
J Comput Virol Hack Tech (2015) 11:27–49
DOI 10.1007/s11416-014-0231-x

ORIGINAL PAPER

An overview of vulnerability assessment and penetration testing
techniques

Sugandh Shah · B. M. Mehtre

Received: 14 November 2013 / Accepted: 10 November 2014 / Published online: 28 November 2014
© Springer-Verlag France 2014

Abstract All Internet facing systems and applications
carry security risks. Security professionals across the globe
generally address these security risks by Vulnerability Assess-
ment and Penetration Testing (VAPT). The VAPT is an offen-
sive way of defending the cyber assets of an organization. It
consists of two major parts, namely Vulnerability Assessment
(VA) and Penetration Testing (PT). Vulnerability assessment,
includes the use of various automated tools and manual test-
ing techniques to determine the security posture of the target
system. In this step all the breach points and loopholes are
found. These breach points/loopholes if found by an attacker
can lead to heavy data loss and fraudulent intrusion activi-
ties. In Penetration testing the tester simulates the activities
of a malicious attacker who tries to exploit the vulnerabil-
ities of the target system. In this step the identified set of
vulnerabilities in VA is used as input vector. This process
of VAPT helps in assessing the effectiveness of the security
measures that are present on the target system. In this paper
we have described the entire process of VAPT, along with
all the methodologies, models and standards. A shortlisted
set of efficient and popular open source/free tools which are
useful in conducting VAPT and the required list of precau-
tions is given. A case study of a VAPT test conducted on a
bank system using the shortlisted tools is also discussed.

S. Shah
School of Computer and Information Sciences,
University of Hyderabad, Hyderabad, India

S. Shah (B) · B. M. Mehtre
Center for Information Assurance and Management, Institute
for Development and Research in Banking Technology Established by
Reserve Bank of India, Hyderabad, India
e-mail: sugandhshah@gmail.com

B. M. Mehtre
e-mail: bmmehtre@idrbt.ac.in

1 Introduction

Security remains one of the major concerns of infor-
mation systems. The growing connectivity of computers
through Internet, the increasing extensibility and the unbri-
dled growth of the size and complexity of systems have made
system security a bigger problem now than in the past. Fur-
thermore it is a business imperative to adequately protect
an organization’s cyber assets by following a comprehen-
sive, and structured approach to provide protection from
the risks an organization might face [2]. In an attempt to
address the security issues and comply with the mandated
security regulations, security experts have developed various
security assurance methods including vulnerability detec-
tion, proof of correctness, layered design and penetration
testing.
Vulnerability Analysis involves discovering a subset of input
space with which a malicious user can exploit logical errors
in a system to drive it into an insecure state [7]. The over-
all process of Vulnerability Detection and Analysis aims at
scanning the target system against all possible test cases and
enlisting a rich set of existing loopholes and weak points in
the target system. It involves an active analysis of the system
for any potential vulnerability, including poor or improper
systems configuration, software flaws and other operational
weaknesses in the process or technical countermeasures. The
vulnerability assessment process is a must to be followed by
Penetration Testing which is a comprehensive method to test
the complete, integrated, operational, and trusted computing
base.
Penetration testing determines the difficulty for someone
(basically an attacker/hacker) to penetrate an organization’s
security controls against unauthorized access to its informa-
tion and information systems. Penetration Testing is done by
simulating an unauthorized user attacking the system using

123

28 S. Shah, B. M. Mehtre

Fig. 1 Life cycle of a
vulnerability

either automated tools or manual excellence or a combination
of both.

For instance we can say that whenever an organization
installs new systems into its technological infrastructure,
it conducts a vulnerability assessment test on the newly
installed systems with an aim to discover the existing set
of weakness and loopholes, if any.

Once the vulnerability assessment is done, the organiza-
tion tries to patch the required weak points and tries to elim-
inate the listed vulnerabilities. Now to test the effectiveness
of the patching efforts the organization goes for penetration
testing, in which the tester simulates an attacker and tries to
exploit the system using various tools, techniques and exper-
tise.

VAPT has become a widely used and integral part of
quality assurance techniques for the systems used by vari-
ous financial organizations particularly Banks. In fact, many
government agencies and trade groups, such as OWASP and
OSSTMM, accredit penetration testers and sanction penetra-
tion testing Best Practices. The main goal of VAPT is to iden-
tify security vulnerabilities under controlled circumstances
so they can be eliminated before hackers/attackers exploit
them.

The rest of the paper is organized as follows:
Section 2 explains about various Terminologies and Back-

ground processes that are performed as a part of VAPT, it also
includes comparative analysis of all the methodologies and
techniques which gives a better understanding of all the con-
cepts. Further Sect. 3 describes the various phases of VAPT,
along with the standards and tools available for conducting
an efficient VAPT. Case Study of a sample VAPT test con-
ducted in a Bank is given in Sect. 4 which will help the testers
in getting a practical view of the whole process. Section 5
gives the Conclusion of the paper.

2 Background

This section describes the basic Terminologies, Components,
Techniques and Strategies of Vulnerability Assessment and
Penetration Testing. It also gives various benefits of con-
ducting an efficient VAPT on a system or in an organization
periodically.

2.1 Vulnerability

A Vulnerability is a software or hardware bug or miscon-
figuration that a malicious individual can exploit [3]. They
are the gateways by which different threats are manifested.
The process of scanning the infrastructure and identifying
such loopholes and weak points is called as Vulnerability
Discovery. After successfully enlisting all the existing set of
vulnerabilities in a system, we conduct Vulnerability Assess-
ment which aims to analyze the obtained set of vulnerabili-
ties. The vulnerabilities are prioritized based on their severity
and impact over the system.

Figure 1 shows the Life Cycle of a vulnerability and Fig.
2 shows the Risk involved in the entire Life Span of a Vulner-
ability. which describes the mapping between the Risk level
involved and the various phases in the lifetime of a vulnera-
bility.

In Fig. 1 we can see the state diagram for the life cycle
of a vulnerability, which shows the stages and the propaga-
tion factors from one stage to another in the entire life span
starting from Vulnerability Introduction to its Remediation.

The phases in Life of a Vulnerability represented by
Numerals in Fig. 2 are as follows:

1. Security Vulnerability is Discovered.
2. Discovered Vulnerability is made Public.

123

An overview of vulnerability assessment 29

Fig. 2 Risk level vs. phases in
life span of a vulnerability (time)

3. Vulnerability is Reported to the Vendor.
4. The Vendor Notifies its Clients.
5. Security Tools are Updated (IDS signatures, new mod-

ules for VA tools).
6. A Patch is Published.
7. The existence of the Patch gets Widely Known.
8. The Patch is installed in all systems affected.

From Fig. 2 we can observe that the higher amount of risk is
involved between the time when the Vulnerability gets Dis-
covered (1) and till the time when the Vendor acknowledges
or notifies its clients (4). The Graph attains its peak (High-
est Risk) between the time when The Vulnerability is made
Public (2) and till the time when the Vendor is Reported (3).

A zero-day attack is a cyber attack exploiting a vulnerabil-
ity that has not been disclosed publicly or for which no patch
has been deployed till date. A system remains compromised
with a zero day attack till the time when the vulnerability
gets discovered and a patch is applied to fix the vulnerability.

In our study on vulnerabilities and their life time, we have
found some facts as follows:

• Every 11 out of 18 vulnerabilities are not known (zero-day
vulnerabilities).

• It has been observed that a zero day attack lasts between
19 days to 30 months, with a median of 8 months and an
average of approximately 10 months.

• After vulnerabilities are disclosed (made public), the num-
ber of malware variants exploiting them increases 183–
85,000 times and the number of attacks on those vulnera-
bilities increases 2–100,000 times.

Hence we can clearly draw some inferences from these facts
like: The public disclosure of vulnerabilities is followed by
an increase in the volume of attacks by 5 times. The Cyber
Criminals (Hackers) keep a close watch on the disclosure of
every new vulnerability, in order to start exploiting them.

