging to government organizations, uni-
versities, and individuals. In this context, the detection of
malicious traffic generated from infected machines or com-
mand and control servers is of paramount importance for the
early interception and mitigation of these attacks.

1.2 Contributions

1. Packet Headers Flow Based Fingerprinting:
Detection.
We use flow packet headers for the purpose of malicious
traffic detection. To do so, we apply several machine
learning techniques to build classifiers that fingerprint
maliciousness on [P traffic. As such, J48, Naive Bayesian,
SVM and Boosting algorithms are used to classify mal-
ware communications that are generated from dynamic
malware analysis. Generated network traces are re-
processed to eliminate noisy traffic and extract traffic that
is considered as a maliciousness ground truth. This traf-
fic is used to collect attributes from bidirectional flows
packet headers. These attributes aim to characterize mali-
ciousness in flows. Data mining algorithms are applied
on these features. The comparison between different
algorithm results has shown that J48 and Boosted J48
algorithms have performed better than other algorithms.
We obtained a detection rate of 99% with a false positive
rate less than 1% for J48 and Boosted J48 algorithms.
The experiments have been conducted on many benign
datasets, representing a residential setting, a research lab-
oratory, an ISP edge router and a private company.

2. Packet Headers Flow Based Fingerprinting:
Attribution.
In addition to detecting maliciousness using flow attri-
butes collected from packet headers, we aim to corrob-
orate fingerprinting capability with malware families’
attribution using Hidden Markov Models (HMMs). To
do so, we use a clustering approach to label inbound and
outbound unidirectional flows. Similar to the detection
approach, the clustering takes as input flow attributes
obtained from packet headers. However, the attributes
are extracted from unidirectional flows instead of bidi-
rectional flows. The reason for this is that we do not want
to lose the semantics of traffic direction when we charac-
terize malicious traffic. Once the different unidirectional
flows are labeled, we derive sequences of malicious flows
and index them per malware family. These sequences of
malicious flows are used through an iterative process to
build HMMs representing malware families. HMMs mir-

@ Springer

ror the behavior of malware families at the network level.
We conduct the experiment on 294 malware families and
generate profiling models for each malware family.

. Signal and NLP DPI Fingerprinting: Detection and

Attribution.

In the second approach, namely, DPI, we apply machine
learning techniques on complete packet captures (pcaps).
The intent is to fingerprint malicious packets by using
MAREF open-source [55] framework and its MARFPCAT
application (originally based on MARFCAT, designed
for the SATE static analysis tool exposition workshop
it was used to machine-learn, detect, and classify vul-
nerable or weak code quickly and with relatively high
precision). Initially, we train models based on malware
pcap data to measure detection accuracy. Then, we test
obtained models on unseen labeled data. It is impor-
tant to mention that the training and testing phases
are based on combining many machine learning tech-
niques [58] to select the best options. In this work,
we elaborate on the details of the methodology and
the corresponding results. We applied signal processing
and natural-language processing (NLP) machine learning
techniques to analyze and detect maliciousness in pcap
traces. Being inspired by the works introduced in [57] to
detect and classify vulnerable and weak code (Java byte-
code and C object code) with a relatively high precision,
we integrated a proof-of-concept tool, namely, MARF-
PCAT, a MARF-based PCAP Analysis Tool, which is
used to train 70% different malware network traces and
measure the precision on remaining network traces. It is
important to mention that training and testing data are
indexed per malware family.

. Comparison of Both Approaches.

In this paper, we address the issue of malicious IP traffic
detection. As a requirement, we formulate the following
objectives: (1) detection of malicious IP traffic even in the
presence of encryption, and (2) scalable detection. To this
end, we initiated research to fingerprint maliciousness at
the level of network traffic. Thus, we present a compara-
tive study between fingerprinting maliciousness based on
Deep Packet Inspection (DPI) and high-level properties
of flows (flow packet headers). In this context, we put
forward an attempt to answer the following questions:

— How to fingerprint maliciousness at the IP traffic level
using the properties of flow packet headers?

— How to fingerprint maliciousness at the IP traffic level
using DPI?

— What are the advantages and drawbacks for each
approach?

Looking at the problem of detection and classification
from another perspective, we obtain the malicious-
ness ground truth from network traces generated from

Network malware classification comparison using DPI and flow packet headers 71

dynamic malware analysis. We exploit the fact that these
traces are generated from a large set of malware families
to infer maliciousness through machine learning algo-
rithms. The availability of detection tools would help
network security experts to discover infected machines
or the existence of botnet communication generated from
command-and-control servers as well as uploads and
downloads from deposits of stolen information. While
Intrusion Detection Systems (IDSs) are cornerstones
among defense artifacts to protect computer networks,
they lack the necessary strength to cope with encrypted
traffic as well as large traffic volumes. As such, there
is an objective to fingerprint maliciousness in IP traffic
through the classification of either DPI, packet headers,
or both, in order to achieve higher confidence levels. A
comparative study for both approaches is a vital necessity
to grasp the dynamics to fingerprint maliciousness at the
IP traffic level.

2 Related work

The pure-packet content approach has shown good results in
terms of malware detection at the network level, but it fails in
capturing maliciousness when the traffic is encrypted. More-
over, it requires sampling to preserve scalable detection in the
presence of a large amount of traffic. Our first approach is
malware network behavior-based rather than content-based
to avoid these two limitations. Our second approach treats
the whole packet, including headers and the payload, for the
same task. Both approaches rely on machine learning and
various data processing algorithms detailed in the methodol-
ogy aiming to ascertain the common characteristics shared
by malicious flows at the network level. Subsequently, we
introduce the related works related to the identification of
maliciousness using a malware network behavioral approach.
In the sequel, we present the different related works, which
span over: (1) Network Traffic Analysis and (2) Malware
Analysis and Classification.

2.1 Network traffic analysis

Data mining techniques have been used in the analysis of
network traffic for many purposes, i.e., application protocols
fingerprinting, anomaly detection for intrusion and zero-
day attacks identification. In protocols fingerprinting, many
research efforts have been proposed. For instance, Density
Based Spacial Clustering of Application with Noise was
proposed [102] in 2008 to use clustering algorithms to iden-
tify various FTP clients, VLC media player, and UltraVNC
traffic over encrypted channels. Li et al. [44] used wavelet
transforms and k-means classification to identify communi-
cating applications on a network. Alshammari et al. [4,5]

put forward research efforts to identify ssh and Skype
encrypted traffic (without looking at payload, port numbers,
and IP addresses). Additionally, comparison of algorithms
and approaches for network traffic classification were pro-
posed separately by Alshammari ez al. [3] in 2008 and Okada
etal.[68]in 2011, surveying and comparing various machine
learning algorithms for encrypted traffic analysis.

In addition to application protocols fingerprinting, many
research efforts have been introduced to identify anomalies
in traffic for the purpose of intrusion and malicious traf-
fic detection. In 2000, Lee et al. [43] introduced a data
mining approach for the purpose of intrusion detection.
They described a data mining framework, which leverages
system audit data as well as relevant system features to
build classifiers that recognize anomalies and known intru-
sions. Bloedorn et al. [9] in 2001 described data mining
techniques needed to detect intrusions along with needed
expertise and infrastructure. Fan et al. [18] proposed an algo-
rithm to generate artificial anomalies to force the inductive
learner to segregate between known classes (normal traffic
and intrusions) and anomalies. In [90], the authors provided
an overview of Columbia IDS Project, where they presented
the different techniques used to build intrusion detection sys-
tems. In [42], Lee reported on mining patterns from system
and network audit data, and constructing features for the pur-
pose of intrusion events identification. This work provided an
open discussion about research problems that can be tackled
with data mining techniques. Locasto et al. [48,49] brought
the use of collaborative security at the level of intrusion
detection systems. They proposed a system that distributes
alerts to collaborative peers. They integrated a component
that extracts information from alerts and encodes it then in
Bloom filters. Another component is used to schedule corre-
lation relationships between peers.

In [98], Wang et al. integrated a tool, namely, PAYL, which
models the normal application payload of network traffic.
The authors used a profile byte distribution and standard devi-
ation for hosts and ports to train the detection model. They
took advantage of Mahalanobis distance to compute the sim-
ilarity of testing data against pre-computed profiles. If the
distance exceeds a certain threshold, the alert is generated.
Zanero et al. [105] presented a hybrid approach, which lies
in: (1) an unsupervised clustering algorithm to reduce net-
work packets payload to a tractable size, and (2) an anomaly
detection algorithm, to identify malformed and suspicious
payloads in packets and flow of packets. In the same spirit
of aforementioned work, Zanero showed explicitly in [104]
how Self Organizing Map algorithm (SOM) is used to iden-
tify outliers on the payload of TCP network packets. In [106],
Zanero et al. extended their work by introducing approximate
techniques to speed up the SOM algorithm at runtime. They
provided more elaborated results and compared their work
with existing systems. In [94], the authors depicted Payload

@ Springer

72

A. Boukhtouta et al.

Content based Network Anomaly Detection (PCNAD), which
a corroboration to PAYL system. They used Content-based
Payload Partitioning (CPP) to divide the payload into differ-
ent partitions. The subsequent anomaly analysis is performed
on partitions of packet payloads. They showed that PCNAD
has a high accuracy in terms of anomaly detection on port
80 by using only 62.64% of packet payload length. Perdisci
et al. [74] presented the multiple classifier payload-based
anomaly detector (McPAD). Like PAYL system, the authors
use n-grams but with features reduction to avoid the curse
of the dimensionality problem [17]. They applied a feature
clustering algorithm proposed in [15] for text classification
to reduce features. McPAD detects network attacks having
shell-code in the malicious payload as well as some advanced
polymorphic attacks.

Song et al. [88] introduced Spectrogram to detect attacks
against web-layer code-injection (e.g., PHP file inclusion,
SQL-injection, XSS attacks, and memory-layer exploits).
They built a sensor that builds dynamically packets to con-
struct content flows and learns to recognize legitimate inputs
in web-layer scripts. They used the Mixture-of-Markov-
Chains to train a model that detect anomalies in web-content
traffic. Golovko et al. [22] discussed the use of neural
networks and Artificial Immune Systems (AIS) to detect
malicious behavior. The authors studied the integration and
the combination of neural networks in modular neural sys-
tems to detect malware and intrusions. They proposed a
multi-neural network approaches to detect probing, DoS,
user-to-root attacks, and remote-to-user attacks. In [10],
Boggs et al. elaborated on a system that detects zero-day
attacks. The authors correlated web requests containing user
submitted data considered abnormal by Content Anomaly
Detection (CAD) sensors. Boggs et al. filtered the requests
with high entropy to reduce data processing overhead and
time. They evaluated their correlation working prototype
with data collected during eleven weeks from production
web servers. Whalen et al. [99], adapted outlier detection
to cloud computing. The authors proposed an aggregation
method where they use random forest, logistic regression,
and bloom filter-based classifiers. They showed the scalabil-
ity of their proposed aggregation content anomaly detection
with indistinguishable detection performance in comparison
with content anomaly detection classical methods.

As being the first step of an attack’s vector, network scan-
ning (reconnaissance) has been the target of many research
efforts. For instance, Simon et al. [84] formalized the scan-
ning detection as a data-mining problem. They converted
collected datasets as a set of features to run off-the-shelf
classifiers, like Ripper classifier, on. They showed that the
data-mining models encapsulate expert knowledge that out-
perform in terms of coverage and precision in scanning
identification. The emergence of botnets and malicious con-
tent delivery networks has pushed researchers to investigate

@ Springer

the identification and detection of such networks. For exam-
ple, in [8,47], authors put forward methods to detect IRC
botnets. In [8], Binkley et al. presented an anomaly-based
algorithm to detect IRC-based botnet meshes. The algorithm
uses a TCP scan detection heuristic (TCP work weight)
and other collected statistics gathered on individual IRC
hosts. The algorithm sorts the channels by the number of
scanners producing a list of potential botnets. The authors
deployed a prototype in a DMZ and managed to reduce the
number of botnet clients. In [47], Livadas et al. presented
machine learning-based classification techniques to iden-
tify the command-and-control (C&C) traffic of IRC-based
botnets. They proposed a two-stages detection system. The
first stage consists of distinguishing between IRC and non-
IRC traffic, whereas the second lies in segregating botnet
and real IRC traffic. In [31], Karasaridis et al. put forward
an approach to identify botnet C&Cs by combining heuris-
tics characterizing IRC flows, scanning activities, and botnet
communications. They used non-intrusive algorithms that
analyze transport layer data and do not rely on application
layer information.

In [23], Gu et al. introduced BotHunter, which models all
bot attacks as a vector enclosing scanning activities, infection
exploits, binary download and execution, and C&Cs commu-
nication. The tool was coupled with Snort [89] IDS with mal-
ware extensions to raise alerts when different bot activities
are detected. Based on statistical payload anomaly detection,
statistical scan anomaly detection engines and rule-based
detection, BotHunter correlates payload anomalies, inbound
malware scans, outbound scans, exploits, downloads and
C&C traffic and produces bot infection profiles. In [24],
Gu et al. used aggregation technique to detect botnets. They
explained how bot infected hosts have spatial-temporal sim-
ilarity. They introduced BotSniffer, which is a system that
pinpoints to suspicious hosts that have malicious activities
such as sending emails, scanning, and shared communication
payloads in IRC and HTTP botnets by using shared bi-grams
technique. In [25], Gu et al. exposed BotMiner, which aims to
identify and cluster hosts that share common characteristics.
It consists of two traffic monitors (C-plane and A-plane mon-
itors) deployed at the edge of network. The C-plane monitor
logs network flows in a format suitable for storage and analy-
sis. The A-plane monitor detects scanning, spamming, and
exploit attempts. The clustering components (C-plane clus-
tering and A-plane clustering components) process the logs
generated by the monitors to group machines that show very
similar communication patterns and activity. The cross-plane
correlator combines the results and produces a final decision
on machines that belong to botnets.

Another noticeable research using aggregation technique
was introduced in [103], where Yen et al. presented TAMD,
an enterprise network monitoring prototype that identifies
groups of infected machines by finding new communication

Network malware classification comparison using DPI and flow packet headers 73

flows that share common characteristics (communication
“aggregates”) involving multiple network internal hosts.
Their characteristics span over flows that communicate with
the same external network, flows that share similar payload,
and flows that involve internal hosts with similar software
platforms. TAMD has an aggregation function, which takes
as input a collection of flow records and outputs groups of
internal hosts having a similarity value based on the input
flow record collections. To reduce the dimensionality of
vectors representing hosts, the authors used Principal Com-
ponent Analysis (PCA). To cluster different hosts, authors
used k-means algorithm on reduced vectors. In [13], Chang
et al. proposed a technique that detects P2P botnets C&C
channels. They considered a clustering approach (agglom-
erative clustering with Jaccard Similarity criterion function)
to capture nodes’ behavior on the network, then, they used
statistical tests to detect C&C behavior by comparing it with
normal behavior clusters. In [67], Noh et al. also defined a
method to detect P2P botnets. They focused on the fact that
a peer bot generates multiple traffic traces to communicate
with large number of remote peers. They considered that
botnet flows have similar patterns, which take place at irreg-
ular intervals. They used a flows grouping technique, where
a probability-based matrix is used to construct a transition
model. The features representing a flow state are protocol,
port, and traffic. A likelihood ratio is used to detect poten-
tial misbehavior-based transition information in state values.
In [92], the authors introduced a novel system, BotFinder,
which detects infected hosts in a network by considering
high-level properties of the botnet network traffic. It uses
machine learning to identify key features of C&C com-
munication based on bots traffic produced in a controlled
environment. Our approach has the same flavor of BotFinder;
however, we create a detection model based on machine
learning techniques by considering not only bots, but any
malware type. In [16], Dietrich et al. introduced CoCoSpot,
which recognizes botnet C&Cs channels based on carrier
protocol distinction, message length sequences and encoding
differences. The authors used average-linkage hierarchical
clustering to build clusters of C&C flows. These clusters
are then used as knowledge base to recognize potentially
unknown C&C flows.

