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Abstract Recent work has presented hiddenMarkov mod-
els (HMMs) as a compelling option for malware identifica-
tion. However, some advanced metamorphic malware like
MetaPHOR and MWOR have proven to be more challeng-
ing to detect with these techniques. In this paper, we develop
the dueling HMM Strategy, which leverages our knowledge
about different compilers for more precise identification. We
also show how this approachmay be combinedwith previous
techniques tominimize the performance overhead. Addition-
ally, we examine the HMMs in order to identify the meaning
of these hidden states. We examine HMMs for four different
compilers, hand-written assembly code, three virus construc-
tion kits, and two metamorphic malware families in order to
note similarities and differences in the hidden states of the
HMMs.

1 Introduction

Wong and Stamp [30] have shown that tools based on hidden
Markov models (HMMs) are effective at detecting metamor-
phic computer viruses. This paper explores these tools in
more depth to better understand the meaning of the hidden
states in these models.
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In other domains, the states of an HMM have been con-
nected with some fundamental aspects of the problem at
hand. For instance, Cave and Neuwirth [5] reveal that an
HMM with two hidden states for the English (written) lan-
guage corresponds to vowels and consonants. This paper
attempts to reveal details about the hidden states and deter-
mine what insights they might provide about assembly code
in general, and virus code in particular.

A key insight is that virus construction kits and metamor-
phic code are essentially another type of compiler. Our tests
build models for four different compilers, for hand-written
(benign) assembly code, for three virus construction kits, and
for two metamorphic malware families. We identify salient
points of our models, noting how hand-written assembly dif-
fers from compiled code and how benign code differs from
virus code.

We leverage this understanding of different models to
more effectively detect computer viruses. The traditional
approach uses a hiddenMarkovmodel of virus code and flags
a file as infected if it exceeds a given threshold [30]. Instead,
we test the file against several different HMMs and flag the
file as a virus only if the virus HMM reports the highest prob-
ability of observing the given file. We dub this approach the
dueling HMM strategy, evoking the notion that the different
HMMs are competing against one another. Our results show
that the dueling HMM strategy achieves superior results to
the threshold-based technique, and is often effective at iden-
tifying viruses. While multiple HMMs have been leveraged
in other areas such as intrusion detection [8], this approach
has not previously been applied to virus identification.

This paper expands upon a previous conference paper [3]
to include analysis of additional sources of benign code and
additional virus families, including the MWOR worm [22]
that is specifically designed to evade the detection technique
used by Wong and Stamp. We also show how the threshold
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approach may be combined with the dueling HMM strategy
to reduce the performance overhead of the dueling HMM
strategy with no reduction in the accuracy of the results.

The contributions of this paper are as follows:

– We explore the semantic meaning behind the hidden
states of the hidden Markov model.

– We demonstrate the effectiveness of HMMs in distin-
guishing between different compilers.

– We develop the duelingHMMstrategy, a novel technique
for using multiple HMMs in virus identification.

– We develop a tiered HMM strategy that combines the
threshold approachwith the duelingHMMstrategy, gain-
ing the benefits of both techniques.

1.1 Polymorphic viruses, metamorphic viruses, and virus
construction kits

Signature-based detection is the primary method of identi-
fying computer viruses [29]. However, virus makers have
been resourceful, and have developed a variety of counter-
measures. One early approach used by virus writers was to
encrypt the body of the virus code. However, this technique
could often be defeated by looking for the signature of the
encryptor itself [29]. Polymorphic code defeats this detection
technique by mutating the code responsible for encryption.
Antivirus detection can still identify these programs by scan-
ning decrypted data for the virus signature.

Metamorphic viruses extend polymorphic techniques to
transform the entire virus, thereby defeating signature-based
detection approaches. Compounding the danger, virus con-
struction kits have been created that make it easy for people
with limited technical ability to create sophisticated viruses.
Other threats such as evolvable malware [17] still remain
theoretical, but might further complicate virus detection.

Research shows that better tools for virus detection are
needed to handle these threats. Christodorescu and Jha [9]
test different malware detectors and show that many com-
mercial products are ill-equipped to handle code obfuscation
techniques. Kruegel et al. [19] use control-flow graphs to
detect polymorphic/metamorphic worms. Bruschi et al. [4]
use this technique to to normalize programs and compare the
results, testing their technique against the MetaPHOR virus.
Mohammed [24] uses zeroing transformations, which per-
form a series of transformations on a program to convert it
to a “zero form”. Signature-based methods can then be used
on the zero form program.

Leder et al. [20] use value set analysis, performing a static
flow analysis and check for values that are characteristic of
a piece of malware. Zhang and Reeves [31] statically ana-
lyze programs to compare semantics based on the pattern
of library calls. Christodorescu et al. [10] identify polymor-

phic/metamorphic malware by considering the semantics of
programs.

Hidden Markov models use a statistical approach to iden-
tify these viruses. Wong and Stamp [30] use HMMs to iden-
tify viruses from different virus construction kits (VCKs)
with a high degree of accuracy. Attaluri et al. [2] consider
the application of profile hiddenMarkov models, which con-
sider positional information. Their results show that posi-
tional HMMs can be effective for detecting certain types of
metamorphic viruses, but do not perform well when viruses
shift blocks of code far apart.Annachhatre et al. [1] useHMM
analysis for classifyingmalware. Filiol and Josse [14] discuss
the application of Bayesian techniques to detectingmetamor-
phic viruses, considering both naive Bayes and HMMs.

Chess andWhite [7] show that there are computer viruses
that no algorithm can detect. Song et al. [26] highlight the
challenges that polymorphic techniques present to signature-
based approaches and any generative approaches to produc-
ing malicious code. Filiol and Josse [13] discuss statistical
testing simulability and show how attackers can evade detec-
tion by exploiting the defender’s detection model. Lin [21]
explores this idea further by creating viruses specifically
designed to avoid HMM-based detection. In short, a meta-
morphic virus can be designed to select mutations only if the
mutations will make the program appear to be more like a
benign program. Madenur Sridhara and Stamp [22] utilize
this strategy in the design of MWOR, a metamorphic worm
that uses dead code insertion to evade an HMM-based virus
detection tool.

2 Background on hidden Markov models

Markov models are state machines where the current state
depends on some number of the previous states in a prob-
abilistic way. A Markov model of order one depends only
on the previous state, a Markov model of order two depends
on the previous two states, etc. A hidden Markov model is
a Markov model where the state is not directly observable.
To better illustrate how these models work, we begin with a
motivating example.1

2.1 Hidden Markov model example

Suppose that we want to go see a movie. For simplicity, we
will consider movies to either be “Good” (G) or “Uninterest-
ing” (U).

From experience, we know that the probability of a given
director releasing a good movie after another good movie
is 0.7, and the probability of a bad movie after another bad

1 An expanded version of this section discussing hidden Markov mod-
els is available at http://www.cs.sjsu.edu/~stamp/RUA/HMM.
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movie is 0.6. Summarizing this information gives us the fol-
lowing table:

G
U

G U[
0.7 0.3
0.4 0.6

]
(1)

Ifwe have seen all of the previousmovies, and hence could
observe the states, we could use this information to directly
build a Markov model. Alas, academic life has kept us busy,
so instead we must rely on the opinions of movie critics.