Detection and Remediation of such vulnerabilities
involves a huge investment depending on the type of vulnera-
bility and other dependencies. Estimating the cost of a vulner-
ability is a cumbersome process as it involves the evaluation

Table 1 Cost of zero-day vulnerabilities related to products of it firm

NAME OF PRODUCT COST OF VULNERABILITIES

ADOBE READER $5,000–$30,000

MAC OS-X $20,000–$50,000

ANDROID $30,000–$60,000

FLASH OR JAVA BROWSER
PLUG-INS

$40,000–$100,000

MICROSOFT WORD $50,000–$100,000

WINDOWS $60,000–$120,000

FIREFOX OR SAFARI $60,000–$150,000

CHROME OR INTERNET
EXPLORER

$80,000–$200,000

APPLE IOS $100,000–$250,000

Source: www.forbes.com

of multiple factors which in some or the other way influence
the existence, detection and exploitation of the vulnerability.
Table 1 shows the extract of an article published in Forbes’
Website which gives the approximate cost of zero-day vul-
nerabilities related to the products of principal IT security
firms.

From Table 1 we can observe the huge cost involved in
fixing the vulnerabilities, this huge cost is the result of the
aggregated amount incurred on the various influencing fac-
tors.

The factors that influence the cost of a vulnerability are as
follows:

• Difficulties in identification of vulnerabilities dependent
on the security compliance of the application producing
company. The longer the time necessary for third parties
to discover information, the greater is the cost involved.

• Diffusion level of the concerned application.
• Context of exploited application.
• Applications coming by default with the operating system.
• Necessity of authentication process to exploit the applica-

tion.
• Typical firewall configuration blocking access to the appli-

cation.

123

www.forbes.com

30 S. Shah, B. M. Mehtre

• Relationship of the vulnerability to server or client appli-
cation.

• Need of user interaction to exploit the vulnerability.
• Version of software that is affected by the exploit. Recent

versions are more costly.
• Dependency of technological context. Introduction of a

new technology could in fact lead to less interest in a vul-
nerability related to an old technology being replaced by
the new one.

2.2 Vulnerability types

The major problem faced by security professionals today is
the way in which the vulnerabilities are named and grouped.
It becomes very confusing if different security professionals
and product developers give different names of their choice
to the same vulnerability.

To resolve this issue, organizations collectively developed
a common language for handling the vulnerabilities, known
as CVE and CWE, both of which are sponsored by the MITRE
Corporation [12]. The CVE—Common Vulnerabilities and
Exposure List, is a standard in the naming convention of
security vulnerabilities making them easier to discuss and
document. CWE— Common Weakness Enumeration, pro-
vides a unified and measurable set of software weaknesses.
It enables effective discussion, description, selection and use
of software security tools and services that can find these
weaknesses in source code and operational systems [12].

For a better understanding and management of software
weaknesses and vulnerabilities the Domain of vulnerabilities
has been classified into two major parts based on theirRisk
and their Origin.

The classification of these security bugs are as follows:

Based on High Risk of the Security Flaws
One way of handling these vulnerabilities is by focusing on
the high risk problems. Communities like OWASP [8] and
SANS [13] provide the standard list of most common seri-
ous security vulnerabilities. The testers can refer to these
ranking lists and handle the vulnerabilities in a system more
efficiently. Remediation of vulnerabilities has always been a
tough and expensive job, hence it may not be adequate for the
organization to resolve all the vulnerabilities at once. In such
a scenario the VAPT tester can use these lists and prepare a
remediation list with the vulnerabilities of high impact and
risk ranked on top.

• OWASP Top 10: Table 2 hold the list of top 10 vulner-
abilities in Web Application Security from OWASP [8].
It represents a broad consensus about what the most crit-
ical web application security flaws are. The community
updates the list every year. The list is generated by differ-
ent security experts across the globe.

Table 2 OWASP top 10’ 2013

RANK CWE VULNERABILITY NAME

A1 CWE-929 Injection

A2 CWE-930 Broken Authentication and Session Management

A3 CWE-931 Cross Site Scripting (XSS)

A4 CWE-932 Insecure Direct Object Reference

A5 CWE-933 Security Misconfiguration

A6 CWE-934 Sensitive Data Exposure

A7 CWE-935 Missing Function Level Access Control

A8 CWE-936 Cross Site Request Forgery

A9 CWE-937 Using Components with known Vulnerabilities

A10 CWE-938 Unvalidated Redirects and Forwards

Source: www.owasp.com

• CWE/SANS Top 25: Unlike OWASP Top 10 Vulnerability
list, which focuses on Web Applications Security, Table 3
represents The SANS Top 25 list which aims at listing the
Top 25 vulnerabilities in all kind of applications [13]. The
community updates the list on an annual basis with the
help of Security experts from SANS and MITRE.

The Complete list is divided into three major parts as follows:

Based On the Origin of the Security Flaws
Another way is to work on the basis of the origin of these
security flaws and vulnerabilities, which can be divided into
two major groups: Architecture or Design Flaws and Coding
or Implementation Bugs.

• Architecture or Design Flaws are high-level problems
associated with the architecture of the software. These
flaws are associated to the SDLC and hence they are
comparatively more fundamental and more expensive to
change or fix. And they also demand training and help, to
understand.

• Coding or Implementation Bugs are code-level software
problems. Unlike design flaws they are not attached to
the roots of SDLC and are generally associated to the
logical coding part. Hence they are comparatively easier
to find through scanning and reviews, these kind of bugs
are comparatively smaller and easier to fix. But there tend
to be a lot of them [11].

The following Implementation Bug and Design Flaw descrip-
tions are based on their Common Weakness Enumeration
descriptions [12].

Some of the frequently observed vulnerabilities which fall
under the category of Implementation Bugs are described as
follows.

Cross-Site Scripting (XSS) (CWE-79) vulnerabilities
occurs when the software does not neutralize or incorrectly

123

www.owasp.com

An overview of vulnerability assessment 31

Table 3 CWE/SANS top 25’ 2013

DIVISIONS CWE VULNERABILITY NAME

1. INSECURE INTERACTION BETWEEN COMPONENTS (This section
Deals with Insecure ways of sending and receiving data between
components, modules, programs, processes or systems)

CWE-89 SQL Injection

CWE-78 OS Command Injection

CWE-79 Cross Site Scripting

CWE-434 Unrestricted upload of file with dangerous type

CWE-352 Cross Site Request Forgery

CWE-601 Open Redirect

2. RISKY RESOURCE MANAGEMENT (This section deals with ways in
which software does not properly manage the creation, usage, transfer or
destruction of important system resources)

CWE-120 Classic Buffer Overflow

CWE-22 Path Traversal

CWE-494 Download of Code without Integrity Check

CWE-829 Inclusion of functionality from untrusted control
sphere

CWE-676 Use of potentially Dangerous Function

CWE-131 Incorrect Calculation of Buffer Size

CWE-134 Uncontrolled Format String

CWE-190 Integer Overflow or Wraparound

3. POROUS DEFENCES (This section deals with defensive techniques
which are often misused, abused or just simply ignored)

CWE-306 Missing Authentication for Critical Function

CWE-862 Missing Authorization

CWE-798 Use of Hard Coded Credentials

CWE-311 Missing Encryption of Sensitive Data

CWE-807 Reliance on untrusted input in a Security Decision

CWE-250 Execution with unnecessary Privileges

CWE-863 Incorrect Authorization

CWE-732 Incorrect Permission Assignment for critical
Resources

CWE-327 Use of a Broken or Risky Cryptographic Algorithm

CWE-307 Improper Restriction of Excessive Authentication
Attempts

CWE-759 Use of a One-Way Hash without a Salt

Source: www.sans.org

neutralizes user-controllable input before it is placed in out-
put that is used as a web page and is served to other users. This
vulnerability is further classified into three types. Reflected
XSS (Non Persistent) occurs when the server reads data
directly from the HTTP request and reflects it back in the
HTTP response. Stored XSS (Persistent) occurs when the
application stores dangerous data in a database, message
forum, visitor log or other trusted data sources. In DOM-
Based XSS, the client performs the injection of XSS into the
page, while in the other types, the server performs the injec-
tion.

SQL INJECTION (CWE-89) vulnerabilities occur when the
software constructs all or part of an SQL command using

externally-influenced input from an upstream component, but
it does not neutralize or incorrectly neutralizes special ele-
ments that could modify the intended SQL command when
it is sent to a downstream component.

Use of Inherently Dangerous Function (CWE-242) vul-
nerability occurs when the program calls a function that can
never be guaranteed to work safely. Hence the attacker can
easily use common knowledge of their weakness to exploit
the application.

Path Traversal (CWE-22) vulnerability occurs when the
software uses external input to construct a pathname that is
intended to identify a file or directory that is located under-
neath a restricted parent directory, but the software does not

123

www.sans.org

32 S. Shah, B. M. Mehtre

Fig. 3 Probability of different
vulnerabilities in a website-2011

Fig. 4 Probability of different
vulnerabilities in a website-2012

properly neutralize special elements within the pathname that
can cause the pathname to resolve to a location that is outside
of the restricted directory.