2.2 Malware analysis and classification

In addition to network analysis for the purpose of mali-
cious and intrusion traffic detection described earlier, many
research efforts have emerged to tackle malware classifica-
tion. Part of our methodology shares some similarities with
the related work on automatic classification of new, unknown
malware and malware in general, such as viruses, web mal-
ware, worms, spyware, and others where pattern recognition
and expert system techniques are successfully used for auto-

matic classification [59]. Malware classification falls into
system-based classification and network-based classifica-
tion. Regarding the first strand, Schultz ez al. [82] proposed a
data-mining framework that automatically detects malicious
executables based on patterns observed on some malware
samples. The authors considered a set of system-based fea-
tures to train classifiers, such as inductive rule-based learner
(Ripper), which generates Boolean rules, and a probabilistic
method that computes class probabilities based on a set of
features. A multi-classifier system combines the outputs from
several classifiers to generate a prediction score. In [6], Bailey
et al. proposed a behavioral classification of malware bina-
ries based on system state changes. They devised a method
to automatically categorize malware profiles into groups that
have similar behaviors. They demonstrated how their cluster-
ing technique helps to classify and analyze Internet malware
in an effective way. Rieck et al. [77] aimed to exploit shared
behavioral patterns to classify malware families. The authors
monitored malware samples in a sandbox environment to
build a corpus of malware labeled by an anti-virus. The
corpus is used to train a malware behavior classifier. The
authors ranked discriminative features to segregate between
malware families. In [96], Trinius et al. introduced Malware
Instruction Set (MIST), which is a representation of malware
behavior. This representation is optimized to ease and scale
the use of machine learning techniques to classify malware
families based on their behavior. Bayer et al. [7] put forward
a scalable clustering approach to group malware exhibiting
similar system behavior. They performed dynamic malware
analysis to collect malware execution traces. These traces
are transformed to profiles (features set). The authors used
Locality Sensitive Hashing (LSH) to hash features values and
improved scalability of profiles hierarchical clustering.
Wicherski [100] introduced a scalable hashing non-
cryptographic method to represent binaries using a portable
executable format. The hashing function has the ability to
group malware having multiple instances of the same poly-
morphic specimen into clusters. Hu et al. [29] implemented
and evaluated a scalable framework, namely, MutantX-S, that
clusters malware samples into malware families based on
programs’ static features. The program is represented as set
of opcodes sequence easing the extraction of n-gram fea-
tures. The dimensionality of vectors representing the features
is reduced through a hashing function. Regarding malware
network-based profiling and classification, Rossow et al. [79]
provided a comprehensive overview about malware network
behavior obtained through the use of Sandnet tool. The
authors conducted an in-depth analysis of the most popu-
lar protocols that are used by malware, such as DNS and
HTTP. Nari and Ghorbani [66] classified malware sam-
ples based on network behavior of malware. Their approach
transforms pcap files representing malware families into a
protocol based behavioral graph. The features (graph size,

@ Springer

74

A. Boukhtouta et al.

root out-degree, average out-degree, maximum out-degree,
number of specific nodes) are extracted from these graphs and
aJ48 classifier was used to classify malware families. In [34],
Kheir et al. presented WebVisor, a tool that derives patterns
from Hypertext Transfer Protocol (HTTP) C&C channels.
The tool builds clusters based on statistical features extracted
from URLs obtained from malware analysis. The approach
is a fine-grained, noise-agnostic clustering process, which
groups URLs for the purpose of malware families attribut-
ion.

2.3 Static analysis

Being inspired by machine learning techniques used for the
detection of security-weak, vulnerable or malicious code we
use to some extend the same techniques in fingerprinting
maliciousness through our DPI approach (Section 5). We
are motivated by the fact that such techniques can detect
and classify malware-specific payload in the network traf-
fic regardless the packet size or architecture very fast. In the
sequel, we list the different related works where machine
learning techniques were used to detect flaws in the static
analysis of code. In [38-40], Engler’s team proposed the
use of statistical analysis, ranking, approximation, dealing
with uncertainty, and specification inference in static code
analysis. Encouraged by the statistical NLP techniques such
as the ones described in [50], research efforts have been
proposed to detect vulnerabilities in static code. Arguably,
the first time that a research effort attempted to classify
vulnerable/weak code, was in 2010. The first results were
demonstrated in SATE2010 workshop [69], where the MAR-
FCAT project [57,62,63] demonstrated promising results. In
the prevailing of what was presented at the SATE2010 work-
shop and the fact that MARF has the ability apply machine
learning techniques for quick scans of large collection of

Server

Fig. 1 Dynamic Malware
Analysis Topology

files [59], the authors used core ideas and principles behind
the MARF’s pipeline to test various algorithms and expose
results. A similar approach was introduced in [12]. There, the
authors classify and predict vulnerabilities by using SVMs.
BitBlaze (and its web counterpart, WebBlaze) are two other
recent tools that perform fast static and dynamic binary code
analysis for vulnerabilities, developed at Berkeley [86,87].
Kirat er al. introduced their tool SigMal to do static signal
processing analysis of malware [35].

3 Maliciousness ground truth

We execute collected malware samples in a controlled
environment (sandbox) to generate representative malicious
traffic. This is used as a ground truth for maliciousness finger-
printing. The sandbox is based on a client-server architecture,
where the server sends malware to clients. It is important
to mention that the dynamic analysis setup allows malware
to connect to the Internet to generate inbound/outbound
malicious traffic. Figure 1 illustrates the dynamic malware
analysis topology. We receive an average of 4, 560 malware
samples on a daily basis from a third party. We execute the
malware samples in the sandbox for three minutes. We chose
this running period to make sure that we can handle up to
14, 400 malware runs per day. The period gives the ability
to run all malware samples with a re-submission. The latter
is important in case where malware do not generate network
traffic during the initial runs. For each run, a client monitors
the behavior of each malware and records it into report files.
These files contain malware activities such as file activities,
hooking activities, network activities, process activities, and
registry activities. The setup of dynamic malware analysis
lies in a network, which is composed of a server and 30
client machines. The server runs with an Intel(R) Core’™

1- The Server sends malware sample to clients.
2- The Server collects malware behavior reports and pcaps.

=
SR IWEEEE weew

Malware
Binaries
Storage

@ Springer

1- Clients run malware samples and report their activities in reports and pcaps.
2- Clients send reports and pcaps to the server.

Network malware classification comparison using DPI and flow packet headers

i7 920@2.67 GHz, Ubuntu 11 64 bit operating system and
12.00 GB of physical memory (RAM). Each client runs
with an Intel(R) Core” ™ 2 6600 @2.40 GHz, Microsoft Win-
dows XP Professional 32-bit operating system and 1.00 GB
of physical memory. Such physical machines are used for the
reason that some malware cannot run in virtual machines.
As a downstream outcome of the aforementioned dynamic
analysis, we gathered the underlying traffic pcap files that
were generated. The dynamic malware analysis has gen-
erated approximately 100, 000 pcap files labeled with the
hashes of malware, which corresponds to a size of 3.6 GB.
In our work, we considered inbound and outbound traffic
generated by malware labeled by Kaspersky malware naming
schema. The reasons behind using this naming schema are as
follows: (1) We noticed that it manages to cover the naming of
the majority of malware samples considered in experiments.
(2) The malware naming provided by Kaspersky follows the
malware convention name (7Type.Platform.Family.Variant).
The number of bidirectional flows is 96, 235 and the number
of unidirectional flows is 115, 000.

4 Packet headers flow based fingerprinting

In this section, we describe how packet headers flow finger-
printing is done. By fingerprinting, we mean (1) malicious
traffic detection and (2) malware family attribution. First,
for detection, we extract bidirectional flow features from
malicious traces generated from dynamic malware analysis,
together with benign traces collected from trusted third par-
ties. These features are used by classification algorithms to
create models that segregate malicious from benign traffic
(see Section 4.1.1). Regarding attribution, we elaborate non-
deterministic malware family attribution based on Hidden
Markov Models (HMMs). The attribution is done through
probabilistic scores for different sequences of malicious
labeled unidirectional flows. The obtained models act as
probabilistic signatures characterizing malware families.

4.1 Malicious traffic detection

Malicious traffic detection’s goal is to isolate malicious com-
munication sessions. These sessions include flows used to
perform various malicious activities (e.g., malware payload
delivery, DDoS, credentials theft). These flows are usually
intermingled with a large portion of IP traffic that corre-
sponds to benign activities over computer networks. As such,
maliciousness detection amounts to the segregation of mali-
cious from benign flows. To this end, we represent flows
through a set of attributes (features) that capture their network
behaviors. By leveraging these features, we create classi-
fiers that automatically generate models to detect malicious
traffic. With this in mind, we define four phases to infer

Dynamic Malware
Analysis

Clean Traffic

prwwn| ® ® ==
Training Set Flow Features Malicious
& Extraction Traffic

— Testing Set
Validation

@{:|

Fig. 2 Flow Based Detection Approach

Table 1 Benign Datasets

Source Bidirect. Flows Traffic Source
WisNet (Home) 10, 513 (85MB) Residential setting
WisNet (ISP) 65,000 (1.1GB) Research laboratory
WisNet (SOHO) 16, 504 (1.3GB) Edge router of an ISP
Private 64, 004 (5.6GB) Private company

maliciousness at the network level: selecting and extract-
ing the bidirectional flow features, labeling of the traffic
(malicious and benign), training the machine learning algo-
rithms, and evaluating the classifiers produced by these algo-
rithms. Figure 2 illustrates how detection of maliciousness is
performed.

4.1.1 Benign traffic datasets

For the purpose of building a classification model that distin-
guishes between malicious and benign traffic, we collected
benign traffic from WISNET [101] and private companies.
These datasets have been built to evaluate Intrusion Detec-
tion Systems in terms of false alerts and to detect anomalies
in network traffic. In our work, we use such datasets to build
baseline knowledge for benign traffic. These datasets have
been used together with the malicious traffic dataset to assess
classification algorithms in terms of accuracy, false positives
and negatives. Table 1 shows the number of benign flows
in each dataset. The different datasets used in this work
illustrates four different location datasets, namely, residen-
tial setting, research laboratory, ISP edge router and private
company networks.

4.1.2 Bidirectional flow features extraction

We capture malicious network traces from the execution of
malware binaries in the ThreatTrack sandbox [95]. We label
these traces accordingly as malicious, while the clean traffic
traces obtained from trusted third parties [101] are labeled
as benign. Flow features are extracted from these labeled

@ Springer

76

A. Boukhtouta et al.

network traces to capture the characteristics of malicious and
benign traffic. It is important to mention that these features
can be extracted even when the traffic is encrypted, as they
are derived from flow packets headers. The flow features
exploited are mainly based on flow duration, direction, inter-
arrival time, number of exchanged packets, and packets size.

A bidirectional flow is a sequence of IP packets that share
the 5-TCP-tuple (source IP, destination IP, source port num-
ber, destination port number, protocol). The outbound traffic
is represented by the forward direction, while the back-
ward direction represents the inbound traffic. In terms of
design and implementation, the module in charge of net-
work traces parsing, labeling, and feature extraction reads
network streams using jNetPcap API [85], which decodes
captured network flows in real-time or offline. This module
produces values for different features from network flows.
The resulted values are stored in features files that are pro-
vided to Weka [93]. The network traces parser represents
each flow by a vector of 22 flow features. Table 2 illustrates
the description of the bidirectional flow features.

4.1.3 Traffic classification

The feature files resulting from the previous phase are
provided as input to classification algorithms. The intent
is to build models that have the ability to distinguish
between malicious and benign flows. To this end, we use
machine learning algorithms, namely, Boosted J48, J48,
Naive Bayesian, Boosted Naive Bayesian, and SVMs. The
classification module is based on a Java wrapper that runs
these machine learning algorithms. The module has two exe-
cution phases: learning and testing. In the learning phase, we
build the classifier using 70% of malicious and benign traces.
In the testing phase, we evaluate the classifier with the rest of
the data (30%). It is important to mention that training and
testing datasets do not overlap with each other. In the sequel,
we give a brief overview of the classification algorithms.

J48 Algorithm: It is Java implementation of C4.5 classifica-
tion algorithm [75]. J48 [19] builds the tree by dividing the
training data space into local regions in recursive splits. The
split is pure if all observations in a decision branch belong to
the same class. To split the training dataset, J48 computes the
goodness of each attribute (feature) to be the root of a decision
branch. It begins by computing the information need factor.
The J48 algorithm splits recursively datasets to sub-datasets
and computes the information need per feature. If the split
is not pure (presence of many classes), the same process will
be used to split the sub-dataset into pure classes. The split
stops if each sub-dataset belongs to one class (pure split).
The decision tree result is composed of nodes (the attributes)

@ Springer

Table 2 Bidirectional Flow Features

Features

1 Flow Duration

2 Number of forward packets

3 Number of backward packets

4 Protocol

5 Minimum inter-arrival time for forward packets

6 Maximum inter-arrival time for forward packets

7 Mean inter-arrival time for forward packets

8 Std deviation inter-arrival time for forward packets
9 Total forward packets size

10 Minimum forward packets size

11 Maximum forward packets size

12 Mean forward packets size

13 Std deviation forward packets size

14 Minimum inter-arrival time for backward packets
15 Maximum inter-arrival time for backward packets
16 Mean inter-arrival time for backward packets

17 Std deviation inter-arrival time for backw. packets
18 Total backward packets size

19 Minimum backward packets size

20 Maximum backward packets size

21 Mean backward packets size

22 Std deviation backward packets size

and terminal leaves (classes). That will be used to identify
the unseen data when the model is deployed [27].

Naive Bayesian Algorithm: It is based on Bayes’ theorem
[27]. It is a statistical classifier, which outputs a set of proba-
bilities that show how likely a tuple (observation) may belong
to a specific class [27]. Naive Bayesian assumes that the
attributes are mutually independent. Naive Bayesian starts
by computing the probability of an observation. Once the
probabilities are computed, Naive Bayesian associates each
observation with the class that has the higher probability with
it. Naive Bayesian is an incremental classifier, which means
that each training sample will increase or decrease the prob-
ability that a hypothesis is correct.

Boosting Algorithm: It is a method used to construct a strong
classifier from a weak learning algorithm. Given a training
dataset, boosting algorithm incrementally builds the strong
classifier from multi-instances of a weak learning machine
algorithm [21]. Boosting algorithm takes, as input, the train-
ing dataset and the weak learning algorithm. It divides the
training dataset into many sub-datasets (x1, y1), ..., (xi, y;),
where x; belongs to X (a set of observations) and y; belongs
to Y (set of class attribute values), and calls the weak learn-
ing algorithm to build the model for each sub-dataset. The

Network malware classification comparison using DPI and flow packet headers 77

Fig. 3 Non-Deterministic
Approach for Malware Family
Attribution

Malware Feeds @

Dynamic Malware Analysis

|®

= Indexation per Malware @
Family

Network Traces

gl

Sequencing Flows

Labeling Sequences

|®

Malware Family @

Attribution Models

Hidden Markov Modeling

resulted models are called decision stumps. The latter exam-
ine the features and return the decision tree with two leaves
either +1 if the observation is in a class, or —1 if it is not
the case. The leaves are used for binary classification (in case
the problem is multi-classes, the leaves are classes). Boosting
algorithm uses the majority voting schema between decision
stumps to build a stronger model.

SVM Algorithm: The Support Vector Machines (SVM)
[20,28] algorithm is designed for discrimination, which is
meant for prediction and classification of qualitative vari-
ables (features) [70]. The basic idea is to represent the data
in a landmark, where the different axes are represented by
the features. The SVM algorithm constructs a hyper-plane or
set of hyper-planes in a high-dimensional. Then, it searches
for the hyper-plane that has the largest distance to the nearest
training data points of any class. The larger is the distance,
the lower is the error of the classification.

4.2 Malicious traffic attribution

The attribution of malicious traffic to malware families
corroborates detection since it (1) shifts the anti-malware
industry from the system level to the network level, and (2)
eases the mitigation of infected machines. It gives the abil-
ity to networking staff to undertake actions against botnets,
depots of stolen information, spammers, etc. For instance, if
an administrator notices the presence of malicious traffic in
the network, and this traffic can be attributed to a bot family.
He/She responds to the threat by blocking malicious con-
nections and quarantine infected machines for a removal of
malware. Thus, to enhance maliciousness fingerprinting at
the network level, we decide to integrate the malware family
attribution. To do so, we use network traces obtained from

dynamic malware analysis and index them with malware
families. For each set of traces belonging to a malware family,
we extract sequences of unidirectional flows. These flows are
labeled through a clustering method. The labeled sequences
obtained are used to train HMMs for different malware fam-
ilies. Figure 3 illustrates how malware families’ attribution
is performed.

4.2.1 Malware family indexation

As a downstream outcome of dynamic malware analysis, we
collect approximately 100, 000 network traces (pcap files).
Each trace is labeled by the corresponding malware sample
hash. We use Kaspersky malware name schema to recog-
nize the malware family of each hash (see example malware
families in tables in Appendix 9). Subsequently, we index
network traces based on their malware family. In this work,
we obtain 294 malware families.

4.2.2 Sequencing flows

For each malware family, we browse collected network traces
to extract unidirectional flows. These flows fall into inbound
and outbound flows, which are used to build sequences of
flows. For each sequence, a flow precedes another flow if
its timestamp occurrence precedes the timestamp of the fol-
lowing flow. As a result, the sequences are indexed by the
corresponding malware family.