The observations available to us are the reviews of the
movie critics. The movie critics may despise (D) a movie,
think that a movie is mediocre (M), or love (L) a movie.
Based on our experience, we determine the probability of
the critics’ reviews given the quality of the movie:

G
U

D M L[
0.1 0.4 0.5
0.7 0.2 0.1

]
.

(2)

With the information from (1), we can construct the state
transition matrix:

A =
[
0.7 0.3
0.4 0.6

]
(3)

Similarly from (2), we produce the following observation
matrix:

B =
[
0.1 0.4 0.5
0.7 0.2 0.1

]
. (4)

We also need to know the initial state distribution. In this
example, suppose that is is

π = [
0.6 0.4

]
. (5)

The matrices π , A and B are row stochastic, meaning that
each element is a probability and the elements of each row
sum to 1, that is, each row is a probability distribution.

Now consider the release of 4 consecutive movies by the
same director. Reading the reviews, we observe D, M, D, L .
Letting 0 represent D, 1 represent M and 2 represent L , this
observation sequence is

O = (0, 1, 0, 2). (6)

Wemightwant to determine themost likely state sequence
of the Markov process given the observations (6). In other
words, what is the most likely quality of recent movie
releases. “Most likely” has a couple of possible interpreta-
tions. In this context, we will define “most likely” to mean

Table 1 HMM notation

Notation Explanation

T Length of the observation sequence

N Number of states in the model

M Number of observation symbols

Q Distinct states of the Markov process, q0, q1, . . . , qN−1

V Possible observations, assumed to be 0, 1, . . . , M − 1

A State transition probabilities

B Observation probability matrix

π Initial state distribution

O Observation sequence, O0,O1, . . . ,OT−1

the state sequence that maximizes the expected number of
correct states.2

2.2 Notation

The notation used in an HMM is summarized in Table 1.
Note that the observations are assumed to come from the
set {0, 1, . . . , M − 1}, which simplifies the notation with no
loss of generality. That is, we simply associate each distinct
observation with one of the elements 0, 1, . . . , M−1, so that
Oi ∈ V = {0, 1, . . . , M − 1} for i = 0, 1, . . . , T − 1.

For the movie example of the previous section—with the
observations sequence given in (6)—we have T = 4, N = 2,
M = 3, Q = {H,C}, V = {0, 1, 2} (wherewe let 0, 1, 2 rep-
resent “despised”, “mediocre”, and “loved” reviews, respec-
tively). In this case, thematrices A, B, andπ are given by (3),
(4), and (5), respectively.

The matrix A = {ai j } is N × N with

ai j = P(state q j at t + 1 | state qi at t)
and A is row stochastic. Note that the probabilities ai j are
independent of t . The matrix B = {b j (k)} is an N × M with

b j (k) = P(observation k at t | state q j at t).

As with A, the matrix B is row stochastic and the probabil-
ities b j (k) are independent of t . The unusual notation b j (k)
is standard in the HMM world.

An HMM is defined by A, B, and π (and, implicitly, by
the dimensions N and M). The HMM is denoted by λ =
(A, B, π).

Consider a generic state sequence of length four

X = (x0, x1, x2, x3)

2 Alternately, we could reasonably define “most likely” as the state
sequence with the highest probability from among all possible state
sequences. Dynamic programming (DP) can be used to efficiently find
this particular solution. Note that theDP solution and theHMMsolution
are not necessarily the same.
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Table 2 State sequence probabilities

State Probability Normalized
probability

GGGG 0.000412 0.042787

GGGU 0.000035 0.003635

GGUG 0.000706 0.073320

GGUU 0.000212 0.022017

GUGG 0.000050 0.005193

GUGU 0.000004 0.000415

GUUG 0.000302 0.031364

GUUU 0.000091 0.009451

UGGG 0.001098 0.114031

UGGU 0.000094 0.009762

UGUG 0.001882 0.195451

UGUU 0.000564 0.058573

UUGG 0.000470 0.048811

UUGU 0.000040 0.004154

UUUG 0.002822 0.293073

UUUU 0.000847 0.087963

with corresponding observations

O = (O0,O1,O2,O3).

Then πx0 is the probability of starting in state x0. Also,
bx0(O0) is the probability of initially observingO0 and ax0,x1
is the probability of transiting from state x0 to state x1. Con-
tinuing, we see that the probability of the state sequence X
is given by

P(X) = πx0bx0 (O0)ax0,x1bx1(O1)ax1,x2bx2 (O2)ax2,x3bx3(O3).

(7)

Consider again the movie example in Sect. 2.1 with obser-
vation sequence O = (0, 1, 0, 2), as given in (6). Using (7)
we can compute, say,

P(GGUU ) = 0.6(0.1)(0.7)(0.4)(0.3)(0.7)(0.6)(0.1)
= 0.000212

Similarly, we can directly compute the probability of each
possible state sequence of length four, assuming the given
observation sequence (6). We have listed these results in
Table 2, where the probabilities in the last column are nor-
malized so that they sum to 1.

To find the optimal3 state sequence, we choose the most
probable symbol at each position. We sum the probabilities
in Table 2 that have an G in the first position. Doing so,
we find the (normalized) probability of G in the first position

3 In the dynamic programming (DP) sense, we would simply choose
the sequence with the highest probability, namely UUUG. Note that
this differs from the optimal solution in the HMM sense.

Table 3 HMM probabilities

Element

0 1 2 3

P(G) 0.188182 0.519576 0.228788 0.804029

P(U ) 0.811818 0.480424 0.771212 0.195971

is 0.18817, and hence the probability ofU in the first position
is 0.81183. The HMM therefore chooses the first element of
the optimal sequence to beU .We repeat this for each element
of the sequence, obtaining the probabilities in Table 3.

FromTable 3wefind that the optimal sequence isUGUG.

2.3 Applying hidden Markov models

There are three fundamental problems thatwe can solve using
HMMs:

1. Given an HMM and a sequence of observations, deter-
mine the likelihood of the observed sequence. Returning
to our movie example from Sect. 2.1, this might be useful
for determining the director of a series of movies.

2. Given an HMM and an observation sequence, find the
optimal state sequence. In this case, we are trying to
uncover the hidden part of our HMM. We discuss this
type of problem in some detail in Sect. 2.1.

3. Given an observation sequence O and the dimensions N
and M , find the model λ = (A, B, π) that maximizes the
probability of O. This can be viewed as training a model
to best fit the observed data.

Item 1 is the problem we are trying to solve with virus
detection, so we focus our discussion here; for more details
on the other problems, we refer the interested reader to [27].

Let λ = (A, B, π) be a given model and let O be a series
of observations where O = (O0,O1, . . . ,OT−1). We want
to find P(O | λ).