Information Exposure through an Error Message
(CWE-209) vulnerability occurs when the software gen-
erates an error message that includes sensitive information
about its environment, user or associated data. The sensitive
information may be valuable information on its own (such
as a password) or it may be useful for launching other more
deadly attacks.

External Control of Assumed Immutable Web-Parameter
(CWE-472) vulnerability occurs when the web application
does not sufficiently verify input that are assumed to be
immutable but are actually externally controllable, such as
hidden form fields. OS Command Injection (CWE-78) vul-
nerability occurs when the software constructs a part of
an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the intended
OS command when it is sent to a downstream component.

Similarly, Some examples of vulnerabilities falling under
the category of Design Flaws, are given as follows.

Improper Authorization (CWE-285) vulnerability occurs
when the software does not perform or incorrectly performs
an authorization check when an actor attempts to access a

resource or perform an action. When such action control
checks are not applied consistently, users are able to access
data or perform actions that they should not be allowed to
perform.

Insufficient Logging (CWE-778) vulnerability occurs when
a security-critical event occurs, the software either does not
record the event or omits important details about the event
when logging it. When such security crucial events are not
logged properly, such as a failed login attempt, this can make
malicious behavior more difficult to detect and may hinder
forensic analysis after an attack succeeds.

Trust Boundary Violation (CWE-501) vulnerability
occurs when the product mixes trusted and untrusted data
in the same data structure or structured message. By com-
bining the trusted and untrusted data in the same data struc-
ture, it becomes easier for programmers to mistakenly trust
unvalidated data.

Unrestricted Upload of File with Dangerous Type (CWE-
434) vulnerability occurs when the software allows the
attacker to upload or transfer files of dangerous types that
can be automatically processed within the product’s envi-
ronment.

To analyze the Impact and Persistence of these vulnerabil-
ities we analyzed the Vulnerability Stat Reports of the year
2011 and 2012 [21]. Figures 3 and 4 represent the percentage

123

An overview of vulnerability assessment 33

Fig. 5 Overall vulnerability
population (%) in 2012

0

Fig. 6 Phases of vulnerability
assessment

likelihood of the existence of at least one serious vulnerability
in a website. The percentage figures in the graphs represent
the probability of the existence of that specific vulnerability.

Figure 5 shows the overall population of vulnerabilities
(in %) for the year 2012 [21]. All these facts and figures give
us a complete idea of the prevailing vulnerabilities and their
growth. The Organizations can use these details to formulate
their Cyber Defence strategies.

2.3 Vulnerability assessment

It is the process of vulnerability detection and analysis, This
is the first phase of VAPT, in this phase the tester aims at
getting familiar with the target system and identifying the list
of vulnerabilities associated to the applications and services
running on the target system.

As shown in Fig. 6 the process of Vulnerability Assess-
ment has following four phases:

1. Target Discovery
2. Scanning
3. Result Analysis
4. Reporting

Target Discovery: In this phase the tester aims at collecting
various crucial informations pertaining to the test target. The
VAPT tester tries to gather informations regarding networks,
sub-systems, technologies adopted, system resources, appli-
cations, communication infrastructure etc. These informa-
tions collected at this point of time help the tester to generate
an image of the target’s security infrastructure, which further

helps in deciding the run time test strategies and decision
making.

Some of the tests conducted in this phase are: Whois Scan-
ning and Http Header Grabbing.

The whois scanning gives information like:

• Component Name Servers
• Service Registrars
• Server Registration Details
• Contact Details

Similarly grabbing the Http/Https header gives informations
like:

• Server Version
• Content Type
• Content Length
• X-Powered-By

Scanning: After successfully discovering the target, the
testers perform a scan of the complete system with an aim to
identify the list of vulnerabilities present on the concerned
target. The testers subject the target to various tools and tech-
niques therefore scanning each and every component of the
system to find any bug or loophole in the operation of the sys-
tem, like unwanted services, open ports, remote connections,
weak ciphers, weak passwords etc. The scanning ends with
the list of such potential vulnerabilities in the target which
may lead to unwanted data disclosure or loss.

The activities performed in the scanning phase are: Port
Scanning, Network Scanning and Web-Application Scanning.
Port Scanning can be done in many ways, Out of all those
techniques the Half TCP Scan is more appreciated. As the

123

34 S. Shah, B. M. Mehtre

Fig. 7 Phases of VA—effort and time distribution

name suggests, in Half TCP Scan the tester sends a TCP_SYN
packet to the target on the specified port, if the tester receives
an ACK response the port is considered open, otherwise if a
RST signal is received the port is considered as closed. If no
response is received, the port is timed out. TCP_SYN based
scanning is more time efficient because it does not complete
the full TCP handshaking process, hence the time consumed
in sending and receiving of messages is comparatively low.

After obtaining the list of Open ports, the tester initiates
the Network Scanning and Web Application Scanning using
automated tools. These tools conduct a complete test on all
the network and application resources of the target and gener-
ate a report enlisting all the loopholes and mis-configurations
detected on all the hosts and other components.

Result Analysis: This phase inherits the output of the Scan-
ning phase and analyses the set of vulnerabilities and other
threats identified after scanning. The tester in this phase aims
at prioritizing the identified vulnerabilities based on their
severity and impact. In practical aspects the results obtained
in the scanning phase suffers with a huge amount of false pos-
itives, these false positives are detected and removed in this
phase thereby optimizing the initial list into a more efficient
and accurate one. The identified vulnerabilities are ranked
and the final prioritized list of vulnerabilities is communi-
cated for further exploitation or remediation.

Reporting: After the successful accomplishment of initial
phases, the tester in this phase aims at documenting the var-
ious operations performed and results obtained in the entire
process of vulnerability assessment. In this phase the tester
generates a report out of the work done so far by enlisting
the identified set of vulnerabilities along with their severity
level and other details. This list can further be used by the
organization to call for remediations for the same.

Figure 7 shows the effort and time distribution chart
between all the phases of Vulnerability Assessment (VA).

As shown in Fig. 7 the major part of the total effort
involved in Vulnerability Assessment goes to Target Dis-
covery because most of the processes involved in this phase
require Manual Skills and Technological Excellence. In

Scanning phase due to the availability and use of Automated
Tools the effort and time required is less.

After obtaining the Scan results, the process of identifying
and testing the existence of vulnerabilities is again a tough
and time taking process as the tester in Result Analysis phase
examines the scan reports to find the vulnerabilities and their
impact to prioritize them for mitigation or further exploita-
tion. In the Reporting phase the tester simply documents all
the test findings for any future reference.

2.4 Vulnerability assessment techniques

Detection, Identification and Analysis of vulnerabilities in
the target system can be broadly done in following ways:

Manual Testing: as the name suggests this technique propa-
gates without the aid of any automated tools. In this technique
the tester is supposed to use his own intellect, experience and
expertise to conduct the testing. The Tester subject the target
to different test cases and manually observe the response and
its variations. If the variation is not found to be in-line with
the code-of-conduct, the software is said to be vulnerable.

This Manual Testing approach is further classified as:

• Exploratory Manual Testing: In this technique of man-
ual testing, the tester navigates through the system finding
vulnerabilities without any Test Plan. The security eval-
uation in this technique is based on tester’s instincts and
prior experiences [11].

• Systematic Manual Testing: In this technique of manual
testing, the tester follows a predefined Test Plan rather than
exploration. The tester in this case makes a thorough study
of the system’s components and characteristics, based on
which he develops an efficient test plan for the concerned
system which is followed throughout the process of testing
to identify existing vulnerabilities.

The comparative analysis of Exploratory and Systematic
Manual Testing is given in Table 4. The choice of testing strat-
egy should be done wisely based on the Test Requirements.
Exploratory testing is generally found suitable for testing
scenarios where SRS (software requirement specification) is
not complete. While systematic testing is preferred in live
scenarios where risk of service disruption due to exploration
is high.

The major issue with these manual testing approaches was
the involvement of huge amount of Test Time and Repetitive
Testing Nature i.e, manual testing consumed a huge amount
of test time and also the testers had to perform the same
set of testing operations multiple times on different system
components in order to detect all the existing loopholes.