4.2.3 Labeling sequences
In order to label different flows belonging to a sequence,

we adopt a clustering approach. The reason behind doing
so is to characterize outbound and inbound malicious flows

@ Springer

78

A. Boukhtouta et al.

into clusters representing their network behaviors. To do
so, we represent flows by vectors of 45 features. Table 3
illustrates unidirectional flow features. To perform cluster-
ing of inbound/outbound traffic, we generate feature files
that are readable by CLUTO clustering toolkit [32]. This
was used in diverse research topics such as information
retrieval [111] and fraud detection [73]. To label flows, we
use the k-means Repeated Bi-Section algorithm implemented
in CLUTO. This algorithm belongs to partitional cluster-
ing algorithms. These algorithms are known to perform in
clustering large datasets since they have low computational
cost [2,41]. k-means RBS derives clustering solutions based
on a global criterion function [109]. This algorithm initially
creates 2 groups; each group is then bisected until the cri-
terion function is optimized. The k-means RBS algorithm
uses the vector space model [80] to represent each unidirec-
tional flow. Each flow is represented by a dimension vector
fv="(f1, >, ..., fi), where f; is the i"" unidirectional flow
feature. To compute similarity between vectors, we use the
cosine function [80]. In order to cluster different unidirec-
tional flows, we use a hybrid criterion function that is based
on an internal function and an external function. The internal
function tries to maximize the average pairwise similarities
between flows that are assigned to each cluster. Unlike the
internal criterion function, the external function derives the
solution by optimizing a solution that is based on how the
various clusters are different from each other. The hybrid
function combines external and internal functions to simul-
taneously optimize both of them. Based on the k-means RBS
algorithm, we create a set of experiments: inbound flow clus-
tering solutions and outbound flow clustering solutions. We
choose a solution where the internal similarity metric (ISIM)
is high and the external similarity metric (ESIM) is moderate.

4.2.4 Hidden markov modeling

Hidden Markov Model (HMM) is a popular statistical tool
that models time series or sequential data. In this work, we use
HMMs to create non- deterministic models that profile mal-
ware families. We want to establish a systematic approach
to estimate attribution of unidirectional flow sequences to
different malware families. We choose HMMs due to their
readability since it allows sequences to be significantly inter-
preted, represented, and scored. We observe that collected
flows have different length, and therefore decide to train
HMMs based on sub-sequences with fixed length m2. In order
to fix the number of states in HMMs, we set a sliding win-
dow n to represent different combinations of inbound and
outbound flows. For instance, if we want HMM states to rep-
resent singular flow, there exist two possibilities: /N and
OUT. If we want HMM states to represent a sequence of
two flows, there are four possibilities: /IN/IN, IN/OUT,
OUT/OUT and OUT/IN. Similarly, if we want HMM

@ Springer

Table 3 Unidirectional Flow Features

Features
Generic 1 Total number of packets
2 Flow Duration
3 Minimum inter-arrival time
4 First quartile of inter-arrival times
5 Median of inter-arrival times
6 Mean of inter-arrival times
7 Third quartile of inter-arrival times
8 Maximum inter-arrival time
9 Variance of inter-arrival times
10 Minimum of control data size
11 First quartile of control data size
12 Median of control data size
13 Mean of control data size
14 Third quartile of control data size
15 Maximum of control data size
16 Variance of control data size
17 Total not empty packets
18 Total packets size
Ethernet 19 Minimum size in Ethernet packets
20 First quartile size in Ethernet packets
21 Median size in Ethernet packets
22 Mean size in Ethernet packets
23 Third quartile size in Ethernet packets
24 Maximum size in Ethernet packets
25 variance size in Ethernet packets
Network 26 Minimum size in IP packets
27 First quartile size in IP packets
28 Median size in IP packets
29 Mean size in IP packets
30 Third quartile size in IP packets
31 Maximum size in IP packets
32 Variance size in IP packets
Transport 33 Total ACK packets
34 Total PUSH packets
35 Total SYN packets
36 Total FINE packets
37 Total Urgent packets
38 Total Urgent bytes
39 Minimum TCP segment size
40 Maximum TCP segment size
41 Mean TCP segment size
42 Minimum TCP window size
43 Maximum TCP window size
44 Mean TCP window size
45 Total empty TCP window packet

states to represent a sequence of n flows, we obtain 2" states.
To train HMMs for each malware family with corresponding
sequences, we use the Expectation Maximization (EM) algo-

Network malware classification comparison using DPI and flow packet headers 79

| Pr(OUT,),...,Pr(OUT,),Pr(IN,),..Pr(IN,) |

0.5 0.5 0.5

/ 0.5 \

/ \
/ \ |
/ \ |
Pr(OUT,),...,Pr(OUTX),Pr{IN,),...Pr(IN,) | | Pr(OUT,),...,Pr(OUT,),Pr(IN,),...Pr(IN,) | !

| Pr(OUT)),...,Pr(OUTx),Pr(IN,),...Pr(IN,) |
(@)

|
|
|
| |
|
|

| |

| Pr(OUT,),...Pr(OUT,),Pr(IN,),..Pr(IN,)

(b)

Fig. 4 HMM States. (a) 2 States Initialization HMM. (b) 4 States Initialization HMM

rithm [54] integrated in the HMMall toolbox for MATLAB
[65] to learn hidden parameters of each 2" state HMM rep-
resenting a malware family. The EM algorithm aims to find
the maximum likelihood of parameters of a model where its
equations cannot be solved. HMMs usually involve unknown
parameters (hidden parameters for HMMs) and known data
observations (malicious flows sub-sequences).

4.2.5 Hidden markov models initialization

To create models for different malware families, we initiate
baseline HMMs. The states are computed based on a sliding
window that we apply on observed sequences. The sliding
window allows us to extract sub-sequences from sequences.
For instance, for a sequence (a, b, ¢) and a sliding window
of length 2, we obtain sub-sequences (a, b), (b, c). If we
consider a HMM based on a sliding window of 1 flow, we
result in 2 states HMM since we can have an inbound flow
or an outbound flow. If a HMM is based on 2 flows, we
obtain 4 states HMM since we can have an inbound/inbound
pair, an inbound/outbound pair, an outbound/outbound pair
and an outbound/inbound pair. In initialized HMMs, prior
probabilities are uniformly distributed over different states.
For instance, if we consider a sliding window of length 2,
we obtain 4 states HMM with a prior probability of 0.25 for
each state. The transition probabilities matrix is initialized
such that for each transition between a state s; and other
states, the probabilities are uniformly distributed. If a state
has 2 transitions, each transition has a probability of 0.5.
The emission probabilities matrix associates a state with an
observation vector. Each element of the vector is a probability
of observing an inbound or outbound clustering label. For
the sake of simplicity, we illustrate in Figures 4a and 4b
initialization HMMs for a sliding window length of 1 and
2 respectively. The observation probabilities are uniformly

distributed. Let us consider x as the number of input labels
and y as the number of output labels. For a 2-states HMM,
we associate with the state / N an observation vector, where:

Vi e [1,x]: b(in;) = 1/x
Vjell,yl: blout;) =0

Similarly, we associate with the state OU T an observation
vector, where:

Vie[l,x]: b(@in;) =0
Vjell,yl: bloutj) =1/y

For a 4 states HMM, we associate with the state /IN/IN
an observation vector, where:

Vie[l,x]: b@in;) =1/x
Vjell,yl: bloutj) =0

Similarly, we associate with the state OUT/OUT an
observation vector, where:

Vi e[l,x]:b(@in;) =0
Vjell,y]l: bloutj) =1/y

Regarding states OUT /IN and IN/OUT, the observa-
tion vector is as follows:

Vie[l,x]: b@n;) =1/(x+y)
Vjiell,yl: blout;) =1/(x +y)

Recursively, for a 2" states HMM, the observation vectors
are the same as a 4 states HMM. If the states contain / N and

OUT, the probabilities are equal to 1/(x 4 y). If the states
contain just /N, the probabilities are equal to 1/x for all

@ Springer

80

A. Boukhtouta et al.

Loading Preprocessing
Stage Stage

Classification
Stage

WAVLoader

/ MP3Loader \\

training
set
Chebyshev
Feature Mahalanobis
Extraction Stage
trdip Markov
Neural Network
Stochastic writs

High-Pass

% FFT

sample SINELoader

MP3Loader

Band-Pass [

LPC ZipfLaw

SNDLoader

Band-Stop

Random

| Min/Max lashify

MIDILoader

l normalize l’—‘High-Boost

Cepstral

AULoader

High-Pass-Boost /

Chebyshev

| F]

Endpoint
AlFFLoader

Euclidean

Segmentation

AIFFCLoader

Dummy

TR

Random

Minkowski

Raw

TEXTLoader

G

N

AN

Fig. 5 MAREF’s Pattern-Recognition Pipeline

inbound labels and O for all outbound labels. Similarly, if the
states contain just OU T, the probabilities are equal to 1/y
for all outbound labels and O for all inbound labels (Fig. 5).

5 Signal and NLP DPI fingerprinting

In the sequel, we describe the DPI approach to detect mali-
ciousness in the network traffic. The methodology to analyze
malicious packets is described in Section 5.1, whereas the
different knowledge base machine learning techniques are
introduced in Section 5.2. Section 5.3 describes the different
steps done to classify packets. In this approach, we look at
the packets, including both headers and payloads, as a signal
subjected to fast spectral-based classification.

5.1 Core principles

The essence of the whole packet analysis lies in the core
principles, which fall into machine learning and Natural

@ Springer

9
=

Aggregator

, rea
result set

Mahalanobis \
\
Hamming

FFT

Markov

FFT

Stochastic

ZipfLaw

/

Language Processing (NLP) techniques. A set of malicious
packets (a network trace) is treated as a data stream signal,
where n-grams are used to build a sample amplitude value in
the signal. In our case, we use bi-grams (n = 2) (two consec-
utive characters or bytes) to construct the signal. The reasons
behind using bi-grams lay in: (1) it has shown its effective-
ness in detecting C&Cs channels [24]; (2) it is adapted to
the form of PCl-encoded wave originally integrated in the
MAREF framework.

Similarly to the aforementioned approach, the whole
packet methodology has two phases: (1) the training phase,
where MARFPCAT learns from different samples of network
traces and generates spectral signatures using signal process-
ing techniques; and (2) the testing phase, where MARFPCAT
computes how similar or distant training network traces are
from testing network traces. This approach is meant to behave
like a signature-based anti-virus or IDS, but using fuzzy
signatures. However, we use as much as possible combina-
tions of machine learning and signal processing algorithms

Network malware classification comparison using DPI and flow packet headers 81

to assess their precision and runtime in order to select the
best trade-off combination.

At present, we look at complete pcap files, which can
affect negatively the MARFPCAT’s malware family attribut-
ion accuracy in the presence of encrypted payload. However,
MARFPCAT processes network traces quickly since there
is no pre-processing of pcap traces (flows identification and
extraction). MARFPCAT has the ability to control thresholds
of different algorithms, which gives flexibility in selecting
classification and the appropriate machine learning tech-
niques.

5.2 The knowledge base

Collected malware database’s behavioral reports and network
traces are considered as a knowledge base from which we
machine-learn the malicious pcap samples. As such, con-
ducting the experiments fall into three broad steps: (1) Teach
the system from the known cases of malware from their pcap
data. (2) Test on the known cases. (3) Test on the unseen cases.
In order to prepare data for training and testing, we used a
Perl script to index pcap traces with malware classes, and we
used the same malware naming conventions mentioned ear-
lier. The index is in the form of a meta MARFCAT-IN XML
file, which is used by MARFPCAT for training or testing.

In contrast to the packet headers approach, where the
benign traffic is collected from third parties; the benign traffic
is considered as a noise sample found in pcap traces. To segre-
gate such traffic from the malicious one, we use the low-pass
filters and silence compression. In addition, the signal of the
benign traffic can be learned and subtracted from malicious
traffic (malicious signal) to increase fingerprinting accuracy.
However, the latter signal subtraction technique results in
decreased run-time performance. Thus, we use only differ-
ent filters to remove noise from malicious pcaps since the
results were very promising without benign traffic subtrac-
tion.

5.3 MARFPCAT’s DPI methodology

In this part, we describe the different steps that are performed
to fingerprint maliciousness by using DPI approach. Consid-
ering this work, we compile annotated manually meta-XML
index files with a Perl script. The index file annotates mal-
ware network traces (pcaps) indexed by their families. Once
the annotation is done, MARF is automatically trained on
each pcap file by using a signal pipeline or a NLP pipeline.
The algorithm used in the training phase are detailed in
[55]. MARFPCAT tool is loads training data as set of bytes
forming amplitude values in a signal (e.g, 8kHz, 16kHz,
24kHz, 44.1kHz frequency). Uni-gram, bi-gram or tri-gram
approaches can be used to form such a signal. A language
model works in a similar way, with the exception of not inter-

preting the n-grams as amplitudes in the signal. After the
signal is formed, it can be pre-processed through filters or
kept in its original form. The filters fall into normalization,
traditional frequency domain filters, wavelet-based filters,
etc. Feature extraction involves reducing an arbitrary length
signal to a fixed length feature vector, which is thought to be
the most relevant features in the signal (e.g., spectral features
in FFT, LPC), min-max amplitudes, etc. The classification
stage is then separated to either train by learning the incoming
feature vectors (usually k-means clusters, median clusters,
or plain feature vector collection combined with, for exam-
ple, neural network training) or test them against previously
learned models. The testing stage is done on the training and
testing data, originally two separated sets with and without
annotations. In our methodology, we systematically test and
select the best (a tradeoff between speed and precision) com-
bination(s) of the different algorithms available in the MARF
framework for subsequent testing. In Algorithm 1, we illus-
trate the different aforementioned steps.

5.4 NLP pipeline

The inner-workings of MARF framework’s integrated algo-
rithms are presented in Algorithm 2. These algorithms come
from the classical literature (e.g., [50]) and are detailed in
[62]. NLP pipeline loading refers to the interpretation of the
files being scanned in terms of n-grams and the associated
statistical smoothing algorithms resulting in a vector, 2D or
3D matrix. In the case of static code analysis for vulnerabili-
ties, it was shown that the precision is higher [62]. However,
its runtime was ~ 10 times longer for an equivalent signal
processing run. A such, for the time being we stopped using
NLP pipeline for maliciousness fingerprinting in traffic. We
plan to revive it with a more optimized implementation since
MAREF framework is an open-source software.

5.5 Demand-driven distributed evaluation

To enhance the scalability of the approach [108], we con-
verted the MARFPCAT stand-alone application to a distrib-
uted application using an educative model of computation
(demand-driven) implemented in the General Intensional
Programming System (GIPSY)’s multi-tier run-time sys-
tem [26,30,71,97], which can be executed distributively
using Jini (Apache River) or JIMS. To adapt MARFPCAT
to the GIPSY’s multi-tier architecture, we create problem-
specific generators and worker tiers (PS-DGT and PS-DWT
respectively). The generator(s) produce demands of what
needs to be computed in the form of a file (source code file or a
compiled binary) to be evaluated, and deposit such demands
as pending into a store managed by the demand store tier
(DST). Workers pick up pending demands from the store and
then process them (all tiers run on multiple nodes) using a tra-

@ Springer

82

A. Boukhtouta et al.

ditional MARFPCAT instance. Once the result (a Warning
instance) is computed, the PS-DWT deposit it back into the
store with the status set to computed. The generator “har-
vests” all computed results (warnings) and produces the final
report for a test cases. Multiple test cases can be evaluated
simultaneously, or a single case can be evaluated distribu-
tively. This approach helps to cope with large amounts of data
and helps to avoid recomputing warnings that have already
been computed and cached in the DST.

The initial basic experiment assumes the PS-DWTs have
the training sets data and the test cases available to them from
the beginning (either by a copy or via an NFS/CIFS-mounted
volume); thus, the distributed evaluation concerns only the
classification task as of this version. The follow up work will
remove this limitation. In this setup, a demand represents a
file (a path) to scan (an instance of the FileItem object),
which is deposited into the DST. The PS-DWT picks up the
file and checks it per training set that is already there, and
returns a ResultSet object back into the DST under the
same demand signature that was used to deposit the path
to scan. The result set is sorted from the most likely to the
least likely with a value corresponding to the distance or
similarity. The PS-DGT picks up the result sets, performs
the final output aggregation, and saves the report in one of
the desired report formats, picking up the top two results
from the result set and testing against a threshold to accept
or reject the file (path) as vulnerable or not. This effectively
splits the monolithic MARFPCAT application in two halves
and distributing the work to do, where the classification half
is arbitrarily parallel. Simplifying the assumptions:

— Test case data and training sets are present on each node
(physical or virtual) in advance (via a copy, or a CIFS or
NES volume), so no demand driven training occurs; only
classification.

— The demand is assumed to contain only file information
to be examined (FileItem).

— PS-DWT assumes a single pre-defined configuration, i.e.,
configuration for MARFPCAT’s option is not a part of
the demand.

— PS-DWT assumes a particular malware class testing
based on its local settings and not via the configuration
in a demand.