Let X = (x0, x1, . . . , xT−1) be a state sequence. Then by
the definition of B we have

P(O | X, λ) = bx0(O0)bx1(O1) . . . bxT−1(OT−1)

and by the definition of π and A it follows that

P(X | λ) = πx0ax0,x1ax1,x2 . . . axT−2,xT−1 .

Since

P(O, X | λ) = P(O ∩ X ∩ λ)

P(λ)
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and

P(O | X, λ)P(X | λ) = P(O ∩ X ∩ λ)

P(X ∩ λ)
· P(X ∩ λ)

P(λ)

= P(O ∩ X ∩ λ)

P(λ)

we have

P(O, X | λ) = P(O | X, λ)P(X | λ).

By summing over all possible state sequences we obtain

P(O | λ) = ∑
X P(O, X | λ)

= ∑
X P(O | X, λ)P(X | λ)

= ∑
X πx0bx0(O0)ax0,x1bx1(O1) . . .

axT−2,xT−1bxT−1(OT−1).

However, this direct computation is generally infeasible,
since it requires about 2T NT multiplications. The strength
of HMMs derives largely from the fact that there exists an
efficient algorithm to achieve the same result.

To find P(O | λ), the so-called forward algorithm, or α-
pass, is used. For t = 0, 1, . . . , T−1and i = 0, 1, . . . , N−1,
define

αt (i) = P(O0,O1, . . . ,Ot , xt = qi | λ). (8)

Then αt (i) is the probability of the partial observation
sequence up to time t , where the underlying Markov process
in state qi at time t .

The crucial insight here is that the αt (i) can be computed
recursively as follows.

1. Let α0(i) = πi bi (O0), for i = 0, 1, . . . , N − 1
2. For t = 1, 2, . . . , T−1 and i = 0, 1, . . . , N−1, compute

αt (i) =
⎡
⎣N−1∑

j=0

αt−1( j)a ji

⎤
⎦ bi (Ot )

3. Then from (8) it is clear that

P(O | λ) =
N−1∑
i=0

αT−1(i).

The forward algorithm only requires about N 2T multiplica-
tions, as opposed to more than 2T NT for the naïve approach.

3 Dueling HMM strategy

A central contribution of this paper is a novel method of
applying hidden Markov models to virus identification. The
dueling HMM strategy differs from traditional HMM-based
approaches in that it leverages HMMs of benign code, rather

Fig. 1 Probabilities of a match with the MetaPHOR HMM

than relying on a single HMM of the target virus family.
While there is an additional performance penalty, it appears
to achieve more accurate results.

The standard application of HMMs to virus identification
works as follows:

1. Build an HMM from virus code.
2. Determine the proper “threshold value”.
3. For any new file, determine the probability of observ-

ing the given sequence of opcodes, normalized for the
length of the observation. If the probability is less than
the threshold value, the file is flagged as a virus.

There are several benefits to this approach. Since only a sin-
gle HMM is required, the analysis can be performed more
efficiently. Also, it is straightforward to adjust the thresh-
old value in order to set the desired balance between false
positives and false negatives.

Rather than rely on threshold values, the dueling HMM
strategy uses the following process:

1. Build N HMMs of benign code, representing code com-
piled by different compilers.

2. Build M HMMs of virus code, representing the different
viruses to identify.

3. For any new file, determine the probability of observing
the sequence of opcodes for each of the N + M HMMs.

4. If the HMM reporting the highest probability represents
virus code, the file is flagged as a virus.

This approach takes more overhead, but the benefit of
leveraging information about different compilers allows for
a more fine-grained analysis, and seems to achieve superior
results.

It is illuminating to compare the two approaches in identi-
fying MetaPHOR-infected files, discussed in Sect. 8.1. Fig-
ure 1 shows the distribution of log probabilities reported
for one test of the 4-state HMM built from MetaPHOR-
infected code. The black diamonds represent probabilities for
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different MetaPHOR-infected files. The other shapes repre-
sent benign programs built with different compilers, outlined
in Sect. 4. The traditional, threshold-based approach would
draw a horizontal line across the diagram representing the
threshold; ideally, all black diamonds should be above the
threshold line and all other shapes should be below. The
results highlight the difficulty of determining a threshold
value that does not have a high number of false positives
for some compiler.

The dueling HMM strategy includes additional HMMs,
representing different compilers, hand-written assembly, and
other models of benign code. With this approach, the accu-
racy is greatly improved. As shown in Sect. 8.1, the dueling
HMM strategy identifies 85% of our sample MetaPHOR-
infected files, with only about a 1% false positive rate. In
contrast, setting a threshold value to detect MetaPHOR with
a comparable level of false negatives results in a false positive
rate in excess of 50%.

With the dueling HMM strategy, there is no threshold
value. A downside of this strategy is that it is not straight-
forward to adjust the balance between false positives and
false negatives. However, introducing a bias to the results in
favor of some HMMs provides this flexibility. In Sect. 7.1,
we illustrate how to add a bias to the results.

4 Models for different compilers

A focus of our work is to identify the tools used to build a
specific program. Our initial tests are designed around iden-
tifying the underlying compiler, since the vast majority of
benign programs are likely to be compiled from a higher
level language.

We use four different compilers for our tests. These
include Gnu’s venerable GCC compiler [16], the Clang [11]
front-end for the LLVM project, the MinGW port of GCC
to Windows, and the Turbo C compiler. We use the JAHMM
toolkit [15] and code from http://www.c.happycodings.com
to both train and test our models.

4.1 Using compiler generated assembly

Our initial models are constructed using assembly code gen-
erated directly by the compilers. In this section, we only con-
sider the GCC and Clang models. All programs were com-
piled to assembly on an Apple Mac OS X laptop running
version 10.6.8.

Following Wong and Stamp [30], we consider only the
Intel x86 (also known as IA-32) operation codes (opcodes)
for these models. The assembly generated by these two com-
pilers is substantially different in the use of opcodes. In fact,
it is sufficient to search for the presence of a few specific
opcodes to conclusively identify the compiler. For instance,

the CALL opcode occurs frequently in the GCC-generated
assembly code, but never in the Clang assembly, which uses
CALLQ instead.

HMMs are not especially useful in this case. However, a
view of some of the models is illuminating. Figure 2 shows
HMMs with 4 hidden states generated for the GCC compiler
on the left and the Clang compiler on the right.

HMMs do not always have a single starting state, and
instead have probabilities for starting in each state [27]. How-
ever, both of these models start in a specific state with 100%
probability. This pattern held with many of the HMMs that
we develop in this paper.

The HMMs show a remarkable similarity in their struc-
ture. For both models, the initial state is always dominated
by the observation of MOVQ andMOVL opcodes. A second
state is made up almost exclusively ofMOVSDobservations.

The remaining states show more variety. Both State 2 in
the GCC HMM and State 6 in the Clang model have a high
probability for observing JMP, RET, and conditional jump
opcodes. However, State 2 also has a high probability of
observing the LEAVE opcode.

State 3 of the GCC HMM is dominated by observations
of the CALL opcode. However, it also contains some prob-
ability of observing conditional jump opcodes. In contrast,
State 7 of the Clang HMM has almost 100% probability of
observing CALLQ.