Automated Testing: To reduce testing time and further take
advantage of the repetitive nature of testing, Tools have been

123

An overview of vulnerability assessment 35

Table 4 Comparison of exploratory and systematic testing

Comparison aspect Exploratory manual testing Systematic manual testing

Test Cases Determined only during Testing Determined Well in advance

Emphasis Adaptability and Learning Prediction and Decision making

Test Controller Tester’s Mind and Experience Pre Defined Scripts

Testing Nature Spontaneous Well Planned

Testing Directions Obtained from SRS as well as ExploratoryFindings Obtained from SRS

Motive Improvement of Test Design Controlling Tests

Preparation Required Nil (very Less) Comparatively very high

Execution Time High Execution Time Comparatively Less Time

Risks Involved High because the Test methods are not Pre-Reviewed Comparatively Less because all Test Methods are
Pre-Reviewed

Cost Less Cost Effective Comparatively more Cost Effective

devised to automatically perform many of the same tasks
that one does in manual testing [11]. These Automated Test-
ing Tools help overcoming all the issues and limitations of
manual testing techniques by reducing the human interven-
tion required during the execution of the process.

What happens in automated testing is that the system is
subjected to various test cases and a comparison between
the systems Expected and Actual outcomes is performed. If
the System’s Expectations and Outcomes align, the system is
said to be working good. Otherwise the system is suspected
to be mis configured or vulnerable.

Static Analysis: In this technique the tester evaluates a sys-
tem and its components based on its form, structure, content,
or documentation, which in any case does not require the pro-
gram’s execution [4]. The technique is different from Code
Review because the latter is a complete manual process while
Static Analysis is performed with the help of automated tools.
The technique of static analysis is further classified as Static
Analysis for Source Code and Static Analysis for Machine
Code. Theoretically the implementation remains the same
in both the categories, but practically conducting the latter
is more troublesome. The overall process of static analysis
aims at examining the codes to identify the weakness in codes
which may lead to a vulnerability post execution.

Fuzzing: Also known as Fuzz Testing, this technique is often
Automated orSemi-Automated. In this technique the tester
sends Invalid or Unexpected or any Random Inappropriate
Data as input to the system, and then monitors the system for
raised exceptions like Failures and crashes. Combination of
static fuzzing vectors are generated to inject as input (random
data) into the target system.

Fuzz Testing has been found to be a reliable option for
detection of vulnerabilities like : Buffer Overflow, Cross site
scripting, denial of Service and SQL Injection. Apart from
these it also plays a major role in the detection of zero day

vulnerabilities. While it is not effective in case of threats like
Key Loggers and spy wares.

This Fuzzing technique (Fuzz Testing) is further classified
as:

• Mutation Based Fuzzing: In this technique the input data
sample is manipulated blindly without any understanding
of its format/structure to create the required Test data.
Due to this blind approach of the process this technique is
also referred as Dumb Fuzzing. Bit-Flipping is one of the
commonly used Mutation Based Fuzzing.

• Generation Based Fuzzing: Unlike Mutation Based
fuzzing, In this technique proper understanding of the
model, file formats, specifications and protocols of the
input data sample is required to generate the required Test
data. This technique is also referred as Intelligent Fuzzing.

To grab a better understanding of the concepts and issues, a
comparative analysis of both Mutation and Generation based
Fuzzing techniques is shown in Table 5.

All of these Vulnerability Discovery techniques have their
own advantages and disadvantages, so the VAPT tester
should use his own intellect to choose the type of technique
depending on the Target type and Test requirements.

Table 6 represents a complete list of Pros and Cons against
every vulnerability discovery technique illustrated above. A
tester should always be wise and choose the most appropriate
testing technique because using an in-appropriate technique
can lead to unwanted risks and other disruption threats.

Selection of an effective and appropriate Discovery Tech-
nique always leads to effective and accurate Test Results.

2.5 Penetration testing

Penetration in this context, can be defined as the illegitimate
acquisition of legitimate authority. A Penetration Testing is

123

36 S. Shah, B. M. Mehtre

Table 5 Comparison of mutation and generation based fuzzing

Comparison aspect Mutation based fuzzing Generation based fuzzing

Test Data Test Data is generated without any focus on
format/structure of input data sample

Test Data is generated using complete understanding of
input data format/structure

Execution time Mutation based fuzzers are found capable of generating
large number of Test Cases per second (23 Test Cases per
second approx)

Comparatively Generation based fuzzers generate very less
number of Test Cases per second (4 Test Cases per second
approx)

Vulnerabilities The number of vulnerabilities identified is comparatively
very less due to the lack of strategic Test data generation

Comparatively more number of vulnerabilities are identified
due to the use of well formatted and strategic Test data
samples

Reliability Comparatively Less Reliable due to high risk of
vulnerabilities going undiscovered

It is more Reliable as it ensures the detection of
comparatively larger number of vulnerabilities

Effort Required Lesser amount of Effort is required as this technique does
not demand any special analysis/study of input data for
generation of test data

Comparatively more amount of Effort is required due to the
need of in-depth analysis of input data vectors for Test
data generation

Cost More Cost Effective as no effort is made in understanding
the input

Comparatively Less Cost effective due to expense on
analyzing inputs

Table 6 Comparison of all the vulnerability discovery techniques

Discovery technique Pros Cons

Manual Testing • Reduced Short-Term Cost as buying Automated tools
is expensive

• Difficult to conduct, the tester is not at ease

• More likely to identify Real User Issues and Bugs • Highly Repetitive and not Stimulating

• Highly Flexible • Test Templates cannot be Reused

Automated Testing • High Efficiency with Less Execution Time • Automated Testing Tools are Highly Expensive

• Long-Term Cost effective • Developing of Test Templates and Deploying still takes
time

• Test Templates are Reusable • Every Testing Tool has its own set of limitations

• High Availability of Test Results unlike manual testing
where test results are seen only by the Tester

• The Tester has almost no control over the test scenario

Static Analysis • Probability of missing a vulnerability is less • The Test Results contain large number of False Positives

• No Limitation on Categories of Vulnerabilities that
can be Identified

• Large Execution Time

• Execution of Source Codes is not required • Static Code analysis only looks for Patterns that can cause
Bugs. So if there is no Pattern matching, it does not means
that there is no Bug

• Flexibility of generating Project Specific Rules • It is Hard for Static Analyzers to identify non-functional
security flaws and logic flaws

• Bugs can be Identified in the early Development Cycle

Fuzz Testing • Can provide Results with very less Effort because
User Interaction required is almost Nil

• Fuzz Testers fail to detect Vulnerabilities that do not
trigger a full system crash

• High probability of finding the zero-day Bugs as
compared to other technique

• Analyzing the Test Cases generated to crash the system is
a hectic task

• Can judge the Robustness of the entire system
Efficiently

• Systems with complex inputs require huge efforts for fuzz
generation

a valued assurance assessment tool that benefits both Busi-
ness and its Operations. A Successful penetration yields the
ability to command system facilities to do other than what
their owners expected them to do, to gain the full or at least
substantial control of a host in a way normally reserved for
trusted operation’s staff, or to acquire the management inter-
face of an application or the functional equivalent thereof.
Penetration Testing is the art of finding an open door to pen-

etrate into the target system in an ethical approach with an
aim to audit and rectify the security infrastructure of the tar-
get system.

It helps safeguard the organization against failure/financial
loss, preserving corporate image. It identifies and addresses
risks even before security breaches actually occur. The Pen-
etration Testing also provides a poof of issue for security
investments to senior management.

123

An overview of vulnerability assessment 37

Fig. 8 Phases of penetration
testing

As shown in Fig. 8 the complete process of penetration
testing is divided into following four phases:

1. Planning and Preparation.
2. Detection and Penetration.
3. Post-Exploitation and Data Ex filtration.
4. Reporting and Clean Up (Destruction of Artifacts).

Planning and Preparation Phase: In this phase the VAPT
tester and the organization (Test Target) sit and decide the
Timings, Scope and Nature of testing. All the necessary doc-
uments are signed. And further the tester tries to Investigate,
Explore and Gather more and more information about the test
target. This Reconnaissance strategy propagates in two parts:
Passive Reconnaissance in which the tester passively gath-
ers all the possible set of details without actually Touching
the target network i.e, the tester uses external or third party
resources to know more about the concerned target. Once the
job is done, the attacker enters into Active Reconnaissance,
in which various experiments are performed over the target
to gather out of the line responses of the Test Target.

Detection and Penetration Phase: In this phase the attacker
tries to compromise the target system in real, by using vari-
ous tools and techniques to exploit the logical and physical
vulnerabilities present in the concerned system. The attacker
targets the loopholes in the system and tries to gain access
to the system resources by actual exploitation of the iden-
tified loopholes. Some of the techniques used in this phase
are Perimeter Penetration, Target acquisition and Privilege
Escalation.