5.5.1 Export

One of the output formats MARFPCAT supports, is FOREN-
SiIC LuciD [58], a language used to specify and evaluate
digital forensic cases by uniformly encoding the evidence
and witness accounts (evidential statement or knowledge
base) of any case from multiple sources (system specs, logs,
human accounts, etc.) as a description of an incident to further
perform investigation and event reconstruction. Following

@ Springer

the methodology of data export in FORENSIC LUCID in the
preceding work [60,61], we use it as a format for eviden-
tial processing of the results produced by MARFPCAT. The
work [60] provides details of the language; it suffices to men-
tion that the report generated by MARFPCAT in FORENSIC
LuciD is a collection of warnings, which form an evidential
statement in FORENSIC LUCID.

5.6 Wavelets

As part of a collaboration project, wavelet-based signal
processing for the purposes of noise filtering is being used in
this work to compare it to no-filtering, or FFT-based classical
filtering. It has been also shown in [44] that wavelet-aided
filtering could be used as a fast pre-processing method for
network application identification and traffic analysis [46].
We rely on the algorithm and methodology described in
[1,36,37,83]. At this point only a separating 1D discrete
wavelet transform (SDWT) has been tested. Since the orig-
inal wavelet implementation [83] is in MATLAB [51,81],
we use the codegen tool [53] from the MATLAB Coder
toolbox [52] to generate C/C++ code in order to (manually)
implement it in JAVA (the language of MARF and MARF-
PCAT). The specific function for up/down sampling used
by the wavelets function described in [64], written also in
C/C++, is implemented in JAVA in MARF along with unit
tests.

6 Results
6.1 Non-DPI approach

In the sequel, we present results obtained for Non-DPI
fingerprinting approach. The results fall into 3 parts: (1)
classification results, (2) attribution results, and (3) compu-
tational complexity of the approach.

6.1.1 Classification

The purpose of this classification exercise is to determine
whether we can segregate malicious from benign traffic. In
addition, we make a comparison between different classifica-
tion algorithms in terms of accuracy and recall. Our intent is
to identify a classifier with high accuracy, low false positives,
and low false negatives. The results illustrated in Figures 6a,
6b, 6¢, 6d, 6e and 6f demonstrate that the Boosted J48 and
J48 algorithms have shown better results than other machine
learning algorithms. They achieved 99% accuracy and less
than 1% false positives and negatives, respectively. The SVM
algorithm has achieved good results with an accuracy rang-
ing between 89% and 95%. In contrast, Naive Bayesian and
Boosted Naive Bayesian algorithms have not achieved good

Network malware classification comparison using DPI and flow packet headers 83

99.70% 99.55%

93.56%
100%
0,
. 75% 64.86% 64.86%
8
3 50%
Q
<
25%
0%
G
2 D RN
ebS) ”e'b\ Qé %
XS X\ o
o o o
<Q° .\40 L2
é’b
(a)
99.02% 98.77%
100% 83.62% 89.06%
70.29%
- 75%
s
5 50%
8
<
25%
0%
» C
8) +
& *90 \QP ‘.’
2 o
& Q
< .\40 Q
e’b
(c)
4.77%
5%
4%
3%
2%
0.54% 0.48%
1% 0.33% 0.39%
0%
BoostedJ48 J4s SVM
®mHome ®ISP =SOHO = Private Partner

(e)

99.28% 99.25%
0,
100 89.32%
459 ¥
5% 63.45% 63.45%
g
5 50%
g
25%
0%
> G .
& N » b
g & s
o 0@ °°e
Q,o . 40 Q'
&
(b)
99.84% 99.81% 95.64%
100%
0, 0,
5% 60.00% 60.00%
g
5 50%
o
Q
< 25%
0%
& ? Q
ooé' Q’ﬁ oo}
& »°
&
(d

9.59%

10%
8%
6%
4%

0.83%

.25%
0.23%1 *0.17%

BoostedJ48 J48
=Home ®ISP =SOHO

®

2% l’0.63%
0.16%
0.13% 5.15%

SVM
Private Partner

Fig. 6 Classification Algorithms Results. (a) Malicious vs. Benign (home). (b) Malicious vs. Benign (SOHO). (c) Malicious vs. Benign (ISP). (d)
Malicious vs. Benign (Private). (e) False Positive Rate. (f) False Negative Rate

results. As such, we can claim that the Boosted J48 algorithm
is a good means by which to differentiate between malicious
and benign traffic. Moreover, after finding that J48 is the
most suitable algorithm, we used the 10-fold cross-validation
method to select the training and testing data. This is done
to ensure that the J48 algorithm maintains high accuracy and
low false positive and negative rates, even if the training
and testing data change. Figures 7a, 7b, 7c, 7d summarize
the performance of the J48 algorithm in each data set by
providing the accuracy and the rates of false positives and
negatives.

The boosted J48 and J48 algorithms have achieved high
accuracy detection and low rates of false positives and neg-
atives in multiple datasets. The fact that we use different

datasets has shown that the J48 classification approach is
robust since it maintains greater than 98% accuracy with
less than 0.006 average false alerts for each dataset, as illus-
trated in Figure 7e and Figure 7f respectively. Thus, these
two algorithms provide the means necessary to make mali-
cious traffic differentiable from benign traffic. Moreover, the
results conclude that our approach, based on classifying the
flow features, can achieve maliciousness detection in differ-
ent benign traffic with a very high detection rate and low false
alerts. J48 does not rely on features dependency and tends
to perform better with a limited number of classes, which
is the case of our work since we have two classes. On the
other hand, Naive Bayesian shows bad results since it relies
on independence of features, which is not the case in mali-

@ Springer

84

A. Boukhtouta et al.

1.000 ¢
0.995 *

0.990 *

Accuracy

0.985

0.980

0.975

0.000 0.002 0.003 0.005 0.006

AVG(FRP & FNR)

(@)

0.008 0.009 0.011

1.000 N

0.990 o4

0.980

Accuracy

0.970

0.960

0.950
0.000

0.004 0.008 0.012

AVG(FRP & FNR)

(c)

0.016 0.020 0.024

—s—BoostedJ48 &J48 --+--BoostedNB --»--NB --»-- SVM

100%

90%

80%

ACCURACY

70%

60%

HOME ISP SOHO
BENING DATASETS

(e)

PRIVATE

Fig. 7 J48 Classifiers Performance and Generalization. (a) Malicious
and Benign Home Datasets. (b) Malicious and Benign ISP Datasets.
(c) Malicious and Benign SOHO Datasets. (d) Malicious and Benign

ciousness classification. For example, packet length depends
on frame length. Regarding SVM, we use it with the default
option where linear classification is performed. This raises a
problem with probabilities of class membership.

6.1.2 Attribution

In order to attribute malicious flows to malware families, we
apply a clustering technique to label different inbound and
outbound unidirectional flows. We consider k-means RBS
clustering solutions for inbound traffic and outbound traffic.
The solutions are generated heuristically by incrementing
by two the number of clusters for inbound and outbound
flows. To evaluate the solutions, we take into account: (1) the
high Internal Similarity Metric (ISIM) average in all clus-
ters, and (2) the moderate External Similarity Metric (ESIM)
average in all clusters. The ISIM average mirrors the cohe-

@ Springer

1.000

0.995 o
L 4 TN
0.990

Accuracy

0.985

0.980

0.975

0.000 0.004 0.008 0.012

AVG(FRP & FNR)

(b)

0.016 0.020 0.024

1.000 ‘“
0.990

0.980

Accuracy

0.970 *

0.960

0.950
0.000

0.005 0.010 0.015 0.020 0.025 0.030

AVG(FRR & FNR)

(d)

—e—BoostedJ48 & J48 -#--NB --»--BoostedNB --»--SVM

AVG(FPR, FNR)
o
g
N

HOME ISP SOHO
BENING DATASETS

®

Private Datasets. (e) Change in Accuracy per Dataset. (f) Change in
Average of FPR and FNR per Dataset

PRIVATE

sion between items (unidirectional flows) within different
clusters. The ESIM average defines the isolation between
different clusters. In our labeling process, we consider solu-
tions that vary from 2 to 18 clusters. We consider up to 18
clusters to preserve the potential to have a sufficient number
of labels for both inbound flows and outbound flows. Figures
8a and 8b illustrate the ISIM and ESIM averages for different
inbound and outbound clustering solutions. The selection of
labeling solutions is based on two criteria: (1) a high ISIM
average ratio (greater than or equal to 0.95), and (2) a mod-
erate ESIM average ratio between clusters (less than or equal
t0 0.5). As such, we consider only those solutions which vary
from 12 to 18 clusters for both inbound and outbound flows.

By coupling inbound and outbound clustering solutions,
we obtain 16 possible labeling combinations. For each
combination, we compute the uniqueness of the collected
sequences. We observe the ratio of labeled sequences that are

Network malware classification comparison using DPI and flow packet headers

85

-o-ISIM
~A-ESIM

12 14 16 18

10

Number Clusters

(a)

0.8
0.6

R —ISIM

—+ESIM

0.2

0 T T T T T T T Y

2 4 6 8 10 12 14 16 18
Number Clusters
(b)

Fig. 8 ISIM, ESIM vs. Clustering Solutions. (a) Inbound Flows Clustering. (b) Outbound Flows Clustering

Table 4 Uniqueness Ratio per Combination of Clustering Solutions

Table 5 Number of Malware Families per State and Sequence Length

OUT Flows Clustering

Sequence Length

12 14 16 18 2 3 4 5 6
IN Flows Clustering HMM States
12 0.7230 0.7097 0.7227 0.7315 2 294 294 274 256 242
14 0.7225 0.7242 0.7261 0.7337 4 294 277 274 254 245
16 0.7325 0.7358 0.7350 0.7361
18 0.7289 0.7319 0.7311 0.7282

not shared by malware families. The higher the uniqueness
of the sequences ratio, the higher the ability to segregate mal-
ware families. We can thus limit the attribution of malicious
flows to a limited number of malware families. Table 4 shows
the uniqueness ratio for each labeling combination. Based on
obtained ratios, we choose a solution with 16 inbound flows
and 18 outbound flows, since it has the highest uniqueness
ratio. This labeling combination is used to initialize HMMs
and train them for each malware family.

We train HMMs by tuning the sliding window (number
of states) to set up the number of states and the length of
the training sequences. The training is based on an EM algo-
rithm, which iterates the computation of hidden parameters
until the log-likelihood reaches the maximum value. Before
digging into the evaluation of HMMs, we need to determine
which length of training sequences we should consider to
build models. To do so, we vary the length of sequences and
take note of how it impacts the prediction ability of HMMs
representing malware families. Table 5 illustrates the number
of profiled malware families per HMM state and sequence
length. By increasing the length of training sequences, we
obtain fewer numbers of HMMs for malware families. This
is due to the fact that some malware families do not have
sequences of length greater than 2. It is thus impossible to
create training data to model them. Intuitively, if we increase
the length of training sequences (> 6), the number of HMMs
will reduce. If we want to create HMMs for all malware
families, we have to consider training sequences of length 2.
With regards to detection, the cost of detecting 2 malicious

flows is less expensive than detecting between 3 to 6 mali-
cious flows. If we consider training sequences of length 2,
we need to investigate two aspects: (1) the tradeoff between
HMM expressiveness and learning effort, and (2) the unique-
ness ratio of sequences per malware family. These issues are
explained in what follows.

— HMM expressiveness vs. HMM learning effort: the for-
mer is meant to provide a high number of states to HMMs
in order to generate more probabilistic HMM parameters
with a greater ability to estimate potential sequences of
malicious flows. However, increasing the sliding window
to generate more states for HMMs results in generating
more learning effort for HMMs. By varying the number
of states from 2 to 4, the number of iterations increased
for the majority of malware families. Table 6 shows the
number of iterations per HMM configuration (2 states to
4 states, sequence length of 2 to 4). For 2 states HMMs
obtained from training sequences of length 2 to 3, the
number of iterations does not exceed 2. For 2 states
HMMs obtained from training sequences of length 4, the

Table 6 HMMs vs. Number of Iterations

1 2 [3,20] [21,40] [41,60] [61,200]
HMM2-2 16 278 0 0 0 0
HMM 2-3 0 294 0 0 0
HMM 2-4 0 0 183 78 9 3
HMM 4-2 0 0 145 125 19 5
HMM 4-3 0 1 178 86 4
HMM 4-4 0 0 191 71 4

@ Springer

86

A. Boukhtouta et al.

180
160
140
120
100
80
60
40
20
0

171

111
36 37 19 20 11

FIMI-nl\mHml-ﬂ

8 10 7

Number of Sequences

14
1413 g g 10
||I|l|.|III

N O
- -

33
-
o o0
N N N

Total Number of Sequences = 794

4 4
Z‘-123_1 13323222111211111111111
o o o M W ® O M M o W N
Nmmmmwewmmwﬁaﬂa

Number of Malware Families

Fig. 9 Uniqueness of Sequences

number of iterations varies from 3 to 40. Similar results
are shown for 4 states HMMs obtained from training
sequences of length 2 to 4. Since the training sequence of
length 2 allows profiling all malware families, it is recom-
mended to use 2 states HMMs with training sequences of
length 2 if we do not consider expressiveness of HMMs,
or to use 4 states HMMs with training sequences of length
2 if we require more expressive HMMs.

Does limiting the length of training sequences to 2 impact
the uniqueness of sequences per malware family? To
answer this question, we test different sequences of length
2 on all malware family HMMs. Figure 9 illustrates the
distribution of training sequences with the number of
malware families (i.e., HMMs). We observe that approx-
imately 21.5% of sequences are predicted by 1 malware
family, and approximately 89% of sequences are pre-
dicted by at most 22 malware families. As such, we can
conclude that the tradeoff between prediction and unique-
ness is maintained since a big proportion of sequences are
predicted by 22 HMMs over 294 HMMs.

6.1.3 Computational complexity

In this section, we investigate computational complexity for
different techniques used to non-DPI fingerprint malicious
traffic. Computational complexity falls into:

— Features Extraction: In [45], the authors studied the
computational complexity and memory requirements
associated with flow features extraction in the context of
classification. The authors claimed that extracting each
feature from traffic is associated with a computational
cost less than or equal to O(n x logy n), and a mem-
ory footprint less than or equal to O(n), where n is the
number of packets in a flow used for extracting the fea-
ture. The total cost of extracting K features is bounded
to O(K x n x logy n).

— J48 Decision Tree: J48 (its C4.5 Java implementation)
has a training time complexity of O(m x n?), where

@ Springer

m is the size of the training data and » is the number
of attributes [91]. Regarding the classification, the com-
plexity is O (n x h), where h is the height of the tree and
n is the number of instances [33].

Labeling: To label unidirectional inbound and outbound
flows, we use a K- means RBS algorithm (a clustering
partitional algorithm). The advantage of these algorithms
is that they have relatively low computational cost [110].
A 2-way clustering solution can be computed in time
linear to the number of flows. In our case, the number
of iterations used by the greedy refinement algorithm is
less than 20. By assuming that the clusters are reasonably
balanced during each bisection step, the time required to
compute n — 1 bisections is O (n x logs n).

HMMs Convergence: In our approach, we use the EM
algorithm (also known as the Baum-Welch algorithm).
It is based on the computation of forward and backward
probabilities for each state and transition. The computing
complexity is of order O (n* xt), where n is the number of
states and ¢ is the number of transitions [78]. However,
in our experiments, we consider training HMMs with
labeled sequences by varying the length of sequences.
In addition, the EM algorithm has a computation which
iterates until the maximization of the log-likelihood is
satisfied. As such, the computing complexity is of order
O(n® x t x I x i), where [is the length of sequences and
i is the number of iterations.

6.2 DPI approach

In the sequel, we present results obtained for DPI fingerprint-
ing approach. We introduce: (1) classification and attribution
setup, (2) classification results, and (3) computational com-
plexity of this approach.

6.2.1 Classification and attribution setup

MARFPCAT’s algorithm parameters are based on the
empirically-determined default setup detailed in [55,57]. To

Network malware classification comparison using DPI and flow packet headers 87

perform classification, we load each pcap as a signal inter-
preted as a wave form. The signal encloses flows having both
the header and payload sections. It is important to mention
that all classification experiments are done through modules
tuned with default parameters (if desired, they can be varied,
but due to the overall large number of combinations, no para-
meters tuning has been considered). The default settings are
picked up throughout MARF’s lifetime, empirically and/or
based on the related literature [55]. Hereafter, we provide a
brief summary of the default parameters used for each mod-

ule:
— The default quality of the recorded WAV files used in

the experiment is 8000 Hz, mono, 2 bytes per sample,
Pulse-Code Modulation (PCM) encoded.

— LPC —has 20 poles (and therefore 20 features), thus pro-
duces a vector of 20 features and a 128-element window.

— FFT —does 512 x 2-based FFT analysis (512 features).

— MinMaxAmplitudes — 50 smallest and 50 largest
amplitudes (100 features).

— MinkowskiDistance — has a default of Minkowski
factor r = 4.

— FeatureExtractionAggregator — concatenates
the default processing of FFT and LPC (532 features).

— DiffDistance — has a default allowed error 0.0001
and a distance factor of 1.0.

— HammingDistance — has a default allowed error of
0.01 and a lenient double comparison mode.