While these models show some interesting details about
how the assembly code is generated, in anti-virus detection
weare unlikely to receive the original assembly code. Instead,
we will be presented with executables that we will first need
to disassemble before we will be able to do any significant
analysis. The resulting assembly code is significantly differ-
ent than that generated by the compilers themselves. In the
next section, we will explore the models built from assembly
generated from a disassembler.

4.2 Using disassembled assembly

As Wong and Stamp observe [30], a more realistic model
for generating assembly in antivirus detection compiles the
source code and then disassembles the resulting binaries. For
these tests, we used IDA Pro version 6.2.111006 as our dis-
assembler.

The resulting assembly code is markedly different from
the assembly code produced by the compilers themselves. As
a result, identifying the original compiler becomes somewhat
more complicated.

In this section, we develop HMMs for four different com-
pilers. The models are shown in Fig. 3.

Four states seems to be the optimal number of states, deter-
mined by our testing in Sect. 4.3. All four models seem to
have the same basic structure. The four states can roughly be
described by the opcode most likely to be observed when in
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0 1

2 3

0.65
0.00

0.10

0.24
0.28

0.64

0.03

0.05
0.73

0.01

0.21

0.05
0.67

0.02

0.17
0.15

4 5

6 7

0.66
0.01

0.16

0.18
0.27

0.57

0.06

0.03
0.79

0.01

0.09

0.10
0.87

0.03

0.09
0.01

GCC Observation Probabilities
0 1 2 3

MOVQ 47% MOVSD 95% JMP 42% CALL 79%
MOVL 46% SET* 5% J* 24% J* 21%
Other 7% RET 16%

LEAVE 16%
Other 2%

Clang Observation Probabilities
4 5 6 7

MOVQ 47% MOVSD 95% J* 47% CALLQ 100%
MOVL 46% SET* 5% JMP 40% Other < 1%
Other 7% RET 13%

SET*: SETE, SETNE, SETL, SETLE
J*: JA, JE, JG, JGE, JL, JLE, JNE, JAE, JB, JBE, JP, JS, and JNS.
Note: Due to rounding, probabilities do not always add up to 100%

Fig. 2 GCC HMM and clang HMM with 4 hidden states from compiler generated assembly

that state: the PUSH state; the MOV state; the CALL state;
and the miscellaneous state.

The PUSH state always includes POP and RETN as sig-
nificant opcodes. The odds of starting in this state are 100%
with the GCC, Clang, and MinGW HMMs.

The MOV state always includes a significant amount of
JMP and conditional jump operations, and usually has a high
probability of observing the LEA opcode.

The CALL state observes CMP and ADD and conditional
jump opcodes with a high probability.

Thefinal state is not dominated by anyobservation, though
TEST, SUB, and XOR are common.

The model for GNU’s Compiler Collection (GCC), ver-
sion 4.2.1 on OS X, is shown in the top left corner of Fig. 3.
GCC is used in a variety of open-source projects, making it
an important tool to consider.

State 0 is unusual in that it has a high percentage of observ-
ing SHL. SHL is the second most likely observed opcode
(16% probability), but is not frequently observed in the other
HMMs. There is also a low probability of staying in this state,
combined with the highest probability of transitioning to the
MOV state for any of our models, suggesting that state 0 is
more transitional than the PUSH states of the other HMMs.

Our second compiler is the Clang compiler front end for
LLVM, using version 2.0. Clang is a more recent tool than
GCC, but it has also been used for a number of open-source

projects. The model for the Clang compiler is in the top right
corner of Fig. 3.

State 7 is dominated by the observations of MOVSD,
MOVSX, and MOVZX. Collectively, these operations are
observed with a 94% probability. In contrast, these three
operations are only observed with a combined 22% proba-
bility in state 3 of the GCC HMM, and do not occur with
any great frequency in the other models. Transitions to state
7 are lower than equivalent transitions for the other HMMs.
However, the probability of staying in this state is noticeably
higher.

Another unusual characteristic of the Clang model is that
SUB is a common observation in state 4, its PUSH state. For
the other HMMs, SUB is usually a significant observation in
the miscellaneous state.

The Minimalist GNU for Windows (MinGW) [23] is a
port of GCC to Windows. We use version 4.6.1. We are par-
ticularly interested in MinGW since it allows to compare the
models generated by the same compiler on two different plat-
forms. The model for the MinGW compiler is in the bottom
left corner of Fig. 3.

The most unusual aspect of the MinGW code is the use of
PUSHF and POPF. These opcodes are never observed in the
data for the other compilers; their presence alone strongly
suggests that the code was compiled with MinGW. Another
difference is the high probability of OR opcodes being used,
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GCC Observation Probabilities

0 1 2 3
PUSH 58% MOV 71% CALL 47% SUB 32%
SHL 16% LEA 14% ADD 19% MOV* 22%
POP 15% JMP 10% CMP 15% TEST 20%
RETN 10% J* 5% J* 8% LEAVE 18%
Other 1% INC 7% XOR 7%

Other 4% Other 1%

Clang Observation Probabilities
4 5 6 7

PUSH 47% MOV 81% CALL 46% MOVSD 76%
POP 21% JMP 8% CMP 22% MOVSX 14%
SUB 16% LEA 7% ADD 21% SET* 5%
RETN 8% J* 4% J* 7% MOVZX 4%
Other 8% Other 4% Other 1%
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MinGW Observation Probabilities
8 9 10 11

PUSH* 43% MOV 70% CALL 44% TEST 37%
POP* 21% J* 17% CMP 27% SUB 27%
RETN 19% JMP 8% ADD 12% LEAVE 19%
OR 11% LEA 5% J* 7% XOR 8%
Other 6% Other 10% Other 7%

Turbo C Observation Probabilities
12 13 14 15

PUSH 39% MOV 63% CALL 21% XCHG 19%
POP 31% JMP 16% CMP 19% WAIT 19%
RETN 9% J* 17% J* 16% SUB 18%
OR 9% Other 4% ADD 11% SHL/SHR 16%
Other 12% Other 33% Other 28%

SET*: SETE, SETNE, SETL, SETLE, SETZ, and SETNZ
J*: JA, JE, JG, JGE, JL, JLE, JNE, JAE, JB, JBE, JP, JS, JNS, JZ, and JNZ.

MOV*: MOVSD, MOVSX, and MOVZX.
PUSH*/POP*: PUSH/POP and PUSHF/POPF.

Note: Due to rounding, probabilities do not always add up to 100%

Fig. 3 HMMs for GCC, clang, MinGW, and Turbo C compilers from disassembled code

reflected in the high probability of that opcode in state 8. This
quality is shared with the Turbo C compiler, perhaps indicat-
ing this feature is characteristic of Windows executables.

Borland’s Turbo C [18], version 2.01, is popular for Win-
dows. Additionally, Borland’s Turbo Assembler (TASM) is

a common choice for hand-written assembly programs. We
contrast the HMM for Turbo C with the Turbo ASM HMM
in Sect. 6.