Post Exploitation and Data Ex-filtration: In this phase all
possible Ex-Filtration paths are documented. In this phase
the tester identifies things like Point of Access, Impact on
Sensitive Data, Configuration settings andImpact on Com-
munication Channels etc. All these informations are helpful
to continue with the exploitation further.

Reporting and Clean Up (Destruction of Artifacts): In this
phase the tester primarily aims to deliver a sorted Report on
all the test findings like what vulnerabilities were identified,
the exploitation procedure, proof of concepts, impact of those
vulnerabilities and finally the steps required for remediation.
The Destruction of Artifacts includes removal of any files,
tools, exploits, or other test created objects uploaded to the
system during testing [18].

Figure 9 shows the effort and time distribution chart
between all the above stated phases of Penetration Testing

Fig. 9 Penetration testing phases—effort and time distribution

(PT). We can clearly observe from the distribution chart that
approximately 40 % of the total effort and time is invested
in planning the test and gathering information about the tar-
get. While 30 % of the effort and time is used in detecting
the vulnerabilities and further exploiting them. Rest of the
phases include reporting and data ex-filtration which take 10
and 20 % of the resource respectively.

2.6 Penetration testing strategies

For exploitation of the vulnerabilities identified during VA,
The VAPT testers need a strategy. So based on the Type of
Auditing required, there are following three Penetration Test-
ing Strategies:

1. Black Box Testing
2. White Box Testing
3. Grey Box Testing

Black Box Testing: In this approach the testers have no prior
access to any resources on the test target. They are supposed
to figure out all the details along with the loopholes of the sys-
tem based on their experience and individual expertise. The
tester basically aims at auditing the External Security bound-
ary of the test target hence the tester simulates the actions and
procedures of a real attacker who may be present at some
other place outside the boundary of the test target and has no
information about the target.
White Box Testing: This approach is contrary to Black Box.
In this approach the testers are provided with all the necessary
informations (about functionalities), access to resources and
credentials of the test target, and the tester audits the Internal
security arrangements of the test target hence the test simu-
lates the actions and procedures of a real internal threat like

123

38 S. Shah, B. M. Mehtre

Table 7 Comparison of black box, white box and gray box test

Comparison aspect Black box testing White box testing Grey box testing

Target Information No prior Information about Target
or Access to Target Resources

Full Information and Access to
Target Resources

Partial Information about target
and Partial Access to its
Resources

Nature of Testing User Acceptance Testing Performed only by Developers and
Testers

User Acceptance Testing

Time and Effort Highly Exhaustive and Time
Consuming

Less Exhaustive and Time
Consuming

Comparatively Somewhere in
Between

Granularity of Test Low Granularity High Granularity Medium Granularity

Fundamentals Test Design is completely based on
External Exceptions as Internal
behaviors of system remain
unknown

Internal behavior of the system is
completely known so Test
Design is based on both Internal
and External Exceptions

Test Design is made on the basis of
database diagrams, data flow
diagrams and Internal states of
the system

Scope of Testing Can Test only by Trial and Error
method, Only External Boundary
can be Tested

Can Test for Data Domain and the
Internal Boundaries but not for
External Boundaries

Internal and External Boundary,
Over flows, Data Domain can all
be Tested

Limitations Not suitable for Testing Algorithms Suited for all, no specific
Limitations

Not suitable for Testing Algorithms

a malicious employee who is present within the boundaries
of the test target.
Grey Box Testing: This approach can be understood as the
combination of the above two, in this approach the tester is
provided with partial disclosure of information and partial
access to resources on the test target, and the tester gathers
further information by conducting the tests.

For a better understanding of the above mentioned strate-
gies, a comparative analysis of all the three penetration test-
ing strategies was done and the key points are shown in
Table 7.

2.7 Types of penetration testing

Penetration Testing is conducted in three major areas Physi-
cal Structure of the system, Logical Structure of the system
and the Response/Work-flow of the concerned system.

These three areas conclude and define the three types of
penetration testing.

1. Network Penetration Testing
2. Application Penetration Testing
3. Social Engineering

Network Penetration Testing: In this technique the tester
aims at identifying the security flaws associated with the
Design, Implementation and Operation of the target orga-
nization’s network. The tester analyses and checks various
components like Modems, Remote Access Devices and other
connections which may act as an entry point for an attacker
to hack into the target’s network.

Application Penetration Testing: In this part the tester targets
the various applications possessed by the test target primarily
the web applications as they remain comparatively more vul-
nerable to attacks. The tester aims at exposing the effective-
ness of an application’s security controls by highlighting the
risks posed by actual exploitable vulnerabilities. The tester
simulates the real attacker and targets the web applications
and checks for any vulnerabilities if present which may lead
to unauthorized access or Data loss.

Social Engineering: In this part the tester audits the Work-
flow of the target organization, by targeting the human inter-
actions to gather confidential information regarding the target
or any of its component systems, which otherwise is supposed
to be kept confidential.

Table 8 provides a glimpse of the Annual Average Vulner-
abilities and their Remediation Rate in our leading Industries
across the globe as per the records of year 2012 [21].

As per the Microsoft Records of historical exploitation
trends, it has been observed that vulnerabilities are more often
exploited only after a security update is available .

Figures 10 and 11 give an overview of the amount of vul-
nerabilities that were exploited and later resolved by security
updates and the amount of vulnerabilities that were exploited
before and after the security updates were available.

Figures 10 and 11 show the Trends in Software Vulner-
ability Exploitation in last few years as per the records of
Microsoft Windows.

2.8 Benefits of conducting periodic VAPT

As stated earlier, VAPT is a valued assurance assessment
tool that benefits both business and its operations. For an

123

An overview of vulnerability assessment 39

Table 8 Average vulnerability and remediation stats in industries -
2012

Type of
industry

Average
vulnerable
websites (%)

Annual
average
vulnerabilities

Average
remediation
rate (%)

Average
time to fix
vulnerabilities
(days)

All 86 56 61 193

Entertainment and
Media

91 12 81 33

Financial Services 81 50 67 226

Retail 91 106 54 224

Technology 85 18 61 71

IT 85 114 54 185

Health Care 90 22 53 276

Banking 81 11 54 107

Manufacturing 100 27 55 197

Social Networking 86 20 46 175

Telecommunications 89 20 74 163

Education 100 47 58 342

Energy 100 59 71 144

Insurance 78 39 55 274

Government 100 8 65 48

Non Profit 95 28 41 236

Food & Beverage 100 18 46 36

Gaming 92 17 46 67

Source: www.whitehatsec.com

Organization to remain assured of its Security Infrastructure,
it must conduct VAPT periodically, it not only assures the
security level of its component systems and resources, but
also informs about new vulnerabilities and exploits possible,
which may lead to financial and data losses. Also from Table
8 we can clearly observe the current vulnerability trend in our
leading industries. The Average Vulnerable Websites is above
80 % in almost all of the industries, while Remediation Rate is
less than 60 % in most of them. Also in most of the industries
the average time required to fix a vulnerability is above 160
Days, hence to keep the disruption and exploitation risk low
one has to discover vulnerabilities as soon as possible by
conducting regular VAPT.

VAPT can provide benefits to organizations in both Busi-
ness Point of View as well as Operational Point of View.

• Business Point of View: For any financial organization, its
Corporate Image remains a big concern, VAPT helps an
organization to safeguard against any failure through pre-
venting financial losses, proving due diligence and com-
pliance to industry regulators, customers and sharehold-
ers, thereby preserving Corporate Image and rationalizing
Information Security investments. Organizations spend
millions of dollars to recover from a security breach due to
notification costs, remediation efforts, decreased produc-
tivity and lost revenue. The CSI study estimates recovery

efforts of around $167,713.00 per incident [19]. VAPT
being a Proactive Service can successfully Identify and
address risks before actual security breaches occur, thus
preventing any financial loss caused by security breaches.
VAPT provides a Proof of Issue and a solid case for pro-
posal of investment to senior management, thereby creat-
ing high awareness of security’s importance at all levels
of an organization.

• Operational Point of View: VAPT helps an organization in
shaping Information Security Strategies through quick and
accurate identification of vulnerabilities, Proactive elim-
ination of identified risks, implementation of corrective
measures and enhancement of IT knowledge. VAPT pro-
vides detailed information on actual, exploitable security
threats if it is encompassed into an organization’s secu-
rity doctrine and processes. By providing the Information
required to effectively and efficiently Isolate and Prior-
itize vulnerabilities, VAPT can assist the Organizations
to Fine-tune the test configuration changes or Patches to
pro-actively eliminate identified risks.