— CosineDistance—hasadefaultallowed error of 0.01
and a lenient double comparison mode.

— NeuralNetwork —has 32 output layer neurons (inter-
preted as a 32-bit integer n), a training constant of 1.0,
an epoch number of 64, and a minimum error of 0.1.
The number of input layer neurons is always equal to the
number of incoming features f (the length of the fea-
ture vector), and the size & of the middle hidden layer is
h = |f —n|;if f = n,then h = f/2. By default, the
network is fully interconnected.

45.00% 41.63%

40.00%

35.00%
30.32%

30.00%

24.8!

25.00%

20.00%

15.00%

10.00%

5.00%
1

34.84% 34.84%

9% 24.89%
22.
2 3

(a)

33.03%

‘i
4

M First Run

20.81% 21.27%

M Second Run
16.74%
15.38%

0.00%
5 6

6.2.2 Classification results

In this section, we summarize the results obtained per test
case using NLP- processing of malicious network traces
classification. We present various selected statistical mea-
surements of the precision in recognizing different malware
classes under different algorithm configurations. In addition,
we use the “second guess” measure to test the hypothesis
that if our first estimate of the class is incorrect, the next
one in-line is probably correct. In the appendix, we list
the classification results sorted by fingerprinting accuracy.
In Figure 10a and Figure 11, we depict no-filtering classi-
fication results. In this case, no noise filtering is applied,
which impacts positively in fingerprinting runtime. Fig-
ure 10a illustrates the corresponding summary per various
algorithm combinations. Figure 11 shows some malware
families’ classification results. It is noteworthy to mention
that while the latter has overall low precision, many indi-
vidual malware families are correctly identified. The low
precision at the combination level is explained primarily
by the “generic” malware class (the largest) that skewed
the results and was not filtered in this experiment. The
same experiments are replicated using wavelet transform-
based filters in Figure 10b and Figure 12. Overall we notice
the same decline in precision as in the earlier filter-less
solution, raising the question of whether pre-processing is
really needed to quickly pre -classify a packet stream while
lowering precision and hindering accuracy. It is also inter-
esting to note that some malware classes (e.g., VBKrypt)
are poorly identified in the first guess, but correctly in the
second guess (illustrated by red spikes to the right of the
graphs).

The initial global scan produced results for 1, 063 mal-
ware families some of which are listed in Table 7, Table §,
and Table 9. Larger tables are also available but are too long
to include into this article. Many of them are nearly iden-
tified with an accuracy of 100%, often even using a single

40.00% 37.31%

27.36%)
18.
1

35.00%
30.32%

26.24%
24.89%
.55%) lli 18.55¢
3 4 5

(b)

30.00%
25.34%

25.00%
.55 18.
2

20.00% M First Run
’ M Second Run

15.00%

10.00%

5.00%

0.00%

6

Fig. 10 (a) No-Filtering Malware Algorithms Results Summary (1st and 2nd Guesses). (b) Wavelet Malware Algorithms Results Summary (1st

and 2nd Guesses)

@ Springer

88

A. Boukhtouta et al.

100% 100%
100%
1.67% 91.67%
90% 88.89%
80%
70%
60%
50%
1.67%
40%
3.3: 33.33%
30%
20% 17.89%
1315%
10%
0%
S 5 & & > ¢ &
$ & ¢ & ,, O \a e & > 4}“ & éQ S & 6°
z u « $ & s 3 3 S s & ,g, & g @ 2 & & A & o
& ‘ﬁf «>“° &“° ¥ »‘f & 4&"\ e“** & »‘\v 4&’ ¢w§’° & f & ‘t@é\ \«3’"' & 4 *“"é 1,\"*‘ \0“ \“’6 m*‘- 4 &‘Q @\“\Q «*‘ <a°°e &\& &
& S ¥ 2 3 A & & S & & S § LR § PR R o S S
F T I TEFT W I TSI T T T TFT S
v 3 & K% > . 3 25 - & . N O - o S & G xS - N R (o) N C
F & T TS ST T T T Y T T &
& ¢ 4“3'\5 Q\"(& &£ & &~ I S R & S & L E & 5
« & & o' § & & 5 & &
&8 e“"@ & & &‘6@ SHI \,,0’0 & ,,e°° Qp@e &@?
<° &
Fig. 11 No-Filtering Malware Family Results Summary (1st and 2nd Guesses)
00% 100% 100% 100% 100% 100% 100% 100% 100%
100%
93.75%
91.67% 91.67%
90%
83. 83.33% 83.33%
80%
70%
60%
50%
50%
40%
31.25%
30% 25.68%
20% 16.96%
1111%953% 1111%
10%
0%
3 N & & SIS A L&
< W Q & N & K N & & & Q A& o & X
I 4v@«~ _Y'b"o z°e°si.@°\5¢¥\'=e-*o(?"a@vo\c'v
<& ﬁgg‘ \qp‘ @,o v‘g'e & é;;,o ‘\4}:» & \S“"z 8)@ & 6_‘\(\.% (&"’ ¢ & oF v‘%o o &"A o;v\v\ & v‘f \‘;,,« &o" {53& Q\&e 5{.@ & Qy & \\9\«3
S SRR S ag SN I S S O L Y A R A S ol QT PG IS SR, AN N L M S <
& aY & aY pf @& R R R SR U S M P AT D SO S L A A O NN S S Y
F AT T ITFTFEFTE P EFF T I T T ITITFFE TS
F & © N v & & & S SN & & & & S O SR o ¢ &
& o > ¥ ¢ & & & N ¢ D S & & 3 PO T - A 2 > 8 SRS
o\?‘x & R & 9@5\ 00*‘ & 6‘§ Pl e o°\§ & Q&‘ & & & 6,;0\ <« & & R \<\°° & @‘a &%
Q & 3 N D S POARS S
A\é & ~ o\"o < 4"‘,\ & A'\‘« s o -m“o 0°$ & o\"’(\
& & < & N «‘o\ & Q&é‘ <€
< «\°\

Fig. 12 Wavelet Malware Family Results Summary (1st and 2nd Guesses)

packet. We discover that the data feed had some malware
classes labeled as “generic”. A lot of distinct malware fam-
ilies belong to such classes. The presence of such malware
families the MARFPCAT automated classification result in
noise and overfitting when training, which impacts negatively
on the overall per- configuration (combination) precision.
However, despite the presence of noise, many classes (771
of 1, 063) are classified with an accuracy of 100%. The rest
of malware classes have less than 75%, dropping quickly
to low classification accuracies, (e.g., Virus:Win32/Vik-
ing.gen!B [generic], PWS:Win32/Fareit.gen!C [generic],
and VirTool:Win32/ Fcrypter.gen!A [generic], and many oth-
ers).

@ Springer

6.2.3 Computational complexity

Computation complexity of the MARFPCAT data depends
on the algorithms chosen at each stage of the pipeline. Most of
them are one-dimensional processing modules with average
complexity of O(n) where n is the number of the ele-
ments at each stage. Here is the breakdown for some of the
tasks:

— Sample loading has to do with interpreting the pcap data
in a wave form, which is a straightforward interpretation
of every two bytes per an amplitude. Thus, it depends on
the size of the pcap file in bytes b — O (b/2).

Network malware classification comparison using DPI and flow packet headers

89

Table 7 No-Filtering Results by Algorithm Combination and Malware

guess run algorithms good bad %

1st 1 -dynaclass -binary -nopreprep -raw -fft -cos -flucid 67 154 30.32
1st 2 -dynaclass -binary -nopreprep -raw -fft -diff -flucid 55 166 24.89
1st 3 -dynaclass -binary -nopreprep -raw -fft -cheb -flucid 55 166 24.89
1st 4 -dynaclass -binary -nopreprep -raw -fft —eucl -flucid 50 171 22.62
1st 5 -dynaclass -binary -nopreprep -raw -fft ~-hamming -flucid 37 184 16.74
Ist 6 -dynaclass -binary -nopreprep -raw -fft -mink -flucid 34 187 15.38
2nd 1 -dynaclass -binary -nopreprep -raw -£ft -cos -flucid 92 129 41.63
2nd 2 -dynaclass -binary -nopreprep -raw -fft -diff -flucid 77 144 34.84
2nd 3 -dynaclass -binary -nopreprep -raw -fft —cheb -flucid 77 144 34.84
2nd 4 -dynaclass -binary -nopreprep -raw -fft —eucl -flucid 73 148 33.03
2nd 5 -dynaclass -binary -nopreprep -raw -fft ~-hamming -flucid 46 175 20.81
2nd 6 -dynaclass -binary -nopreprep -raw -fft -mink -flucid 47 174 21.27
guess run class good bad %

st 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
Ist 2 Trojan.Win32.Agent.roei 6 0 100.00
st 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
Ist 4 Worm.Win32.AutoRun.dkch 6 0 100.00
Ist 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
Ist 6 FraudTool.Win32.FakeRean 6 0 100.00
Ist 7 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00
Ist 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00
Ist 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00
Ist 10 Trojan.Win32.Meredrop 6 0 100.00
Ist 11 TrojanDownloader: Win32/Allsum 12 0 100.00
Ist 12 Virtumonde 6 0 100.00
Ist 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00
Ist 14 VirTool: WinNT/Protmin.gen!C [generic] 6 0 100.00
Ist 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
Ist 22 Trojan:Win32/Swrort. A 11 1 91.67
Ist 23 TrojanDownloader: Win32/Carberp.C 11 1 91.67
Ist 24 PWS:Win32/Lolyda.BF 15 3 83.33
Ist 25 Trojan.Win32.Yakes.qjn 8 4 66.67
Ist 26 Trojan.Win32.Agent.rlnz 5 7 41.67
Ist 27 Trojan.Win32.VBKrypt.fkvx 6 12 33.33
Ist 28 VirTool:Win32/VBInject.OT 6 12 33.33
st 29 HomeMalwareCleaner.Fake Vimes 36 264 12.00
Ist 30 Trojan.Win32.Generic!BT 56 598 8.56
Ist 31 Trojan.FakeAlert 6 108 5.26
Ist 32 Trojan.Win32.Generic.pak!cobra 0 18 0.00
2nd 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
2nd 2 Trojan.Win32.Agent.roei 6 0 100.00
2nd 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
2nd 4 ‘Worm.Win32.AutoRun.dkch 6 0 100.00
2nd 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
2nd 6 FraudTool.Win32.FakeRean 6 0 100.00
2nd 7 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00
2nd 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00

@ Springer

90

A. Boukhtouta et al.

Table 7 continued

guess run class good bad %

2nd 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00
2nd 10 Trojan.Win32.Meredrop 6 0 100.00
2nd 11 TrojanDownloader: Win32/Allsum 12 0 100.00
2nd 12 Virtumonde 6 0 100.00
2nd 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00
2nd 14 VirTool: WinNT/Protmin.gen!C [generic] 6 0 100.00
2nd 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
2nd 22 Trojan:Win32/Swrort. A 11 1 91.67
2nd 23 TrojanDownloader: Win32/Carberp.C 11 1 91.67
2nd 24 PWS:Win32/Lolyda.BF 16 2 88.89
2nd 25 Trojan.Win32.Yakes.qjn 9 3 75.00
2nd 26 Trojan.Win32.Agent.rlnz 5 7 41.67
2nd 27 Trojan.Win32.VBKrypt.fkvx 18 0 100.00
2nd 28 VirTool: Win32/VBInject.OT 6 12 33.33
2nd 29 HomeMalwareCleaner.FakeVimes 66 234 22.00
2nd 30 Trojan.Win32.Generic!BT 117 537 17.89
2nd 31 Trojan.FakeAlert 15 99 13.16
2nd 32 Trojan.Win32.Generic.pak!cobra 0 18 0.00
Table 8 Wavelet-Filtered Results by Algorithm Combination and Malware

guess run algorithms good bad %

Ist 1 -dynaclass -binary -nopreprep -sdwt -fft -cos -flucid 55 146 27.36
Ist 2 -dynaclass -binary -nopreprep -sdwt -fft -diff -flucid 41 180 18.55
1st 3 -dynaclass -binary -nopreprep -sdwt -fft -mink -flucid 41 180 18.55
1st 4 -dynaclass -binary -nopreprep -sdwt -fft -cheb -flucid 41 180 18.55
1st 5 -dynaclass -binary -nopreprep -sdwt -fft —eucl -flucid 41 180 18.55
1st 6 -dynaclass -binary -nopreprep -sdwt -fft ~-hamming -flucid 30 191 13.57
2nd 1 -dynaclass -binary -nopreprep -sdwt -fft -cos -flucid 75 126 37.31
2nd 2 -dynaclass -binary -nopreprep -sdwt -fft -diff -flucid 56 165 25.34
2nd 3 -dynaclass -binary -nopreprep -sdwt -fft -mink -flucid 67 154 30.32
2nd 4 -dynaclass -binary -nopreprep -sdwt -fft -cheb -flucid 55 166 24.89
2nd 5 -dynaclass -binary -nopreprep -sdwt -fft —eucl -flucid 58 163 26.24
2nd 6 -dynaclass -binary -nopreprep -sdwt -fft ~—hamming -flucid 44 177 19.91
guess run class good bad %

Ist 1 VirTool. Win32.VBInject.gen.bp (v) 6 0 100.00
Ist 2 Trojan.Win32.Agent.roei 6 0 100.00
Ist 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
Ist 4 Worm.Win32.AutoRun.dkch 6 0 100.00
Ist 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
Ist 6 FraudTool.Win32.FakeRean 6 0 100.00
1st 7 VirTool: Win32/Obfuscator.WJ (suspicious) 6 0 100.00
Ist 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00
Ist 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00
Ist 10 Trojan.Win32.Meredrop 6 0 100.00
st 11 Virtumonde 6 0 100.00

@ Springer

Network malware classification comparison using DPI and flow packet headers 91
Table 8 continued

guess run class good bad %

Ist 12 Backdoor.Win32.Hupigon.nndu 6 0 100.00
1st 13 VirTool: WinNT/Protmin.gen!C [generic] 6 0 100.00
Ist 14 PWS:Win32/Fareit.gen!C [generic] 6 0 100.00
Ist 15 Trojan-Dropper.Win32.Injector.cxqb 6 0 100.00
Ist 16 Trojan.Win32.Menti.mlgp 6 0 100.00
Ist 17 Trojan.Win32.Buzus (v) 6 0 100.00
Ist 18 Trojan.Win32.Agent.rlot 6 0 100.00
Ist 19 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
Ist 20 Trojan.Win32.FakeAV.lcpt 11 1 91.67
Ist 21 TrojanDownloader: Win32/Allsum 10 2 83.33
Ist 22 Trojan.Win32.Yakes.qjn 10 2 83.33
Ist 23 Trojan.Win32.Agent.rlnz 9 3 75.00
Ist 24 Trojan:Win32/Swrort. A 6 6 50.00
Ist 25 TrojanDownloader: Win32/Carberp.C 6 6 50.00
Ist 26 Trojan.Win32.VBKrypt.fkvx 5 11 31.25
Ist 27 VirTool: Win32/VBInject.OT 5 11 31.25
Ist 28 HomeMalwareCleaner.FakeVimes 46 250 15.54
Ist 29 Trojan.FakeAlert 8 104 7.14
Ist 30 Trojan.Win32.Generic.pak!cobra 1 17 5.56
Ist 31 Trojan.Win32.Generic!BT 18 626 2.80
Ist 32 PWS:Win32/Lolyda.BF 0 18 0.00
2nd 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
2nd 2 Trojan.Win32.Agent.roei 6 0 100.00
2nd 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
2nd 4 Worm.Win32.AutoRun.dkch 6 0 100.00
2nd 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
2nd 6 FraudTool.Win32.FakeRean 6 0 100.00
2nd 7 VirTool: Win32/Obfuscator.WJ (suspicious) 6 0 100.00
2nd 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00
2nd 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00
2nd 10 Trojan.Win32.Meredrop 6 0 100.00
2nd 11 Virtumonde 6 0 100.00
2nd 12 Backdoor.Win32.Hupigon.nndu 6 0 100.00
2nd 13 VirTool: WinNT/Protmin.gen!C [generic] 6 0 100.00
2nd 14 PWS:Win32/Fareit.gen!C [generic] 6 0 100.00
2nd 15 Trojan-Dropper.Win32.Injector.cxqb 6 0 100.00
2nd 16 Trojan.Win32.Menti.mlgp 6 0 100.00
2nd 17 Trojan.Win32.Buzus (v) 6 0 100.00
2nd 18 Trojan.Win32.Agent.rlot 6 0 100.00
2nd 19 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
2nd 20 Trojan.Win32.FakeAV.lcpt 12 0 100.00
2nd 21 TrojanDownloader: Win32/Allsum 11 1 91.67
2nd 22 Trojan.Win32.Yakes.qjn 11 1 91.67
2nd 23 Trojan.Win32.Agent.rlnz 10 2 83.33
2nd 24 Trojan:Win32/Swrort.A 6 6 50.00
2nd 25 TrojanDownloader: Win32/Carberp.C 10 2 83.33
2nd 26 Trojan.Win32.VBKrypt.fkvx 15 1 93.75