The model for the Turbo C compiler is in the bottom right
corner of Fig. 3. The HMM for Turbo C is unusual in that
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its MOV state, state 13, has 100% probability of being the
initial state. In our data, a MOV operation is the first opcode
in all programs.

The Turbo C compiler also seems to use a much greater
variety of opcodes, reflected in the high observations of
‘other’ opcodes in the different states. Furthermore, state 15
includes XCHG andWAIT as two of its most likely opcodes,
which did not appear at all in the disassembled code for the
other compilers.

4.3 Identifying compiler

While the HMMs for each of the 4 compilers have a simi-
lar structure, they nonetheless can identify the compiler used
with a high degree of accuracy.Our tests use additive smooth-
ing [6] on the probabilities for each observation. No smooth-
ing is applied to the transition probabilities or to the ini-
tial state probabilities. Probabilities are not normalized for
length, since it is not necessary with the dueling HMM strat-
egy.

Test data consists of 92 separate programs: 24 were com-
piled with GCC on OSX, 24 with CLANG on OSX, 21 with
Turbo C on Microsoft Windows XP, and 23 with MinGW
on Microsoft Windows XP. We use HMMs built with 2–11
states.More states getmore accurate results, butwith a signif-
icant performance penalty. When scoring (i.e., the forward
algorithm) the work is on the order of N 2 ∗ T multiplica-
tions, where N is the number of states and T is the number
of observations. Therefore, wewould like to use as few states
as possible.

There is only one false identification for HMMs with 2 or
3 states; there are no errors with additional states.

Errors Accuracy
2 Hidden states 1/92 0.99
3 Hidden states 1/92 0.99
4+ Hidden states 0/92 1.00

4.4 Alternate HMM construction

Previous research [30] has focused on the use of opcodes, but
richer semantic information is available within the assembly
code. On the other extreme, certain opcodes dominate in the
model. Using less data might be as effective and more effi-
cient.

Op codes are straightforward to use in analyzing assembly
code, but they are not the only interesting source of informa-
tion. Labels provide information about a program’s structure,
and could potentially prove useful. For simplicity, we ignore
the name of the label and treat the existence of a label as if it
were another opcode. Unfortunately, considering labels does
not improve the quality of our models, identifying the correct
compiler with no greater probability.

Errors Accuracy
2 Hidden states 1/92 0.99
3 Hidden states 2/92 0.98
4–6 Hidden states 0/92 1.00

Identification of hand-written assembly and viruses is com-
parable as well, suggesting that considering labels is not ben-
eficial.

For a different approach, we consider only the most fre-
quently observed opcodes. By ignoring less common obser-
vations, our analysis can be more efficient.

With a 2-state HMM using only the MOV and CALL
opcodes the correct model is chosen with 0.67 accuracy. The
Turbo C code, however, is predicted with no more success
than random guessing.

Compiler Test files Correctly identified Accuracy
GCC 25 17 0.68
Clang 25 21 0.84
MinGW 23 20 0.87
Turbo C 21 5 0.24
All 94 63 0.67

Including more data improves the accuracy. We limit our
observations to those opcodes that account for 20% or more
of the observations for any state, improving the accuracy to
more than 90%.

Compiler Test files Correctly identified Accuracy
GCC 25 24 0.96
Clang 25 18 0.72
MinGW 23 23 1.00
Turbo C 21 21 1.00
All 94 86 0.91

5 Progression of states

An interesting aspect of HMMs lies in uncovering the hidden
states to determine what fundamental properties they reveal
of the thing being modeled. This section shows the break
down of opcodes as the number of hidden states increases
for the GCC HMM.

In all models discussed below, state 0 was the initial state
with 100% probability. We ignore the transition probabil-
ities; while this is important information, we focus on the
opcodes used in order to gain a richer understanding of the
semantics behind our HMMs.

With 2 states, CALL and MOV are broken into separate
states as the most likely observations. The probabilities for
different opcodes are shown below:
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State Observation probabilities
0 : JNS(0.00) JNZ(0.03) JS(0.00) JZ(0.01) JMP(0.08)

: LEA(0.11) MOV(0.56) POP(0.02) PUSH(0.08)
: REP(0.00) RETN(0.01) SAR(0.00) SHL(0.02)
: SHR(0.00) SUB(0.02) TEST(0.02) XOR(0.01)
: LEAVE(0.01) CWDE(0.00) MOVSD(0.01)
: MOVSX(0.00) MOVZX(0.01) SETNZ(0.00)
: SETZ(0.00)

1 : ADD(0.19) AND(0.02) CALL(0.47) CLD(0.00)
: CMP(0.15) DEC(0.02) IDIV(0.00) IMUL(0.00)
: INC(0.07) JA(0.00) JB(0.00) JBE(0.00) JG(0.01)
: JGE(0.01) JL(0.01) JLE(0.03)

With 3 states, a new state emerges with high probabili-
ties for observing SUB, SHL, TEST, and LEAVE, though
no one opcode seems to dominate. Interestingly, in most
of our testing, models with 3 states often underperformed
models with either 2 or 4 states. Section 4.4 shows one
example.

State Observation probabilities
0 : SAR(0.02) SHL(0.22) SHR(0.00) SUB(0.24)

: TEST(0.15) XOR(0.05) LEAVE(0.13)
: CWDE(0.00) MOVSD(0.08) MOVSX(0.02)
: MOVZX(0.07) SETNZ(0.00) SETZ(0.00)

1 : JNS(0.00) JNZ(0.03) JS(0.00) JZ(0.01) JMP(0.09)
: LEA(0.12) MOV(0.62) POP(0.02) PUSH(0.09)
: REP(0.00) RETN(0.01)

2 : ADD(0.19) AND(0.02) CALL(0.47) CLD(0.00)
: CMP(0.15) DEC(0.02) IDIV(0.00) IMUL(0.00)
: INC(0.07) JA(0.00) JB(0.00) JBE(0.00) JG(0.01)
: JGE(0.01) JL(0.01) JLE(0.03)

With 4 states, the PUSH state emerges, separated from the
MOV state. In our experiments, models with 4 states gen-
erally achieved marginally better accuracy that models with
fewer states; beyond 4 states, the improvements in accuracy
seem to be negligible.

State Observation probabilities
0 : POP(0.15) PUSH(0.58) REP(0.00) RETN(0.10)

: SAR(0.02) SHL(0.16) SHR(0.00)
1 : JNS(0.00) JNZ(0.03) JS(0.00) JZ(0.02) JMP(0.10)

: LEA(0.14) MOV(0.71)
2 : ADD(0.19) AND(0.02) CALL(0.47) CLD(0.00)

: CMP(0.15) DEC(0.02) IDIV(0.00) IMUL(0.00)
: INC(0.07) JA(0.00) JB(0.00) JBE(0.00) JG(0.01)
: JGE(0.01) JL(0.01) JLE(0.03)

3 : SUB(0.32) TEST(0.20) XOR(0.07) LEAVE(0.18)
: CWDE(0.00) MOVSD(0.11) MOVSX(0.02)
: MOVZX(0.09) SETNZ(0.00) SETZ(0.00)

With 5 states, MOV separates from the jump instructions.