3 VAPT methodology

As illustrated in Sect. 1, The process of VAPT is a Recursive
combination of two Different yet Interlinked processes i.e,
Vulnerability Assessment (V.A) and Penetration Testing (P.T).
Recursive in the sense that, the process of VAPT must be reg-
ularly conducted at specified periodic intervals, because one
cannot remain assured of the security of his system for a long
time, even after successfully conducting the VAPT. Hence to
remain assured of the security and to remain protected from
the new exploits, one needs to periodically conduct the VAPT
and implement the required patches to remain secured in the
near future. The Vulnerability Assessment and Penetration
Testing are Different yet Interlinked processes in the sense
that, Vulnerability assessment is designed to yield a priori-
tized list of vulnerabilities, the customer already knows that
they have issues and hence simply needs help identifying and
prioritizing them. While the Penetration tests are designed
to achieve a specific, attacker-simulated goal and should be
requested by customers who are already at their desired secu-
rity posture. The processes although being different remain
interlinked because Penetration Testing depends on the out-
come of the vulnerability assessment phase i.e, penetration
testing can be conducted only after the successfully accom-
plishing the Vulnerability Assessment phase.

VAPT, if done properly, becomes an efficient and cost-
effective strategy to protect the organization’s systems
against attacks. It should never be regarded as a One-Off-
Service, as doing so will not assure the security arrangements
for longer period of time. The test Result of VAPT must be

123

www.whitehatsec.com

40 S. Shah, B. M. Mehtre

Fig. 10 Trends in vul.
exploitation and remediation
through updates

Fig. 11 Trends in vulnerability
exploitation before and after
update

used to develop effective mitigation plans to resolve the iden-
tified issues.

3.1 Phases of vulnerability assessment and penetration
testing (VAPT)

As shown in Fig. 12 the process of VAPT is conducted in
three major phases:

1. Test Preparation Phase
2. Test Phase
3. Report Generation Phase

Test Preparation Phase: In this phase the tester and the
organization meet to decide the Scope, Objectives, Time and
Duration of the test. All the necessary Documents regarding
the test are organized and finalized. Issues like Information
Leakage and Downtime are resolved and put into legal agree-
ment document.

Some of the major Documents Required to conduct VAPT
are as follows:

• Memorandum of Understanding.
• Non Disclosure Agreement.
• Confidentiality Agreement.
• Risk from Jail free Agreement.

Fig. 12 Phases of VAPT

• Return of Security Investment Agreement.
• Rules of Behavior.

Test Phase: In this phase the actual testing is done. The tester
apply the appropriate techniques for detection and exploita-
tion of vulnerabilities.

The following set operations are performed in this phase.

123

An overview of vulnerability assessment 41

• Information Gathering: The success of a VAPT testing
is directly proportional to the tester’s understanding of
the test target. The systematic Information gathering of
the target enables the tester to create a complete, efficient
and accurate profile of the target’s security status. An in-
efficient information gathering leads to missing key pieces
of information, which further leads to an in-accurate VAPT
result.

• Scanning: The sole purpose of scanning is to look for
Holes in a system’s security Armour. The information
gathered in previous step is used to perform bulk scanning
and probing exercises to further assess the target network
space and investigate potential vulnerabilities.

• Vulnerability Mapping and Analysis: In this part we ana-
lyze and map the set of vulnerabilities obtained in the
previous step. This part basically aims at prioritizing the
vulnerabilities by identifying their severity and impact.

• Attack Generation: In this part we inherit the prioritized
set of vulnerabilities from above step, and based on the
available knowledge base and expertise we identify or cre-
ate exploits, which can be used to target the identified set
of vulnerabilities.

• Target Exploitation: After the identification/Creation of
suitable exploits, in this part we deploy those exploits over
the marked vulnerabilities in the system with the sole aim
to gain access to the system resources.

Report Generation Phase: This phase deals with the thor-
ough investigation and validation of all the test results there-
after Documentation and Reporting of all the Test findings
and a Mitigation Plan. The report generated at this phase is
delivered to the concerned authority of the test target along
with the mitigation plan which holds suggestions for remedi-
ation of the identified vulnerabilities and exploits, to ensure
the security of the system in future.

After generation of the report the VAPT tester tries to
bring the system back to its Pre-Test state. He removes all
the exploits, configurations and other changes that were made
to the system in order to capture the response during VAPT.

Figure 13 Shows the Effort and Time Distribution among
the described Phases of VAPT.

3.2 Vulnerability assessment and penetration testing
(VAPT) standards

To ensure the accuracy and effectiveness of the process, the
testers follow some standards to conduct penetration test-
ing. These standards ensure the correctness of the procedures
being adopted therefore reducing the risk of failure.

There are four major Penetration testing standards,
adopted across the globe.

Fig. 13 Phases of VAPT—effort and time distribution

1. Open Source Security Testing Methodology Manual
(OSSTMM)

2. Payment Card Industry Data Security Standards
(PCI-DSS)

3. Open Web Application Security Project (OWASP)
4. International Organization for Standardization

(ISO/IEC-27001)

Open Source Security Testing Methodology Manual
(OSSTMM): It is a peer-reviewed manual of security testing
and analysis which results in verified facts [14]. These facts
provide actionable information that can measurably improve
your operational security. The OSSTMM basically concen-
trates on improving the quality of enterprise security as well
as the methodology and strategy of testers. Using OSSTMM
guidelines the testers have verified information specific to
their needs on which they can reliably base their security
decisions, hence the testers no longer have to rely on general
best practices, anecdotal evidences or superstitions.

The OSSTMM was released by Pete Herzog and its stan-
dards are maintained by The Institute for Security and Open
Methodologies (ISECOM).

Payment Card Industry Data Security standards (PCI-
DSS): It is a proprietary Information security standard for
organizations that handle cardholders informations for the
major Debit, Credit, Prepaid, E-Purse, ATM and POS cards,
it provides the requirements and security assessment proce-
dures for the testers when they conduct penetration test pri-
marily in Banks and E-Commerce sites [15]. The PCI-DSS
standards were developed to encourage and enhance card-
holders data security and facilitate the broad adoption of con-
sistent data security measures globally. PCI-DSS provides a
baseline of technical and operational requirements designed
to protect cardholders data. It applies to all entities involved in
payment card processing- including merchants, processors,
acquires, issuers and service providers, as well as all other
entities that store, process or transmit cardholders data. The
standard comprises a minimum set of requirements for pro-

123

42 S. Shah, B. M. Mehtre

tecting cardholders data, and may be enhanced by additional
controls and practices to further mitigate the risks.

The PCI-DSS standards are maintained and distributed by
PCI Security standards Council.

Open Web Application Security Projects (OWASP): The
OWASP Application Security Verification Standard (ASVS)
was first published in December 2008 [16]. The primary aim
of this standard is to normalize the range of coverage and level
of rigor available in the market when it comes to the issue of
performing Application Level Security verifications using a
Commercially Workable Open standard [16]. The standard
basically aims at the security issues regarding Web Applica-
tions and provides a basis for testing application technical
security controls, as well as any technical security control in
the environment, that are relied on to protect against vulner-
abilities such as Cross Site Scripting and SQL Injection. This
standard can be efficiently used by the testers to establish a
level of confidence while dealing with the security issues of
web applications.

The OWASP ASVS is maintained by OWASP Foundation
and is sponsored by Aspect Security.

International Organization for Standardization 27001:2013
(ISO/IEC 27001): It is an Information Security Standard
published on 25 September 2013, thereby replacing its pre-
vious version ISO/IEC 27001:2005. It is basically the specifi-
cation for Information Security Management System (ISMS).
ISO/IEC 27001 defines how to organize Information Security
in any kind of Organization, profit or non-profit, private or
state-owned, small or large [17]. It is safe to say that this stan-
dard is the foundation of Information Security Management.
It is a standard written by the world’s best experts in the field
of Information security and aims to provide a methodology
for the implementation of Information Security in an Organi-
zation. It also enables an Organization to get Certified, which
means that an independent certification body has confirmed
that Information Security has been implemented in the best
possible way in the concerned Organization.

The Standard is Regulated and Maintained by Interna-
tional Organization for Standardization (ISO) and Interna-
tional Elctrotechnical Commission (IEC).