@ Springer

92

A. Boukhtouta et al.

Table 8 continued

guess run class good bad %

2nd 27 VirTool:Win32/VBInject.OT 5 11 31.25
2nd 28 HomeMalwareCleaner.FakeVimes 76 220 25.68
2nd 29 Trojan.FakeAlert 19 93 16.96
2nd 30 Trojan.Win32.Generic.pak!cobra 2 16 11.11
2nd 31 Trojan.Win32.Generic!BT 62 582 9.63
2nd 32 PWS:Win32/Lolyda.BF 2 16 11.11
Table 9 Low-Pass-Filtered Results by Algorithm Combination and Malware

guess run algorithms good bad %

1st 1 -dynaclass -binary -nopreprep -low -fft -cos -flucid 60 161 27.15
1st 2 -dynaclass -binary -nopreprep -low -fft -cheb -flucid 54 167 24.43
1st 3 -dynaclass -binary -nopreprep -low -fft -diff -flucid 54 167 24.43
1st 4 -dynaclass -binary -nopreprep -low -fft —eucl -flucid 46 175 20.81
st 5 -dynaclass -binary -nopreprep -low -fft ~hamming -flucid 35 186 15.84
Ist 6 -dynaclass -binary -nopreprep -low -fft -mink -flucid 33 188 14.93
2nd 1 -dynaclass -binary -nopreprep -low -fft -cos -flucid 88 133 39.82
2nd 2 -dynaclass -binary -nopreprep -low -fft -cheb -flucid 74 147 33.48
2nd 3 -dynaclass -binary -nopreprep -low -fft -diff -flucid 74 147 33.48
2nd 4 -dynaclass -binary -nopreprep -low -fft —eucl -flucid 69 152 31.22
2nd 5 -dynaclass -binary -nopreprep -low -fft ~hamming -flucid 49 172 22.17
2nd 6 -dynaclass -binary -nopreprep -low -fft -mink -flucid 48 173 21.72
guess run class good bad %

st 1 Trojan:Win32/Swrort. A 12 0 100.00
st 2 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00
st 3 Trojan.Win32.Agent.roei 6 0 100.00
1st 4 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
Ist 5 Worm.Win32.AutoRun.dkch 6 0 100.00
Ist 6 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
Ist 7 FraudTool.Win32.FakeRean 6 0 100.00
Ist 8 VirTool: Win32/Obfuscator.WJ (suspicious) 6 0 100.00
Ist 9 Trojan.Win32.Vilsel.ayyw 6 0 100.00
Ist 10 Worm:Win32/Yeltminky.A!dll 6 0 100.00
Ist 11 Trojan.Win32.Meredrop 6 0 100.00
Ist 12 Virtumonde 6 0 100.00
Ist 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00
Ist 14 VirTool: WinNT/Protmin.gen!C [generic] 6 0 100.00
Ist 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
Ist 22 TrojanDownloader: Win32/Allsum 11 1 91.67
Ist 23 TrojanDownloader: Win32/Carberp.C 10 2 83.33
Ist 24 PWS:Win32/Lolyda.BF 15 3 83.33
Ist 25 Trojan.Win32.Yakes.qjn 8 4 66.67
Ist 26 Trojan.Win32.Agent.rlnz 6 6 50.00
Ist 27 Trojan.Win32.VBKrypt.fkvx 6 12 33.33
Ist 28 VirTool: Win32/VBInject.OT 6 12 33.33
1st 29 HomeMalwareCleaner.Fake Vimes 37 263 12.33
Ist 30 Trojan.Win32.Generic.pak!cobra 2 16 11.11

@ Springer

Network malware classification comparison using DPI and flow packet headers 93

Table 9 continued

guess run class good bad %

Ist 31 Trojan.FakeAlert 8 106 7.02
Ist 32 Trojan.Win32.Generic!BT 35 619 5.35
2nd 1 Trojan:Win32/Swrort. A 12 0 100.00
2nd 2 VirTool. Win32.VBInject.gen.bp (v) 6 0 100.00
2nd 3 Trojan.Win32.Agent.roei 6 0 100.00
2nd 4 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00
2nd 5 Worm.Win32.AutoRun.dkch 6 0 100.00
2nd 6 Trojan-FakeAV.Win32.Agent.det 6 0 100.00
2nd 7 FraudTool. Win32.FakeRean 6 0 100.00
2nd 8 VirTool: Win32/Obfuscator.WJ (suspicious) 6 0 100.00
2nd 9 Trojan.Win32.Vilsel.ayyw 6 0 100.00
2nd 10 Worm:Win32/Yeltminky.A!dll 6 0 100.00
2nd 11 Trojan.Win32.Meredrop 6 0 100.00
2nd 12 Virtumonde 6 0 100.00
2nd 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00
2nd 14 VirTool: WinNT/Protmin.gen!C [generic] 6 0 100.00
2nd 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00
2nd 22 TrojanDownloader: Win32/Allsum 11 1 91.67
2nd 23 TrojanDownloader: Win32/Carberp.C 10 2 83.33
2nd 24 PWS:Win32/Lolyda.BF 15 3 83.33
2nd 25 Trojan.Win32.Yakes.qjn 9 3 75.00
2nd 26 Trojan.Win32.Agent.rlnz 4 66.67
2nd 27 Trojan.Win32.VBKrypt.tkvx 18 0 100.00
2nd 28 VirTool: Win32/VBInject.OT 6 12 33.33
2nd 29 HomeMalwareCleaner.FakeVimes 66 234 22.00
2nd 30 Trojan.Win32.Generic.pak!cobra 2 16 11.11
2nd 31 Trojan.FakeAlert 14 100 12.28
2nd 32 Trojan.Win32.Generic!BT 105 549 16.06

The pre-processing stage’s complexity depends on the
algorithm chosen. Raw has no processing (a no-op), just
passes data further, so the complexity is of O(1). Nor-
malization complexity is O (n). FFT-based low-pass and
similar filters have the complexity of O(2 x O(FFT)))
to convert to time domain and back, which is based on
radix-2 Cooley-Tukey FFT algorithm, with a complexity
of O(n/2log,(n)).

Feature extraction depends on the chosen algorithms.
Most common are FFT and LPC. LPC has a complexity
of O (n x (log, n)?) in general. MinMax has a complexity
of O(2n x logn) (to sort and copy).

Classification has the complexity of the chosen classifier,
such as distance or similarity measures. Cosine simi-
larity has a complexity of O(n?), but for normalized
data, the complexity is O (n). Euclidean, Chebyshev, and
Diff distances have a complexity of O(n), Minkowski
distance has a complexity of O(n°); and Hamming

distance has a complexity of O(n + log(n + 1)) at
the worst. Neural network and some other classifiers
are removed in this study at the time of the experi-
ments.

— The total complexity is the sum of the above stages, where
the average complexity is quite low, making it very fast
at scanning and pre-classifying the data.

7 Discussion

We review the current results of this experimental work,
including its current advantages, disadvantages and practi-
cal implications. First, we discuss the positive and negative
aspects of the non-DPI (Section 7.1) followed by the DPI
(Section 7.2) approaches. The discussion encloses some
observations noticed when performing experiments.

@ Springer

94

A. Boukhtouta et al.

7.1 Non-DPI fingerprinting
7.1.1 Advantages

In the sequel, we present the key advantages of the flow
packet headers approach:

— Classification accuracy: Using packet header bidirec-
tional flow attributes to classify malicious and benign
traffic has shown excellent accuracy with low rates of
false positives and negatives. The J48 classifier has the
ability to segregate malicious from benign traffic based
on packet header attributes.

— Independence from packet payloads: All detection and
attribution features are extracted from packet headers.
The detection and attribution, therefore, avoid noisy data
generated by encrypted traffic.

— Generalization: To segregate malicious from benign data,
we use different benign datasets collected from different
sources, namely, home networks, laboratory networks,
corporation networks, and ISP networks. Different mod-
els achieve high accuracy in terms of differentiation
between malicious and benign traffic. 10-fold cross val-
idation has been used to check whether the detection
accuracy is maintained.

— Detection attributes: Decision trees in general are con-
sidered as a set of conditions involving the values of
attributes. The classifier behaves as a white-box, where
the attributes play roles in the decidability of flows
maliciousness or not. J48 decision tree models generate
decision rules where the roots are usually features that
highly overlap malicious datasets and benign datasets.
The distinctive features are mainly used as leaves to make
final decisions on benign and malicious traffic. We notice,
for instance, that forward and backward inter-arrival time
values, duration of flow, and number of forward packets
and bytes are good indicators that distinguish between
malicious and benign traffic.

— Labeling attributes: Using inbound/outbound flow attri-
butes for the purpose of traffic characterization is a good
mean to create (sequences) patterns for malicious flows.
These patterns are subjected to mining tools (HMMs) to
attribute maliciousness to malware families.

— Possibility to fingerprint zero day attack: Character-
izing the detection and attribution through flow fea-
tures may provide opportunities to fingerprint unknown
malware families that share identical network behav-
ior with known malware families. For example, it has
been shown in [76] that Citadel malware (appeared in
2013) is a variant of Zeus (Zbot) malware (appeared in
2009).

— Decoupling between detection and attribution: In gen-
eral, this is considered a positive aspect in the sense that

@ Springer

attribution is implicit to detection. The attribution does
not impact the accuracy of detection. However, there is a
negative aspect of this decoupling that we discuss in the
sequel.

7.1.2 Disadvantages

Hereafter, it is the list of issues identified in packet flows
headers approach.

— Datasets overfitting: Decision trees that fit training and

testing data too well may not be as good as it has been
shown in our experiments. Overfitting trees can have a
low re-substitution error but a high generalization error.
As such it is a must to consider more benign datasets to
check whether the obtained models are subjected to gen-
eralization errors. J 48 decision trees are static classifiers
and are not resilient to additional noisy benign data (traf-
fic). Itis thus imperative to investigate the noise resiliency
of obtained classifiers and to determine how we can build
a committee modeling approach based on multi-decision
trees.

Complexity: Fingerprinting of maliciousness based on
packet header flow features generates a computational
complexity related to the extraction of features, the clas-
sification and clustering of features’ vectors, as well as
the construction and sequencing of flows. For instance,
we observed the following runtime for features extrac-
tion, models detection and labeling:

1. Bidirectional flow features extraction takes on aver-
age 0.94 seconds (0.042 seconds per feature).

2. Unidirectional flow features extraction takes on aver-
age 1.19 seconds (0.026 seconds per feature).

3. Detection:

— Malicious vs. Home Model: 15 milliseconds per
feature vector.

— Malicious vs. SOHO Model: 16 milliseconds per
feature vector.

— Malicious vs. ISP Model: 21 milliseconds per fea-
ture vector.

— Malicious vs. Private Model: 18 milliseconds per
feature vector.

4. Labeling:

— Inbound flows: the 16-k clustering solution takes
about 7.298 seconds (0.1300 milliseconds per fea-
ture vector).

— Outbound flows: the 18-k clustering solution takes
about 9.556 seconds (0.1671 milliseconds per fea-
ture vector).

A deployment of such approach in a real-time traffic
needs a traffic sampling technique since the compu-
tation of flow features on the fly is expensive. More-

Network malware classification comparison using DPI and flow packet headers 95

over, detection and attribution models must response
quickly to vectors of flow features created on sam-
pled data. This means that we need to synchronize
flow features extraction with detection and attribut-
ion.

— Corroborating attribution: the HMMs-based attribution is
not mature. We need to establish an algorithm to limit the
non-determinism of HMMs. This can be done by consid-
ering longer sequences when we have non-determinism
between malware families. For example, with a mali-
cious flows sequence of length 2 that is classified by ten
2 sequences trained HMMs, we can consider a poten-
tial third detected flow to create a new sequence of
length 3 and classify it with 3 sequences trained HMMs.
As such, ten 2 sequences trained HMMs play the role
of filters, whereas the 3 sequences trained HMMs will
limit the number of malware family attribution possibil-
ities.

— Decoupling between detection and attribution: In a way,
this is a double -edged sword. The negative aspect lies in
the fact that it generates deployment challenges, which
break into flows sampling, flows construction, and strong
detection to implicitly obtain a good attribution. Thus, it
is necessary to conduct a thorough analysis to deploy this
Non-DPI fingerprinting solution.

7.2 DPI fingerprinting
7.2.1 Advantages

In the sequel, we present the key advantages of the DPI
approach:

— Relatively fast: the DPI approach has shown an ability
to learn and classify relatively quickly than flow packet
headers approach. For instance, results shown in Table 8
took from 58ms to 598ms per pcap file. The complete run
considering all algorithms combinations, including train-
ing and testing phases took 27 minutes 74 seconds. Some
results go as low as below 10ms per pcap file (including
loading, pre- processing, feature extraction, and classifi-
cation). A complete training on an algorithm combination
was 1 to 3 seconds depending on the algorithm. Detailed
performance statistics from the log files can be released
depending on the need and appropriateness at an external
resource, such as arXiv.

— Learning scalability: giving the ability shown in training
runtime, DPI approach has the flexibility to learn on a
large knowledge base to test on known and unknown
cases as well as label them. The results shown in terms
of runtime allow to design and integrate easily an online

learning system, where the detection and attribution can
be improved by time. This approach can be used to Can
be used to quickly pre-scan projects for further analysis
by humans or other tools that do in-depth maliciousness
analysis.

— Flexibility: tuning algorithms’ combinations allows the
selection the best learning process for malware classes.
Accordingly, we can identify appropriate algorithm com-
binations that maintain the tradeoff between accuracy and
runtime. This approach can be used on any target mal-
ware without modifications to the methodology.

— Pluggability: developed tool, namely, MARFPCAT, can
learn from binary signatures obtained from other intru-
sion detection systems (e.g, Snort [89], Bro [72], etc.).
In addition, since it is an open- source it can be easily
plugged to existing firewalls or intrusion detection sys-
tems.

7.2.2 Disadvantages

Hereafter, it is the list of the most prominent issues related to
the DPI approach. Some are more “permanent”, while others
are solvable and intended to be addressed in a future work.

— Dependency: detection accuracy depends on the quality
of the collected knowledge base (see Section 5.2). The
annotation of pcap indexes are done manually, hence, it
is prone to errors.

— Accuracy: despite the fact that some malware families are
identified with a high accuracy, MARFPCAT has shown
limited accuracy for some malware families, especially
the ones clustered as being “generic”.

— Fuzziness: DPI fingerprinting has many algorithms’ com-
binations (currently &~ 1800 permutations), which try to
get the best top N. This can lead to incoherence in some
classification cases when there is a shift from a combi-
nation to another.

7.3 Summary

We started our experiments with MARFPCAT’s DPI app-
roach first due to its predecessor’s (MARFCAT’s) success in
static code analysis for vulnerabilities classification before
moving to the headers-based approach. We have learned
from related work (detailed earlier) using the headers fea-
tures to better deal with the encrypted traffic for the purposes
of application protocols classification. We thus moved on
to the header-based classification in addition to flow-based
classification based on headers, significantly improving pre-
cision.

@ Springer

96

A. Boukhtouta et al.

Our core finding is that the two approaches are not
necessarily in competition with each other, but are rather
complementary with DPI being much faster (no parsing and
picking out select headers; in addition, signal processing
techniques and related classifiers were simpler and more effi-
cient in comparison with the flow packet headers approach).
The DPI approach can work with either one or two pack-
ets already and does not depend on benign traffic learning
(which, if it did, would be like a noise signal), whereas the
header-based flow approach strictly requires a flow before it
can classify. Thus, the DPI approach can prioritize classifica-
tion targets, specifically for the headers-based approach (and
go deeper as necessary). While listening first on the network
interface, MARFPCAT can predict or hint to maliciousness,
whereas flow packet headers can increase subsequently the
confidence in maliciousness fingerprinting.

8 Conclusion

In this work, we presented a research effort dedicated to fin-
gerprint maliciousness at the traffic level. The maliciousness
fingerprinting falls into: NLP/wavelets Deep Packet Inspec-
tion (DPI) and flow packet headers. Moreover, we produced
a comparison between these two approaches.

Regarding the DPI approach, considering results shown
by MARFCAT in the classification of vulnerable code, we
used NLP and wavelets classification of signals techniques to
fingerprint maliciousness. Despite showing some problems
in classifying the generic malware families, it managed to
show a large scalability and accuracy for less noisy mali-
cious traffic. As a result, we released a MARFPCAT alpha
version, the MARFCAT’s predecessor, as open -source that
can be found at [56]. The distributed demand- driven version
of MARFPCAT is available in GIPSY open source reposi-
tory.