State Observation probabilities
0 : POP(0.15) PUSH(0.58) REP(0.00) RETN(0.10)

: SAR(0.02) SHL(0.16) SHR(0.00)
1 : MOV(1.00)
2 : ADD(0.20) AND(0.02) CALL(0.50) CLD(0.00)

: CMP(0.16) DEC(0.02) IDIV(0.00) IMUL(0.00)
: INC(0.07) JA(0.00) JB(0.00) JBE(0.00)

3 : SUB(0.32) TEST(0.20) XOR(0.07) LEAVE(0.18)
: CWDE(0.00) MOVSD(0.11) MOVSX(0.02)
: MOVZX(0.09) SETNZ(0.00) SETZ(0.00)

4 : JG(0.01) JGE(0.01) JL(0.01) JLE(0.03)
: JNS(0.00) JNZ(0.11) JS(0.00) JZ(0.05)
: JMP(0.34) LEA(0.44)

Beyond this point, the instructions continue to break into
separate states, though themeaningbehind thedifferent states
seems less clear.

From our data, it appears that the two most significant
operations are CALL and MOV. In all of the HMMs that we
developover the course of this paper, including theHMMs for
hand-written assembly and virus code that we develop later,
CALL and MOV observations are always in separate states.
While we don’t know why MOV and CALL are the pre-
dominant opcodes, we do have two theories. Most likely, the
dominance of these opcodes is simply due to their frequency;
even subtle differences in their usage might overwhelm the
usage of other opcodes. Another intriguing possibility is that
these codes may reflect the programming style used in the
compiler; perhaps the usage of a more CALLs over MOVs
suggests a more recursive, functional style rather than an
imperative one, though this is pure speculation.

6 Hand-written assembly

We compare HMMs for compiled code with hand-written
assembly code. While the models are noticeably different,
our tool is unable to reliably distinguish between programs
built from hand-written assembly and compiled code.We use
Borland’sTurboAssembler (TASM)due to its use in the build
processes for many of the viruses found on http://vxheavens.
com, including the Next Generation Virus Construktion [sic]
Kit (NGVCK) [25] and the Metamorphic Permutating High-
Obfuscating Reassembler (MetaPHOR) [12]. Our model is
built from 46 sample assembly programs taken from assem-
bly programming tutorials.

Figure 4 shows the HMM for hand-written assembly code
with 4 hidden states. The model is strikingly different from
the HMMs for compiled code. While those HMMs always
begin in the same state with 100% probability, The HMM
for hand-written assembly has no single initial state. There
is also a far greater variety of opcodes used in hand-written
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3 6%

Fig. 4 HMM for hand-written assembly

assembly. While the division of the opcodes into different
states follows some of the same patterns as the HMMs for
the compilers, there are some notable differences.

TheMOV state and the PUSH state are combined. A num-
ber of jump instructions instead have their own state (State
0). CALL and CMP opcodes are still in their own state, but
there is also a high amount of AND instructions. State 3
roughly corresponds to the miscellaneous state of the com-
piler HMMs, but it includes a high number of INSB instruc-
tions.

Our test data includes 10 hand-written assembly programs
along with the 92 compiled programs used in previous sec-
tions. The compiled C programs are successfully identified,
even with as few as 2 states. The hand-written assembly pro-
grams are not identified as successfully as shown below:

Errors Accuracy
2 Hidden states 4 0.60
3 Hidden states 5 0.50
4 Hidden states 4 0.60

5–7 Hidden states 3 0.70

For themistaken identifications, TurboCwas identified as the
most likely model. With Turbo C removed, all of the hand-
assembled programs were successfully identified. Given the
striking difference in the HMM generated for hand-written
assembly, the poor results are surprising. Perhaps some
assembly programmers follow a similar pattern as compilers.

7 Identifying code generated with virus construction
kits

Virus construction kits (VCKs) make it easy for anyone with
minimal technical skills to create a virus, thus lowering virus
creation from an art for the technical elite to a paint-by-the-
numbers craft open to anyone with a malicious intent.

One of our central observations is that virus construc-
tion kits act as a specialized compiler. This section con-
siders HMMs for identifying viruses created by VCKs.
We use the Next Generation Virus Construktion [sic] Kit
(NGVCK) for our tests due to its advanced techniques [29],
performing additional tests with the Second Generation
Virus Generator (G2) and the Mass Code Generator (MPC-
GEN).

The Next Generation Virus Construktion [sic] Kit can cre-
ate viruses that are automatically morphed, making it diffi-
cult to detect all variants with traditional techniques [29]. It
uses several source-morphing techniques, including random
function ordering, junk code insertion, and encryption [29].

TheHMMfor theNGVCKvirus family is shown in Fig. 5.
The model is built from 200 sample virus programs that have
been compiled with Turbo C. It follows a pattern similar to
the compiled programs, with a PUSH state, a MOV state,
and a CALL state. Nonetheless, there are some noticeable
distinctions. A striking difference is the high use of the NOP
opcode in state 0, which hardly appeared in any of the other
HMMs. Additionally, as with the Turbo ASM HMM, there
is no single starting state.

We use five-fold cross validation to increase our sample
size. The sample virus programs are divided into 5 equal
groups; each slice is then tested against a model built from
the other 4 slices. Our tests include 200 NGVCK-infected
files divided up into groups of 40. Additionally, we include
a set of benign files as follows:

– 74 files compiled by GCC
– 72 files compiled by Clang
– 72 files compiled by MinGW
– 64 files compiled by TurboC
– 56 hand-written Turbo Assembly files
– 16 Cygwin utilities
– 16 Linux utilities
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Fig. 5 HMM for NGVCK virus family

Table 4 Results for virus detection using threshold approach

Virus family False positives F.P. (%) False negatives F.N. (%) Accuracy (%) Total time (ms) Threshold

G2 62/370 16.76 4/50 8.00 84.29 548.22 -2.66659

MPCGEN 89/370 24.05 0/50 0.00 78.81 495.47 -2.90398

NGVCK 166/370 44.86 16/200 8.00 68.07 550.97 -3.57961

MetaPHOR 198/370 53.51 10/60 16.67 34.88 538.67 -2.65207

MWOR (PR 1) 0/370 0.00 0/100 0.00 100.00 866.27 -2.6251

MWOR (PR 2) 1/370 0.27 0/100 0.00 99.79 964.16 -2.5394

MWOR (PR 3) 4/370 1.08 0/100 0.00 99.15 1152.99 -2.63274

MWOR (PR 4) 4/370 1.08 0/100 0.00 99.15 1341.37 -2.60028

All of the benign files were included in each test. These
tests were performed on a machine running Windows 7, 64
bit operating System with an Intel Core i5-3210M CPU @
2.5GHz processor and 8.00 GB RAM. The Linux system
that was used was running Ubuntu 12.04. Ubuntu was run on
the host machine using VMware player (version 5.0.2), with
1.00 GB RAM provided to the VM.