3.3 Tools to conduct vulnerability assessment and
penetration testing (VAPT)

To conduct an efficient and Accurate VAPT, the tester must
use the most efficient and best fit set of tools. There are many
Commercial and Open Source tools to satisfy the purpose, but
the selection must be made very wisely. As the Commercial
tools for VAPT may lead to a huge amount of Investment,
hence depending on the Size, Scope and level of the testing
required, the tester must choose the most effective set of tools.

Tables 10, 11, 12 and 13 represent some very efficient
and productive set of Open Source andFree tools which are
frequently used by testers across the globe to conduct VAPT.
The advantage of using Open Source tools is that the Source
Codes as well as executional controls are always available i.e,
one can go for a code review and check if the tool being used
contains some malicious code. The Tools in these Tables have
been shortlisted on the basis of their performance, accuracy
and popularity. The Source for each tool has also been given
in the table, hence the testers can easily browse the source
and download the concerned tool.

3.4 Vulnerability assessment and penetration testing
(VAPT) models

A VAPT model is actually a Blueprint of the overall process,
in which the tester conducts an efficient VAPT. The model
prevents the testers from deviating from the right track,
thereby helping the testers to analyze their course of work
and further protecting them from failure.

The VAPT models are broadly classified into two cate-
gories:

1. Flaw Hypothesis Model
2. Attack Tree Model

Flaw Hypothesis Model: This model was developed at Sys-
tem Development Corporation and it provides a framework
for VAPT studies [25]. It is basically a System Analysis and
Penetration Prediction technique which compiles a list of
Hypothesized Flaws in the concerned system by analyzing
the specification and documentation for the system. These
Hypothesized flaws are devised on the basis of the tester’s
experience and expertise on the concerned system type. Once
the list of such flaws is devised, the flaws are then prioritized
on the basis of the estimated probability that a flaw actually
exists, and on the ease of exploiting it to the extent of control
or compromise. The final prioritized list is then used to direct
the actual testing process.

The Flaw Hypothesis model proceeds in following five
steps:

• Information Gathering: In this part the tester tries to
become familiar with the system’s functioning, its compo-
nents and resources. And examines the system’s design,
implementation, operating procedures and Use.

• Flaw Hypothesis: Based on the knowledge gained in the
first step and with the help of the previous experiences
and expertise, the tester hypothesizes flaws in the con-
cerned system. The actual existence and exploitation of
these flaws is checked in the next steps.

• Flaw Testing: In this part the testers perform the actual
testing of their list of hypothesized flaws. If a flaw does not

123

An overview of vulnerability assessment 43

Fig. 14 Sample attack tree model for hacking bank account

exist or cannot be exploited, the testers go back to the pre-
vious step. Otherwise if the flaw exists and is exploitable
they proceed to the next step.

• Flaw Generalization: Once the flaw is successfully
exploited, the testers try to generalize the concerned vul-
nerability and try to find others similar to it by feeding
their new understanding or hypothesis to second step and
keep iterating until the test is complete and there are no
more vulnerabilities to be addressed.

• Flaw Elimination: This is an additional step in which the
testers document and report the test findings and try to
suggest mitigation plans to resolve the identified vulnera-
bilities.

Attack Tree Model: This model provides a Formal and
Methodological way of representing the possible Attacks
against a system in a Tree Structure, where all the Nodes
of the tree represent an Attack or a Specific Goal [25]. The
Root Node of the tree represents the primary goal of the tester
(Simulated Attacker) and the Child Nodes are the Refinements
or Sub Goals of the goals of their Parent Nodes. This Refine-
ment can be either Conjunctive (aggregation) or Disjunctive
(Choice).

Suppose there are four Child Nodes to a Parent Node and
if the refinement of the Child Nodes is Conjunctive, Then all
the Sub Goals of all the Child Nodes are aggregated to obtain
the Parent’s Goal. But in case of a Disjunctive refinement,
if a Parent node has four Child Nodes, then there is a choice
and any one of the Child Goals can lead to the Parent Goal.

The following Fig. 14 shows a sample Attack Tree Model
to hack into a Bank Account, where AND represents Conjunc-
tive Refinement and OR represents Disjunctive Refinement.

3.5 Precautions while conducting VAPT

To proceed with the Precautions we first need to address the
various Risk Factors involved in the testing process.
Risks Involved in VAPT: Security Testing causes risks to the
target by its very nature. Like an Attacker the VAPT Tester

deliberately leaves the relatively safe ground of intended use
and expected activities. Security Testing is inherently inva-
sive where it employs techniques similar to those used in an
attack [9].

The further Specific Risks of VAPT can be categorized as
follows:

• Technical Risks: These are the risks caused directly by
the Testing Activities or by the System being Tested. Some
of the major technical risks are Failure of the target or
connected systems, Disruption of service, Reduced Per-
formance, Modification or Contamination of data, Dis-
closure of confidential data to third parties.

• Organizational Risks: The VAPT testing also involves
some organizational side effects like Unnecessary
Triggering of incident handling processes, Disruption of
business processes and functions and Loss of Reputation
if third parties are effected.

• Legal Risks: These kind of risks are encountered due
to legal obligations and possible side effects of third par-
ties like Violation of Legal Obligations and Inadvertently
committing punishable acts.

Precautions in VAPT: Based on the risk factors involved in
VAPT, the testers need to focus on some precautions in order
to prevent any unexpected harm to the target system. The
testers generally adopt the following major strategies to do
so:

• Indirect Testing: In this technique, the testers instead of
testing the actual defects, aim to collect sufficient evi-
dences to conclude that a vulnerability is likely to be
present. The technique is useful when dealing with known
vulnerabilities.

• Limited Exploitation: The testers try to prefer Test Cases
that demonstrate the vulnerability and its exploit, and try
to reduce the actual amount of exploitation. The testers
use certain Payloads that show measurable effects without
severe side effects.

• Delayed Effects: Sometimes, if possible, testers design
tests for delayed effects. The testers then evaluate the test
results inside the system and cancel or inhibits any further
processing before it would occur. The strategy is effective
in cases where the tests have real-world effects.

• Interruptible Testing: In some testing scenarios the testers
have to ensure that they can interrupt their testing at any
time, so that they can immediately react if any unintended
consequences are observed.

• Throttled Tools: When using automated tools to execute
large number of individual tests, the testers must ensure
the target’s won’t be overloaded, as it may result into Dis-
ruption of services.

123

44 S. Shah, B. M. Mehtre

• Avoiding Lock-outs: Sometimes repeated tests might trig-
ger functions designed to Lock-Out attackers. For instance
password protected systems often limit the number of
failed login attempts. Testers must ensure they do not lead
to such Denial of Service scenarios.

• Testing Tests: Exploratory testing approaches where the
testers develop new tests based on their vulnerability
hypotheses, is inherently more risky than executing well
planned tests. Hence testers must use a lab environment to
develop and try tests before deploying them against real
targets.

• Partial Isolation and Replication: Subsystems of the tar-
get system can sometimes be reconfigured for testing
either dynamically or by setting up a replica for the sub-
system in a different configuration. Thereby reducing the
side effects of testing.

• Rules of Engagement: Last but not the least, tester and
the client (organization) must establish clear and unequiv-
ocal rules of engagement, thereby clearly specifying the
targets, test timings and the limits of testing. The third
parties that might get affected by the concerned tests must
also be notified.

4 Case study

In this section we will discuss about a VAPT test conducted
in aBank. Due to confidentiality issues we will not refer the
Bank by its actual name, we will use the Nomenclature as
Bank A in the entire study.
Objective of Test: The purpose of this assessment was to
identify technical as well as logical vulnerabilities in the web
applications of Bank A and provide recommendations for risk

mitigation that may arise on successful exploitation of these
vulnerabilities.
Project Team: A team of 2 IT Professionals from Bank A and
a Security Consultant from an External Agency was finalized
to carry out the task.
Project Time-line: The Project Started on 27th March 2013
and Ended on 30th March 2013 the timings for VAPT were
fixed between 09:30 h IST to 18:00 h IST.
Approach: The Test was conducted as a Black Box fol-
lowed by Grey Box exercise, implying that the testing
team was not given any prior information about the target
applications but was later provided with the login creden-
tials for different privilege levels for the Gray Box activ-
ity. This was done to simulate as closely as possible the
viewpoint of a completely External as well as Internal
attacker.

Test Cases were generated and Testing was done against
industry best practices like Open Web Application Security
Project (OWASP).