Regarding flow packet headers approach, we employed
several supervised machine learning algorithms, namely, J48,
Boosted J48, Naive Bayesian, Boosted Naive Bayesian, and
SVM in order to classify malicious and non- malicious traf-
fic. The aforementioned learning algorithms were used to
build classification models. Thus far, the results show that the
J48 and Boosted J48 algorithms performed better than other
algorithms. They reached over 99% precision with a rate
of false positives less than 1%. In summary, we illustrated
that it is possible to detect malicious traffic and differenti-
ate it from non-malicious traffic by using attributes extracted
from packets. This is a preliminary result toward the classi-
fication of malicious traffic at the network level. Therefore,
we aim to investigate the degree to which our classification

@ Springer

results are generalizable to a wide class of representative
networks.

There is a great number of possibilities for future works,
which include resolving unfinished scenarios and results,
addressing shortcomings, testing more algorithms’ combi-
nations from the related work. Part of our future works fall
into classifying the malicious traffic according to malware
types and families, and deploying the model on a network in
order to test its performance on real-time traffic.

As per some reviews pointed to, malicious traffic covers
a wide range of types: DDoS, C&C channels, and intrusion
payloads. It was suggested that it is better to further refine
the classification of malicious traffic into these types. This
in itself can be an insightful experiment that we will con-
sider doing in future work. At present, we only focus on the
captured pcaps from known malware to determine malicious-
ness. DDoS can also be aided though other existing means
(e.g., builtinto iptables).

In this work, we have not studied possible evasion from
malware trying to avoid detection at the network level. While
we believe the headers-only are robust to detect some share
of evasive malware, the extent to which our algorithms are
robust, stills a challenging research question. We have yet to
investigate why SVM and its parameters performed worse in
some instances of our earlier work before switching to flows
and HMMs. We will possibly attempt grid-search techniques
in our future work as well.

APPENDIX
9 MARFPCAT Algorithms and results

Hereafter, we list some MARFPCAT results using the algo-
rithms shown in Algorithm 1 and Algorithm 2. The results are
based on the whole packet examination (i.e., headers and pay-
load) that illustrate the precision per algorithm combinations
as well as attribution for the top precise malware types. The
methodology behind them is described in Section 5 and the
results are discussed in Section 6.2. The algorithms’ options,
in addition to those described in [55], are:

— -dynaclass — treat learned classes as labels automat-
ically from the reports (no predefined classes are set at
the beginning),

— -binary —treat data as pure binary non-formatted data,

— -nopreprep — to skip extra pre-pre-processing,

— —-sdwt — use separating discrete wavelet transform, and

— —-flucid - generate FORENSIC LUCID expressions for
subsequent forensic investigations and reasoning in an
external system [58].

Network malware classification comparison using DPI and flow packet headers

97

1 Compile meta-XML index files. Partly done by a Perl script and

partly annotated manually;

2 foreach pcap malware code base do

// Presently in these experiments we use
simple mean clusters of feature
vectors or uni-gram language models
per default MARF specification ([55])

3 Train the system based on the meta index files to build the
knowledge base (learn);
4 begin
5 Load (interpret as a wave signal or n — gram);
6 Pre-process (none, FFT-filters, wavelets, normalization,
etc.);
7 Extract features (FFT, LPC, min-max, etc.);
8 Train (Similarity, Distance, Neural Network, etc.);
end
10 Test on the training data for the same case with the same
annotations to make sure the results make sense by being
high and deduce the best algorithm combinations for the task;
1 begin
12 Load (same);
13 Pre-process (same);
14 Extract features (same);
15 Classify (compare against the trained k-means, or
medians, or language models);
16 Report;
17 end
18 Test on the testing data for the fixed case of the same malware;
19 Test on the testing data for the general case (e.g., dnets);
20 end
Algorithm 1: Pcap Analysis Using Signal Pipeline
1 Compile meta-XML index files from the malware reports;
2 foreach source code base, binary code base do

// Presently in these experiments we use
simple uni-gram language models per
default MARF specification ([55]1)

3 Train the system based on the meta index files to build the
knowledge base (learn);
4 begin
5 Load (n-gram);
6 Train (statistical smoothing estimators);
7 end
8 Test on the training data for the same case with the same
annotations to make sure the results make sense by being
high and deduce the best algorithm combinations for the task;
9 begin
10 Load (same);
11 Classify (compare against the trained language models);
12 Report;
13 end
14 Similarly test on the testing data for the same case without
the annotations as a sanity check;
15 Test on the testing data for the fixed case of the same software
16 Test on the testing data for the general non-classified case;
17 end
Algorithm 2: Pcap Analysis Using NLP Pipeline
References

1. Abdelnour, A.F, Selesnick, I.W.: Nearly symmetric orthogo-

nal wavelet bases. In: Proceedings of the IEEE International

10.

11.

12.

13.

14.

16.

Conference on Acoustics, Speech, Signal Processing (ICASSP)
(2001a)

Aggarwal, C.C., Gates, S.C., Yu, P.S.: On the merits of build-
ing categorization systems by supervised clustering. In: KDD,
KDD’99, pp. 352-356. ACM, New York, NY (1999)
Alshammari, R.A., Zincir-Heywood, A.N.: Investigating two
different approaches for encrypted traffic classification. In: Pro-
ceedings of the Sixth Annual Conference on Privacy, Security and
Trust (PST’08), pp. 156-166. IEEE Computer Society, Washing-
ton, DC (2008)

Alshammari, R.A., Zincir-Heywood, A.N.: Machine learning
based encrypted traffic classification: Identifying SSH and Skype.
In: Proceedings of the IEEE Symposium on Computational Intel-
ligence for Security and Defense Applications (CISDA 2009), pp.
1-8. IEEE (2009)

Alshammari, R.A.: Automatically generating robust signatures
using a machine learning approach to unveil encrypted VOIP
traffic without using port numbers, IP addresses and payload
inspection. Ph.D. thesis, Dalhousie University, Halifax, Nova Sco-
tia (2012)

Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F.,
Nazario, J.: Automated classification and analysis of Internet mal-
ware. Tech. rep., University of Michigan (2007). http://www.eecs.
umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf

Bayer, U., Comparetti, PM., Hlauschek, C., Kruegel, C., Kirda,
E.: Scalable, behavior-based malware clustering. In: NDSS, vol. 9
(2009)

Binkley, J.R., Singh, S.: An algorithm for anomaly-based bot-
net detection. In: Proceedings of the 2nd conference on Steps to
Reducing Unwanted Traffic on the Internet, no. 2 in SRUTI, pp.
1-7. USENIX Association, Berkeley, CA (2006)

Bloedorn, E., Christiansen, A.D., Hill, W., Skorupka, C., Tal-
bot, L.M., Tivel, J.: Data mining for network intrusion detec-
tion: How to get started. Tech. rep., The MITRE Corporation
(2001). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.102.8556&rep=rep1 &type=pdf

Boggs, N., Hiremagalore, S., Stavrou, A., Stolfo, S.J.: Cross-
domain collaborative anomaly detection: so far yet so close. In:
Recent Advances in Intrusion Detection, pp. 142—160. Springer,
Berlin (2011)

Boukhtouta, A., Lakhdari, N.E., Mokhov, S.A., Debbabi, M.:
Towards fingerprinting malicious traffic. In: Proceedings of
ANT’13, vol. 19, pp. 548-555. Elsevier, Amsterdam (2013).
doi:10.1016/j.procs.2013.06.073

Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond
heuristics: Learning to classify vulnerabilities and predict
exploits. In: Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD’ 10,
pp- 105-114. ACM, New York, NY (2010). doi:10.1145/1835804.
1835821

Chang, S., Daniels, T.E.: P2P botnet detection using behavior
clustering & statistical tests. In: Proceedings of the 2nd ACM
Workshop on Security and Artificial Intelligence. AlSec, pp. 23—
30. ACM, New York, NY (2009)

CrySyS Lab: sKyWIper (a.k.a. Flame ak.a. Flamer): A com-
plex malware for targeted attacks. Tech. rep., Budapest Uni-
versity of Technology and Economics: Department of Telecom-
munications, Budapest, Hungary (2012). http://www.crysys.hu/
skywiper/skywiper.pdf

. Dhillon, I.S., Mallela, S., Kumar, R.: A divisive information the-

oretic feature clustering algorithm for text classification. J. Mach.
Learn. Res. 3, 1265-1287 (2003)

Dietrich, C.J., Rossow, C., Pohlmann, N.: CoCoSpot: clustering
and recognizing botnet command and control channels using traf-
fic analysis. Comput. Netw. 57(2), 475-486 (2013)

@ Springer

http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.8556&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.8556&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.procs.2013.06.073
http://dx.doi.org/10.1145/1835804.1835821
http://dx.doi.org/10.1145/1835804.1835821
http://www.crysys.hu/skywiper/skywiper.pdf
http://www.crysys.hu/skywiper/skywiper.pdf

98

A. Boukhtouta et al.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

. Duda, R.O., Hart, PE., Stork, D.G.: Pattern Classification. Wiley,

New York (2012)

Fan, W., Miller, M., Stolfo, S., Lee, W., Chan, P.: Using artificial
anomalies to detect unknown and known network intrusions. In:
Proceedings of the IEEE International Conference on Data Min-
ing ICDM 2001), pp. 123-130 (2001). doi:10.1109/ICDM.2001.
989509

Frank, E.: J48. [online] (2012). http://weka.sourceforge.net/doc.
dev/weka/classifiers/trees/J48.html

Frank, E., Legg, S., Inglis, S.: Class SMO. [online] (2012). http://
weka.sourceforge.net/doc/weka/classifiers/functions/SMO.html
Freund, Y.: Boosting a weak learning algorithm by majority. Inf.
Comput. 121(2), 256285 (1995)

Golovko, V., Bezobrazov, S., Kachurka, P., Vaitsekhovich, L.:
Neural network and artificial immune systems for malware and
network intrusion detection. In: Advances in Machine Learning
1L, pp. 485-513. Springer, Berlin (2010)

Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter:
detecting malware infection through IDS-driven dialog correla-
tion. In: Proceedings of 16th USENIX Security Symposium, SS,
pp- 1-16. USENIX Association, Berkeley, CA (2007)

Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting botnet command
and control channels in network traffic. In: Proceedings of the
Network and Distributed System Security Symposium, NDSS.
The Internet Society (2008)

Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: clustering
analysis of network traffic for protocol- and structure-independent
botnet detection. In: Proceedings of the 17th Security Symposium,
SS, pp. 139-154. USENIX Association, Berkeley, CA (2008)
Han, B.: Towards a multi-tier runtime system for GIPSY. Master’s
thesis, Department of Computer Science and Software Engineer-
ing, Concordia University, Montreal (2010)

Han, J.: Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers Inc., San Francisco, CA (2005)

Hearst, M.A., Dumais, S., Osman, E., Platt, J., Scholkopf, B.:
Support vector machines. IEEE of Intelligent Systems and Their
Applications 13(4), 18-28 (1998)

Hu, X., Shin, K.G., Bhatkar, S., Griffin, K.: MutantX-S: Scalable
malware clustering based on static features. In: USENIX Annual
Technical Conference, pp. 187-198 (2013)

Ji, Y.: Scalability evaluation of the GIPSY runtime system.
Master’s thesis, Department of Computer Science and Soft-
ware Engineering, Concordia University, Montreal (2011). http://
spectrum.library.concordia.ca/7152/

Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale botnet
detection and characterization. In: Proceedings of the First Work-
shop on Hot Topics in Understanding Botnets, HotBots, pp. 1-7.
USENIX Association, Berkeley, CA (2007)

Karypis Lab: Data clustering software. [online] (2006-2014).
http://glaros.dtc.umn.edu/gkhome/views/cluto

Katz, G., Shabtai, A., Rokach, L., Ofek, N.: ConfDTree: Improv-
ing decision trees using confidence intervals. In: 12th IEEE
International Conference on, Data Mining (ICDM), pp. 339-348
(2012)

Kheir, N., Blanc, G., Debar, H., Garcia-Alfaro, J., Yang, D.: Auto-
mated classification of C&C connections through malware URL
clustering. In: ICT Systems Security and Privacy Protection, pp.
252-266. Springer, Berlin (2015)

Kirat, D., Nataraj, L., Vigna, G., Manjunath, B.S.: SigMal: a static
signal processing based malware triage. In: ACSAC’13. ACM,
New York, NY (2013). doi:10.1145/2523649.2523682

Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval
using new rotated complex wavelet filters. IEEE Transaction on
Systems, Man, and Cybernetics-Part B: Cybernetics 6(35), 1168—
1178 (2005)

@ Springer

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Kokare, M., Biswas, P.K., Chatterji, B.N.: Rotation-invariant tex-
ture image retrieval using rotated complex wavelet filters. [EEE
Transaction on Systems, Man, and Cybernetics-Part B: Cybernet-
ics 6(36), 1273-1282 (2006)

Kremenek, T., Engler, D.: Z-ranking: Using statistical analysis
to counter the impact of static analysis approximations. In: SAS
2003 (2003)

Kremenek, T., Ashcraft, K., Yang, J., Engler, D.: Correlation
exploitation in error ranking. In: Foundations of Software Engi-
neering (FSE) (2004)

Kremenek, T., Twohey, P., Back, G., Ng, A., Engler, D.: From
uncertainty to belief: inferring the specification within. In: Pro-
ceedings of the 7th Symposium on Operating System Design and
Implementation (2006)

Larsen, B., Aone, C.: Fast and effective text mining using linear-
time document clustering. In: KDD, KDD’99, pp. 16-22. ACM,
New York, NY (1999)

Lee, W.: Applying data mining to intrusion detection: the quest
for automation, efficiency, and credibility. ACM SIGKDD Explo-
rations Newsletter 4(2), 35-42 (2001)

Lee, W., Stolfo, S.J., Mok, K.W.: Adaptive intrusion detection: a
data mining approach. Artificial Intelligence Review 14, 533-567
(2000). doi:10.1023/1006624031083

Li,R., Xi, O.J., Pang, B., Shen, J., Ren, C.L.: Network application
identification based on wavelet transform and k-means algorithm.
In: Proceedings of the IEEE International Conference on Intelli-
gent Computing and Intelligent Systems (ICIS2009), vol. 1, pp.
3841 (2009). doi:10.1109/ICICISYS.2009.5357939

Li, W., Canini, M., Moore, A.W., Bolla, R.: Efficient application
identification and the temporal and spatial stability of classifica-
tion schema. Comput. Netw. 53, 790-809 (2009)

Limthong, K., Kensuke, F., Watanapongse, P.: Wavelet-based
unwanted traffic time series analysis. In: 2008 International Con-
ference on Computer and Electrical Engineering, pp. 445-449.
IEEE Computer Society, Washington, DC (2008). doi:10.1109/
ICCEE.2008.106

Livadas, C., Walsh, R., Lapsley, D.E., Strayer, W.T.: Using
machine learning techniques to identify botnet traffic. In: LCN,
pp- 967-974. IEEE Computer Society, Washington, DC (2006)
Locasto, M.E., Parekh, J.J., Stolfo, S., Misra, V.: Collaborative
distributed intrusion detection. Tech. Rep. CUCS-012-04 (2004).
http://hdl.handle.net/10022/AC:P:29215

Locasto, M.E., Parekh, J.J., Keromytis, A.D., Stolfo, S.J.: Towards
collaborative security and P2P intrusion detection. In: Proceed-
ings of the Information Assurance Workshop (IAW’05), from the
Sixth Annual IEEE SMC, pp. 333-339. IEEE (2005)

Manning, C.D., Schutze, H.: Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA (2002)
MathWorks: MATLAB. [online] (2000-2012). http://www.
mathworks.com/products/matlab/

MathWorks: MATLAB Coder. [online] (2012). http://www.
mathworks.com/help/toolbox/coder/coder_product_page.html,
last viewed June 2012

MathWorks: MATLAB Coder: codegen—generate C/C++ code
from MATLAB code. [online] (2012). http://www.mathworks.
com/help/toolbox/coder/ref/codegen.html, last viewed June 2012
McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions,
vol. 382. Wiley, New York (2007)

Mokhov, S.A.: Study of best algorithm combinations for speech
processing tasks in machine learning using median vs. mean clus-
ters in MAREF. In: Desai, B.C. (ed.) Proceedings of C3S2E’08, pp.
29-43. ACM, Montreal, Quebec (2008). doi:10.1145/1370256.
1370262

Mokhov, S.A.: MARFCAT—MARF-based Code Analysis
Tool. Published electronically within the MARF project. http://

http://dx.doi.org/10.1109/ICDM.2001.989509
http://dx.doi.org/10.1109/ICDM.2001.989509
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc/weka/classifiers/functions/SMO.html
http://weka.sourceforge.net/doc/weka/classifiers/functions/SMO.html
http://spectrum.library.concordia.ca/7152/
http://spectrum.library.concordia.ca/7152/
http://glaros.dtc.umn.edu/gkhome/views/cluto
http://dx.doi.org/10.1145/2523649.2523682
http://dx.doi.org/10.1023/1006624031083
http://dx.doi.org/10.1109/ICICISYS.2009.5357939
http://dx.doi.org/10.1109/ICCEE.2008.106
http://dx.doi.org/10.1109/ICCEE.2008.106
http://hdl.handle.net/10022/AC:P:29215
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/help/toolbox/coder/coder_product_page.html
http://www.mathworks.com/help/toolbox/coder/coder_product_page.html
http://www.mathworks.com/help/toolbox/coder/ref/codegen.html
http://www.mathworks.com/help/toolbox/coder/ref/codegen.html
http://dx.doi.org/10.1145/1370256.1370262
http://dx.doi.org/10.1145/1370256.1370262
http://sourceforge.net/projects/marf/files/Applications/MARFCAT/