For additional validation of our approach, we also test 50
files infected with the G2 VCK and 50 files infected with the
MPCGEN VCK, both divided into 5 groups of 10. Our tests
were performed with 2–4 states.

Table 4 shows our results using the threshold approach,
including the false positives, false negatives, and total execu-
tion time for the tests. The final column shows the threshold
values used. The threshold approach detects many infected
files, but suffers from a number of false positives, most
notably in the case of NGVCK.

In contrast, the dueling HMM strategy fares much better.
Table 5 shows that the results improve considerably in terms
of the false negatives and the false positives.4 However, as a

4 WhileNGVCK remains difficult to detect, its false positive rate plum-
mets.

side effect of each file being scored against multiple HMMs
the files take significantly longer to be classified. We apply
a bias to some malware models, shown in the final column
of Table 5, in order to customize the false positive / false
negative ratio. This technique is discussed more in Sect. 7.1.

7.1 Biasing the dueling HMM strategy

The original HICSS paper [3] did not include a technique for
customizing the results to the desired false positive / false
negative ratio; instead, the best match was always used to
determine whether a file was benign or malicious. While this
strategy achieves good results, it lacks the flexibility desired
in a real-world system.

Biasing provides the necessary flexibility to fine tune the
duelingHMMapproach. Essentially, for a file to be classified
as malicious, its score against the HMM representing the
malware family must exceed the scores given by the HMMs
representing benign executables by more than the bias.

We apply a biasing of−0.25 to theG2HMMand a biasing
of −0.45 to the MPCGEN HMM. Tables 6 and 7 shows how
the false positives and false negatives vary with different val-
ues of biasing applied for the G2 HMM and the MPCGEN
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Table 5 Results for virus detection Using dueling HMM approach

Virus family False positives F.P. (%) False negatives F.N. (%) Accuracy (%) Total time (ms) Bias

G2 0/370 0.00 0/50 0.00 100.00 1,030.57 −0.25

MPCGEN 0/370 0.00 0/50 0.00 100.00 981.13 −0.45

NGVCK 2/370 0.54 75/200 37.50 86.49 1,155.61 0.00

MetaPHOR 4/370 1.08 9/60 15.00 96.98 1,113.47 0.00

MWOR (PR 1) 0/370 0.00 0/100 0.00 100.00 2,019.35 0.00

MWOR (PR 2) 0/370 0.00 0/100 0.00 100.00 2,413.05 0.00

MWOR (PR 3) 0/370 0.00 0/100 0.00 100.00 2,897.53 0.00

MWOR (PR 4) 0/370 0.00 0/100 0.00 100.00 3,433.05 0.00

Table 6 Biasing results for G2

Bias False positive F.P. (%) False negative F.N. (%)

0.00 2/370 0.54 0/50 0.00

−0.05 2/370 0.54 0/50 0.00

−0.10 2/370 0.54 0/50 0.00

−0.15 1/370 0.27 0/50 0.00

−0.20 1/370 0.27 0/50 0.00

−0.25 0/370 0.00 0/50 0.00

Table 7 Biasing results for MPCGEN

Bias False positive F.P. (%) False negative F.N. (%)

0.00 4/370 1.08 0/50 0.00

−0.05 4/370 1.08 0/50 0.00

−0.10 3/370 0.81 0/50 0.00

−0.15 3/370 0.81 0/50 0.00

−0.20 2/370 0.54 0/50 0.00

−0.25 2/370 0.54 0/50 0.00

−0.30 2/370 0.54 0/50 0.00

−0.35 1/370 0.27 0/50 0.00

−0.40 1/370 0.27 0/50 0.00

−0.45 0/370 0.00 0/50 0.00

HMM, respectively. ‘0.00’ represents the casewhere no bias-
ing is present.

In Table 6, we vary the bias applied from ‘0’ to ‘−0.25’ in
increments of 0.5 to see how the biasing changes the result.
The false positives gradually decrease from 2 to 0 while the
false negative rates stay constant at 0. Similarly, in Table 7
we see the results corresponding to the bias applied to MPC-
GEN. The bias in case of MPCGEN is varied from 0.0 to
−0.45 in increments of 0.05. The number of false positives
for MPCGEN decreases from 4 for no biasing to 0 with a
biasing of ‘−0.45’.

In our experiments, biasing the other HMMs of malware
families did not appear beneficial.

8 Metamorphic malware detection

Metamorphic viruses are difficult to detect with traditional
scanning approaches. The virus code is obfuscated rather
than merely encrypted. In this section, we examine files
infected by theMetaPHOR virus [12], known for its sophisti-
catedmetamorphic techniques [29]. Additionally, we test our
strategy againstMWOR [22], ametamorphic worm specially
designed to evade HMM-based detectors.

8.1 Detecting metaphor

The Win32/Simile virus, sometimes known as Win32/Etap,
is one of the more advanced metamorphic viruses. It is
built with the Metamorphic Permutating High-Obfuscating
Reassembler (MetaPHOR) engine [12], created by a virus
programmer known only as ‘the Mental Driller’. It infects
32-bit Windows files, though later versions also infect Linux
ELF files [29]. While it does not include a destructive pay-
load [28], it could be modified to do so. Roughly 90% of the
virus code relates to its metamorphic behavior [29].

Our initial training data consists of 49 programs compiled
with MinGW and infected by MetaPHOR. Figure 6 shows
the model generated from the MetaPHOR-infected files. It
has some noticeable similarities with the MinGW model.
There is a CALL state in both models with a high probability
of observing CMP and ADD opcodes. State 3 is dominated
by observations of TEST, SUB, and XOR in both HMMs.
Like the MinGWmodel, the metaphor model begins in state
0 with 100% probability. The main distinction between the
two models is in the observations of jump instructions. The
MinGW model has a distinct MOV state and PUSH/POP
state, while theMetaPHORmodel combines these two states
and breaks out jump instructions into their own state. In this
feature, it more closely resembles the HMM for hand-written
assembly.

Our test data includes 60 programs compiledwithMinGW
and then infected by MetaPHOR, divided into groups of 12
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Fig. 6 HMM for MetaPHOR infected files

Fig. 7 Design of the tiered
HMM approach

for use in fivefold cross validation. The set of benign files
used in these tests is the same set used in Sect. 7.

Table 4 illustrates the challenge of detecting MetaPHOR-
infected files; it has the highest false-negative and the
highest false-postive rates of any malware that we tested.
With a false positive rate exceeding 50%, the threshold
approach is clearly not effective at detecting this virus fam-
ily.

The results improve remarkably when tested with the
Dueling HMM strategy as shown in Table 5. Only 4 out of
370 benign files are mistakenly identified as infected, and
all but 9 out of 60 infected files are correctly identified. No
bias was used in these tests, though it is possible to skew the
results to achieve the desired balance between false negatives
and false positives.

8.2 Identifying MWOR

MWOR [22] is an advanced metamorphic worm specifically
designed to evade HMM-based detectors. It adds dead code

taken from Linux utilities in order to blend in with benign
code. Madenur Sridhara and Stamp [22] show that MWOR
is able to evade detection from threshold-based HMM detec-
tors when the added dead code is more than 2.5 times the
worm code.