Network malware classification comparison using DPI and flow packet headers

99

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

sourceforge.net/projects/marf/files/ Applications/ MARFCAT/
(2010-2015). Last viewed February 2014

Mokhov, S.A.: The use of machine learning with signal- and
NLP processing of source code to fingerprint, detect, and clas-
sify vulnerabilities and weaknesses with MARFCAT. Tech.
Rep. NIST SP 500-283, NIST (2011). Report: http://www.nist.
gov/manuscript-publication-search.cfm?pub_id=909407, online
e-print at http://arxiv.org/abs/1010.2511

Mokhov, S.A.: Intensional cyberforensics. Ph.D. thesis, Depart-
ment of Computer Science and Software Engineering, Concordia
University, Montreal (2013). arXiv:1312.0466

Mokhov, S.A., Debbabi, M.: File type analysis using signal
processing techniques and machine learning vs. £ile unix util-
ity for forensic analysis. In: O. Goebel, S. Frings, D. Guenther, J.
Nedon, D. Schadt (eds.) Proceedings of the IT Incident Manage-
ment and IT Forensics (IMF’08), LNI140, pp. 73-85. GI (2008)
Mokhov, S.A., Paquet, J., Debbabi, M.: Formally specifying oper-
ational semantics and language constructs of Forensic Lucid.
In: O. Gobel, S. Frings, D. Giinther, J. Nedon, D. Schadt
(eds.) Proceedings of the IT Incident Management and IT
Forensics (IMF’08), LNI, vol. 140, pp. 197-216. GI (2008).
Online at http://subs.emis.de/LNI/Proceedings/Proceedings 140/
gi-proc-140-014.pdf

Mokhov, S.A., Paquet, J., Debbabi, M.: Towards automatic
deduction and event reconstruction using Forensic Lucid and
probabilities to encode the IDS evidence. In: S. Jha, R. Sommer,
C. Kreibich (eds.) Proceedings of Recent Advances in Intrusion
Detection RAID’ 10, Lecture Notes in Computer Science (LNCS),
vol. 6307, pp. 508-509. Springer, Berlin (2010). doi:10.1007/
978-3-642-15512-3_36

Mokhov, S.A., Paquet, J., Debbabi, M.: The use of NLP techniques
in static code analysis to detect weaknesses and vulnerabilities.
In: M. Sokolova, P. van Beek (eds.) Proceedings of Canadian
Conference on Al'14, LNAI vol. 8436, pp. 326-332. Springer,
Berlin (2014). doi:10.1007/978-3-319-06483-3_33. Short paper
Mokhov, S.A., Paquet, J., Debbabi, M.: MARFCAT: Fast code
analysis for defects and vulnerabilities. In: Proceedings of
SWAN’15, pp. 35-38. IEEE (2015) (to appear)

Motorola: Efficient polyphase FIR resampler for numpy: Native
C/C++ implementation of the function upfirdn(). [online] (2009).
http://code.google.com/p/upfirdn/source/browse/upfirdn
Murphy, K.P.: HMM toolbox. [online] (2002-2014). http://www.
cs.ubc.ca/murphyk/Software/HMM/hmm_download.html

Nari, S., Ghorbani, A.A.: Automated malware classification based
on network behavior. In: Proceedings of the 2013 International
Conference on Computing, Networking and Communications
(ICNCQ), pp. 642-647. IEEE (2013)

Noh, S.K., Oh, J.H., Lee, J.S., Noh, B.N., Jeong, H.C.: Detecting
p2p botnets using a multi-phased flow model. In: International
Conference on Digital Society, ICDS, pp. 247-253. IEEE Com-
puter Society, Washington, DC (2009)

Okada, Y., Ata, S., Nakamura, N., Nakahira, Y., Oka, I.: Compar-
isons of machine learning algorithms for application identification
of encrypted traffic. In: Proceedings of the 10th International Con-
ference on Machine Learning and Applications and Workshops
(ICMLA), vol. 2, pp. 358-361 (2011)

Okun, V., Delaitre, A., Black, PE., NIST SAMATE: Static Analy-
sis Tool Exposition (SATE) 2010. [online] (2010). http://samate.
nist.gov/SATE2010Workshop.html

Ouchani, S., Ait’Mohamed, O., Debbabi, M.: A non-convex
classifier support for abstraction-refinement framework. In: 24th
International Conference on Microelectronics (ICM), pp. 1-4
(2012)

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Paquet, J.: Distributed eductive execution of hybrid intensional
programs. In: Proceedings of the 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference (COMP-
SAC’09), pp. 218-224. IEEE Computer Society, Washington, DC
(2009). doi:10.1109/COMPSAC.2009.137

Paxson, V.: Bro: a system for detecting network intruders in real-
time. Comput. Netw. 31(23-24), 2435-2463 (1999). http://www.
icir.org/vern/papers/bro-CN99.pdf

Peng, Y., Kou, G., Sabatka, A., Chen, Z., Khazanchi, D., Shi,
Y.: Application of clustering methods to health insurance fraud
detection. In: Proceedings of the 2006 International Conference
on Service Systems and Service Management, vol. 1, pp. 116-120
(2006)

Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: McPAD:
a multiple classifier system for accurate payload-based anomaly
detection. Comput. Netw. 53(6), 864—881 (2009)

Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers, San Mateo, CA (1993)

Rahimian, A., Ziarati, R., Preda, S., Debbabi, M.: On the reverse
engineering of the Citadel botnet. In: Foundations and Practice
of Security. Lecture Notes in Computer Science, pp. 408—425.
Springer, Berlin (2014)

Rieck, K., Holz, T., Willems, C., Diissel, P., Laskov, P.: Learning
and classification of malware behavior. In: Detection of Intru-
sions and Malware, and Vulnerability Assessment, pp. 108—125.
Springer, Berlin (2008)

Rodriguez, L.J., Torres, I.: Comparative study of the baum-welch
and viterbi training algorithms applied to read and spontaneous
speech recognition. In: Pattern Recognition and Image Analy-
sis. Lecture Notes in Computer Science, vol. 2652, pp. 847-857.
Springer, Berlin (2003)

Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., Van Steen, M.,
Freiling, F.C., Pohlmann, N.: Sandnet: network traffic analysis
of malicious software. In: Proceedings of the First Workshop on
Building Analysis Datasets and Gathering Experience Returns for
Security, pp. 78-88. ACM, New york (2011)

Salton, G.: Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. Addison-
Wesley, Boston, MA (1989)

Schreiber, R.: MATLAB. Scholarpedia 2(6), 2929 (2007). doi: 10.
4249/scholarpedia.2929. http://www.scholarpedia.org/article/
MATLAB

Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining
methods for detection of new malicious executables. In: Proceed-
ings of IEEE Symposium on Security and Privacy, pp. 38—49.
Oakland (2001)

Selesnick, 1., Cai, S., Li, K., Sendur, L., Abdelnour, A.F.: MAT-
LAB implementation of wavelet transforms. Tech. rep., Electri-
cal Engineering, Polytechnic University, Brooklyn, NY (2003).
http://taco.poly.edu/WaveletSoftware/

Simon, G.J., Xiong, H., Eilertson, E., Kumar, V.: Scan detec-
tion: a data mining approach. In: Proceedings of SDM 2006, pp.
118-129. SIAM, Philadelphia, PA (2006). http://www.siam.org/
meetings/sdm06/proceedings/011simong.pdf

Sly Technologies Inc: jNetPcap OpenSource. [online] (2012).
http://www.jnetpcap.com/

Song, D.: BitBlaze: Security via binary analysis. [online] (2010).
http://bitblaze.cs.berkeley.edu

Song, D.: WebBlaze: New techniques and tools for web security.
[online] (2010). http://webblaze.cs.berkeley.edu

Song, Y., Keromytis, A.D., Stolfo, S.: Spectrogram: a mixture-
of-markov-chains model for anomaly detection in web traffic.
In: Proceedings of the Network and Distributed System Security
Symposium, pp. 121-135. Internet Society (2009)

@ Springer

http://sourceforge.net/projects/marf/files/Applications/MARFCAT/
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909407
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909407
http://arxiv.org/abs/1010.2511
http://arxiv.org/abs/1312.0466
http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings140/gi-proc-140-014.pdf
http://dx.doi.org/10.1007/978-3-642-15512-3_36
http://dx.doi.org/10.1007/978-3-642-15512-3_36
http://dx.doi.org/10.1007/978-3-319-06483-3_33
http://code.google.com/p/upfirdn/source/browse/upfirdn
http://www.cs.ubc.ca/murphyk/Software/HMM/hmm_download.html
http://www.cs.ubc.ca/murphyk/Software/HMM/hmm_download.html
http://samate.nist.gov/SATE2010Workshop.html
http://samate.nist.gov/SATE2010Workshop.html
http://dx.doi.org/10.1109/COMPSAC.2009.137
http://www.icir.org/vern/papers/bro-CN99.pdf
http://www.icir.org/vern/papers/bro-CN99.pdf
http://dx.doi.org/10.4249/scholarpedia.2929
http://dx.doi.org/10.4249/scholarpedia.2929
http://www.scholarpedia.org/article/MATLAB
http://www.scholarpedia.org/article/MATLAB
http://taco.poly.edu/WaveletSoftware/
http://www.siam.org/meetings/sdm06/proceedings/011simong.pdf
http://www.siam.org/meetings/sdm06/proceedings/011simong.pdf
http://www.jnetpcap.com/
http://bitblaze.cs.berkeley.edu
http://webblaze.cs.berkeley.edu

100

A. Boukhtouta et al.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Sourcefire: Snort: open-source network intrusion prevention and
detection system (IDS/IPS). [online] (1999-2015). http://www.
snort.org/

Stolfo, S.J., Lee, W., Chan, P.K., Fan, W., Eskin, E.: Data mining-
based intrusion detectors: an overview of the Columbia IDS
Project. ACM SIGMOD Record 30(4), 5-14 (2001)

Su, J., Zhang, H.: A fast decision tree learning algorithm. In:
Proceedings of the 21st National Conference on Artificial Intelli-
gence, AAAT’06, vol. 1, pp. 500-505. AAAI Press (2006)
Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: BotFinder: finding bots
in network traffic without deep packet inspection. In: Proceed-
ings of the 8th International Conference on Emerging Networking
Experiments and Technologies, CONEXT, pp. 349-360. ACM,
New York, NY (2012)

The Weka Project: Weka 3: data mining with open source machine
learning software in Java. [online] (2006-2014). http://www.cs.
waikato.ac.nz/ml/weka/

Thorat, S.A., Khandelwal, A K., Bruhadeshwar, B., Kishore, K.:
Payload content based network anomaly detection. In: Proceed-
ings of the First International Conference on the Applications of
Digital Information and Web Technologies ICADIWT 2008), pp.
127-132. IEEE (2008)

ThreatTrack Security: ThreadAnalyzer: dynamic sandboxing
and malware analysis (formerly GFI SandBox). [online]
(2013). http://www.threattracksecurity.com/enterprise-security/
sandbox-software.aspx

Trinius, P., Willems, C., Holz, T., Rieck, K.: A malware instruction
set for behavior-based analysis (2011)

Vassev, E.I.: General architecture for demand migration in the
GIPSY demand-driven execution engine. Master’s thesis, Depart-
ment of Computer Science and Software Engineering, Concordia
University, Montreal (2005). http://spectrum.library.concordia.
ca/8681/

Wang, K., Stolfo, S.J.: Anomalous payload-based network intru-
sion detection. In: Recent Advances in Intrusion Detection, pp.
203-222. Springer, Berlin (2004)

Whalen, S., Boggs, N., Stolfo, S.J.: Model aggregation for dis-
tributed content anomaly detection. In: Proceedings of the 2014
Workshop on Artificial Intelligent and Security Workshop, pp.
61-71. ACM, New York (2014)

Wicherski, G.: pehash: a novel approach to fast malware clus-
tering. In: 2nd USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET) (2009)

@ Springer

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

Wireless and Secure Networks Research Lab: WISNET: down-
loads. [online] (2009-2014). http://wisnet.seecs.nust.edu.pk/
downloads.php

Wu, M.D., Wolfthusen, S.D.: Network forensics of partial
SSL/TLS encrypted traffic classification using clustering algo-
rithms. In: O. Gobel, S. Frings, D. Giinther, J. Nedon, D. Schadt
(eds.) Proceedings of the IT Incident Management and IT Foren-
sics (IMF’08), LNI140, pp. 157-172 (2008)

Yen, T.F,, Reiter, M.K.: Traffic aggregation for malware detection.
In: Proceedings of the Sthinternational conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, DIMVA,
pp. 207-227. Springer, Berlin (2008)

Zanero, S.: Analyzing TCP traffic patterns using self organizing
maps. In: Image Analysis and Processing (ICIAP 2005), pp. 83—
90. Springer, Berlin (2005)

Zanero, S., Savaresi, S.M.: Unsupervised learning techniques for
an intrusion detection system. In: Proceedings of the 2004 ACM
Symposium on Applied Computing, pp. 412-419. ACM, New
York (2004)

Zanero, S., Serazzi, G.: Unsupervised learning algorithms for
intrusion detection. In: Network Operations and Management
Symposium (NOMS 2008), pp. 1043-1048. IEEE (2008)

Zetter, K.: Meet ‘Flame’, The Massive Spy Malware Infiltrat-
ing Iranian Computers. WIRED (2012). http://www.wired.com/
threatlevel/2012/05/flame/

Zhang, D., Liu, D., Csallner, C., Kung, D., Lei, Y.: A distributed
framework for demand-driven software vulnerability detection. J.
Syst. Softw. 87, 60-73 (2014). doi:10.1016/j.jss.2013.08.033
Zhao, Y., Karypis, G.: Criterion functions for document cluster-
ing: experiments and analysis. Tech. rep., University of Minnesota
(2002)

Zhao, Y., Karypis, G., Fayyad, U.: Hierarchical clustering algo-
rithms for document datasets. Data Min. Knowl. Discov. 10(2),
141-168 (2005)

Zhong, S., Ghosh, J.: Generative model-based document cluster-
ing: a comparative study. Knowl. Inf. Syst. 8(3), 374-384 (2005)

http://www.snort.org/
http://www.snort.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.threattracksecurity.com/enterprise-security/sandbox-software.aspx
http://www.threattracksecurity.com/enterprise-security/sandbox-software.aspx
http://spectrum.library.concordia.ca/8681/
http://spectrum.library.concordia.ca/8681/
http://wisnet.seecs.nust.edu.pk/downloads.php
http://wisnet.seecs.nust.edu.pk/downloads.php
http://www.wired.com/threatlevel/2012/05/flame/
http://www.wired.com/threatlevel/2012/05/flame/
http://dx.doi.org/10.1016/j.jss.2013.08.033

	Network malware classification comparison using DPI and flow packet headers
	Abstract
	1 Introduction
	1.1 Motivations
	1.2 Contributions

	2 Related work
	2.1 Network traffic analysis
	2.2 Malware analysis and classification
	2.3 Static analysis

	3 Maliciousness ground truth
	4 Packet headers flow based fingerprinting
	4.1 Malicious traffic detection
	4.1.1 Benign traffic datasets
	4.1.2 Bidirectional flow features extraction
	4.1.3 Traffic classification

	4.2 Malicious traffic attribution
	4.2.1 Malware family indexation
	4.2.2 Sequencing flows
	4.2.3 Labeling sequences
	4.2.4 Hidden markov modeling
	4.2.5 Hidden markov models initialization

	5 Signal and NLP DPI fingerprinting
	5.1 Core principles
	5.2 The knowledge base
	5.3 MARFPCAT's DPI methodology
	5.4 NLP pipeline
	5.5 Demand-driven distributed evaluation
	5.5.1 Export

	5.6 Wavelets

	6 Results
	6.1 Non-DPI approach
	6.1.1 Classification
	6.1.2 Attribution
	6.1.3 Computational complexity

	6.2 DPI approach
	6.2.1 Classification and attribution setup
	6.2.2 Classification results
	6.2.3 Computational complexity

	7 Discussion
	7.1 Non-DPI fingerprinting
	7.1.1 Advantages
	7.1.2 Disadvantages

	7.2 DPI fingerprinting
	7.2.1 Advantages
	7.2.2 Disadvantages

	7.3 Summary

	8 Conclusion
	APPENDIX
	9 MARFPCAT Algorithms and results
	References