In order to test the effectiveness of the duelingHMMstrat-
egy against MWOR, we use the same set of benign files used
in Sect. 7. The Linux utilities in our testing data are particu-
larly important, sinceMWOR is trying to masquerade as one
of those files.

Our experiments test different padding ratios; that is, the
amount of dead code included varies in different tests. Each
test group includes 100 MWOR executables, evaluated with
5-fold cross validation. A padding ratio of 1 (PR 1) indicates
a 1:1 ratio of the dead code toMWOR’s code; a padding ratio
of 4 (PR 4) indicates a 4:1 ratio of the dead code toMWOR’s
code;

Consistent with Madenur Sridhara and Stamp [22], the
threshold approach begins to break down as the padding ratio
increases, as shown in Table 4.
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Table 8 Results for virus detection using tiered approach

Virus family False F.P. (%) False F.N. (%) Accuracy (%) Threshold Eliminated by Bias Total time (ms)
positives negatives Tier 1

G2 0/370 0.00 0/50 0.00 100.00 −2.67 249/420 −0.25 613.26

MPCGEN 0/370 0.00 0/50 0.00 100.00 −2.90 281/420 −0.45 603.36

NGVCK 2/370 0.54 75/200 37.50 86.49 −3.62 209/470 0.00 737.00

MetaPHOR 4/370 1.08 9/60 15.00 96.98 −2.79 152/430 0.00 860.57

MWOR (PR 1) 0/370 0.00 0/100 0.00 100.00 −2.63 370/470 0.00 1512.65

MWOR (PR 2) 0/370 0.00 0/100 0.00 100.00 −2.54 369/470 0.00 1968.83

MWOR (PR 3) 0/370 0.00 0/100 0.00 100.00 −2.61 366/470 0.00 2531.72

MWOR (PR 4) 0/370 0.00 0/100 0.00 100.00 −2.59 366/470 0.00 3187.04

Table 9 Comparison of detection strategies

Virus family Threshold Dueling Tiered

False False Accuracy Total time False False Accuracy Total time False False Accuracy Total time
positives negatives (ms) positives negatives (ms) positives negatives (ms)

G2 62/370 4/50 84.29 548.22 0/370 0/50 100.00 1,030.57 0/370 0/50 100.00 613.26

MPCGEN 89/370 0/50 78.81 495.47 0/370 0/50 100.00 981.13 0/370 0/50 100.00 603.36

NGVCK 166/370 16/200 68.07 550.97 2/370 75/200 86.49 1,155.61 2/370 75/200 86.49 737.00

MetaPHOR 198/370 10/60 34.88 538.66 4/370 9/60 96.98 1,113.47 4/370 9/60 96.98 860.57

MWOR (PR 1) 0/370 0/100 100.00 866.27 0/370 0/100 100.00 2,019.35 0/370 0/100 100.00 1,512.65

MWOR (PR 2) 1/370 0/100 99.79 964.16 0/370 0/100 100.00 2,413.05 0/370 0/100 100.00 1,968.83

MWOR (PR 3) 4/370 0/100 99.15 1,152.99 0/370 0/100 100.00 2,897.53 0/370 0/100 100.00 2,531.72

MWOR (PR 4) 4/370 0/100 99.15 1,341.37 0/370 0/100 100.00 3,433.05 0/370 0/100 100.00 3,187.04

Table 9 shows that the dueling HMM strategy achieves
superior results to the threshold approach. It achieves perfect
accuracy, even with the highest padding ratio used (PR 4).

9 The tiered HMM strategy: improving the
performance of the dueling HMM strategy

While our results show that the dueling HMM strategy
achieves good results in detectingmalware that uses advanced
metamorphic techniques, it requires a significant amount of
performance overhead compared to the threshold approach.

In this section, we explore how the dueling HMM strategy
can be combined with the threshold approach. This tiered
HMM strategy significantly reduces the performance over-
head of the dueling HMM strategy while maintaining the
effectiveness of the original.

In the tiered approach, a potential malware file has to go
through multiple layers of trained HMMs. The goal is to use
the threshold approach to help reduce the number of files that
are actually passed on to the dueling layer, thus increasing
efficiency. With the introduction of additional HMMs in the
layered approach, the efficiency in terms of time decreases as
the file needs to be tested against a greater number of HMM

models to classify it as either good or bad. The challenge is to
reduce the time taken to classify the file; using the threshold
model, we filter out the “definitely good” and the “definitely
bad” files leaving a small number of files in the gray area that
need to be evaluated with the dueling HMM approach.

The tiered approach is illustrated in Fig. 7. It consists of
two distinct layers: the threshold tier and the dueling tier.
The file to be classified is initially processed by the threshold
HMM tier to see whether it can be classified with a mini-
mal risk of false positives. If the file cannot be eliminated
in the first tier, it is then sent to the dueling HMM tier for
classification. The description of the tiers is given below.

The goal of tier 1 is to quickly eliminate a good chunk of
viruses by the use of the threshold technique. The log likeli-
hood per opcode is determined for each file and is compared
against the threshold. The files that cannot be satisfactorily
classified are passed on to the next tier. For this approach,
the threshold for Tier 1 was chosen in such a way that there
were no false negatives except in the case of MetaPHOR and
NGVCK, and hence they differ from the thresholds chosen
in the standalone threshold approach. The results of our tests
are shown in Table 8.

The files which cannot be eliminated using the threshold
approach are then scored using the duelingHMMapproach in
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the second tier. Tier 2 contains HMMs for each virus family
as well as all benign code. Thus, each suspected file can now
be inspected to seewhether it belongs to a particular category.
The file will belong to the category of the HMM which will
give it the highest score.

Table 9 shows the comparison of the three approaches. The
threshold approach is the fastest method, but is less effective
at detecting malware than the other strategies. The dueling
approach, as expected, is the slowest of the three; The exe-
cution time for the dueling approach is on average two to
three times the execution time of the threshold approach.
The tiered approach lies snugly in the middle with the exe-
cution time ranging from 1.1 to 2.5 times the time taken
by the threshold approach, with most of the execution times
for the tiered model approaching the execution time for the
thresholdmodel. Despite this speedup, Table 9 shows that the
tiered approach is as effective as the dueling HMM strategy,
making the tiered strategy a clear winner.

10 Conclusions

HiddenMarkovmodels showpromise as a tool for virus iden-
tification, particularly in identifying metamorphic viruses.
We illustrate howmultiple HMMsmay be used in the dueling
HMM strategy, improving the effectiveness of HMM-based
detectors. We also show how the threshold-based approach
and the dueling HMM strategy can be combined in a tiered
fashion to minimize the performance penalty of the duel-
ing HMM strategy. We also reveal some of the details about
the hidden states of the HMM models, allowing for a richer
understanding of the critical properties of the underlying
models. By leveraging the information available in these
models, we hope to improve our ability to detect metamor-
phic malware.
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