Some of the sample Test Cases generated in accordance
with the OWASP v3 guidelines are given in Table 13.
Test Findings: A total of 4 vulnerabilities were found and
exploited using the set of Open Source/Free tools given in
Tables 9, 10, 11 and 12. The details of the vulnerabilities
along with their Severity, Impact and Recommendations for
Remediation are as follows:

1. Name of Vulnerability : Auto Complete Feature Turned
ON
Risk: Medium
Abstract: Remember me functionality is seen as a con-
venience for the end users to prevent them the hassle of
re-entering the username and the password each time they

Table 9 Open source/free tools—for automated static analysis

Name of tool Operating system Tool type Language Source

Flawfinder Linux, Unix, Mac,
Windows

Stand-alone script C/C++ http://www.dwheeler.com/
flawfinder

RATS Linux, Unix, Windows Stand-alone script C/C++, Pearl, PHP, Python https://www.fortify.com/ssa-
elements/threat-intelligence/rats.
html/

FindBugs Linux, Unix, Windows Stand-alone GUI
application

JAVA http://findbugs.sourceforge.net/

Pychecker Linux, Unix, Windows Stand-alone script Python http://pychecker.sourceforge.net

Pixy Linux, Unix, Windows Stand-alone script PHP
(XSS, SQLI)

http://pixybox.seclab.tuwien.ac.at/
pixy

FxCop Windows Stand-alone application .NET Framework CLR http://www.microsoft.com/
download/en/details.aspx?id=
6544

OWASP SWAAT Linux, Windows Stand-alone GUI
application

Xml (JSP,ASP, PHP) https://www.owasp.org/index.php/
Category:OWASP_SWAAT_
Project/

123

http://www.dwheeler.com/flawfinder
http://www.dwheeler.com/flawfinder
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html/
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html/
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html/
http://findbugs.sourceforge.net/
http://pychecker.sourceforge.net
http://pixybox.seclab.tuwien.ac.at/pixy
http://pixybox.seclab.tuwien.ac.at/pixy
http://www.microsoft.com/download/en/details.aspx?id=6544
http://www.microsoft.com/download/en/details.aspx?id=6544
http://www.microsoft.com/download/en/details.aspx?id=6544
https://www.owasp.org/index.php/Category:OWASP_SWAAT_Project/
https://www.owasp.org/index.php/Category:OWASP_SWAAT_Project/
https://www.owasp.org/index.php/Category:OWASP_SWAAT_Project/

An overview of vulnerability assessment 45

Table 10 Pen source/free tools—for network penetration testing

Name of tool Purpose Operating system Source

Nmap Network Scanning Linux, Unix, Mac OS X, Windows http://www.nmap.org/

Port Scanning

OS Detection

Hping Port Scanning Linux, Unix, Mac OS X, Windows http://www.hping.org/

Remote OS Fingerprinting

SuperScan Detect open TCP/UDP Ports Windows http://www.mcafee.com/us/
downloads/free-tools/superscan.
aspx/

Detect Services Running on Open
Ports

Run WHOIS, PING and LOOKUP
Queries.

Xprobe2 Remote active OS Fingerprinting Linux/Unix http://www.net-security.org/
software.php?id=231

TCP Fingerprinting

Port Scanning

P0f OS Fingerprinting Linux, Unix, Mac OS X, Windows http://www.net-security.org/
software.php?id=164

Firewall Detection

Httprint Web Server Fingerprinting Linux, Unix, Mac OS X, Windows http://net-square.com/httprint/

Detect Web enabled devices which
do not have a server banner
string.

SSL Detection.

Nessus (Personal Edition) Detect vulnerabilities that allow
remote cracker to control or
access sensitive data.

Linux, Unix, Mac OS X, Windows http://www.tenable.com/products/
nessus/

Detect Misconfigurations, Default
Passwords and the Denial of
Services.

Brutus TELNET, FTP and HTTP
password cracker.

Windows http://download.cnet.com/Brutus/
3000-2344_4-10455770.html/

Metasploit (Community
Edition)

Develop and Execute Exploit Code
against a remote target

Linux, Unix, Mac OS X, Windows http://www.rapid7.com/products/
metasploit/download.jsp

Test the Vulnerabilities of
Computer Systems

use the application from a specific computer. The applica-
tion does not prohibit this feature which makes the users
browser memorize the user IDs and passwords.
OWASP Reference: OWASP-AT-006
Ease of Exploitation: Medium
Impact: This function is insecure by design and leaves the
user exposed to attacks locally. Since the username and
password stored using this functionality is not encrypted.
Anyone with access to the user’s browser can get hold of
the credentials.
Recommendations: Set autocomplete=”off” in the input
tag.
For Example: <input type=”text” name=”signon” auto-
complete=”off” />

Alternatively Java scripts can be used to disable autocom-
plete.

1. Name of Vulnerability : Password policy not properly
enforced
Risk: Low
Abstract: The application fails to enforce the password
policy on user, as user is allowed to set only alphabetic
passwords such as “password”. On the other hand, the
application does not maintain password history.
OWASP Reference: OWASP-AT-005
Ease of Exploitation: Hard
Impact: Because most users prefer passwords that they
can easily remember, dictionary attacks are often an effec-
tive method for a malicious user to find a password in

123

http://www.nmap.org/
http://www.hping.org/
http://www.mcafee.com/us/downloads/free-tools/superscan.aspx/
http://www.mcafee.com/us/downloads/free-tools/superscan.aspx/
http://www.mcafee.com/us/downloads/free-tools/superscan.aspx/
http://www.net-security.org/software.php?id=231
http://www.net-security.org/software.php?id=231
http://www.net-security.org/software.php?id=164
http://www.net-security.org/software.php?id=164
http://net-square.com/httprint/
http://www.tenable.com/products/nessus/
http://www.tenable.com/products/nessus/
http://download.cnet.com/Brutus/3000-2344_4-10455770.html/
http://download.cnet.com/Brutus/3000-2344_4-10455770.html/
http://www.rapid7.com/products/metasploit/download.jsp
http://www.rapid7.com/products/metasploit/download.jsp

46 S. Shah, B. M. Mehtre

Table 11 Open source/free tools - for web app penetration testing

Name of tool Purpose Operating system Source

Nmap Finding Web Servers Linux, Unix, Mac OS X, Windows http://www.nmap.org/

Fiddler Web Debugging Proxy Windows http://www.fiddler2.com/fiddler2/

Nikto Identify Web Server type, version and add
ons.

Linux, Unix, Mac OS X, Windows http://www.cirt.net/nikto2

Detects common server
misconfigurations, default, insecure,
outdated server and programs.

WebScarab Interceptor Linux, Unix, Mac OS X, Windows https://www.owasp.org/index.php/
Category:OWASP_WebScarab_
Project

Identifies new URLs on test target.

Session ID analyzer

Parameter Fuzzer

W3af Vulnerability Tester Linux, Unix, Mac OS X, Windows http://www.w3af.org/download/

Interceptor

Fuzzer

Arachni Multiple Scans Linux, Unis, Mac OS X http://www.arachni-scanner.com/
download/

Self learning from HTTP responses

Performing Meta analysis

Identification of false positives.

OWASP ZAP Intercepting Proxy Linux, Unix, Mac OS X, Windows http://code.google.com/p/zaproxy/
downloads/list

Brute force scanner

Fuzzer

Dynamic SSL certificates

Nessus (Personal Edition) Vulnerability Detection Linux, Unix, Mac OS X, Windows http://www.tenable.com/products/
nessus/

Detection of Denial of Service.

Vega Automated crawler and Vulnerability
Scanner

Linux, Unix, Mac OS X, Windows http://www.subgraph.com/vega_
download.php

Intercepting Proxy

SSL MITM

Skipfish Performs reconnaissance Linux, Unix, Mac OS X, Windows http://code.google.com/p/skipfish/
downloads/list

Build Interactive site map

Metasploit (Community
Edition)

Develop and execute exploit code against
target

Linux, Unix, Mac OS X, Windows http://www.rapid7.com/products/
metasploit/download.jsp/

Test Vulnerabilities

Table 12 Open source/free tools - for social engineering

Name of tool Purpose Operating system Source

SET Augment and simulate Social
Engineering Attacks using
payloads, email phishing e.t.c.

Linux, OpenBSD, Windows https://www.trustedsec.com/
downloads/social-engineer-
toolkit/

MALTEGO Graphical representation of
relationships between people,
groups, websites, Companies
e.t.c Displays the confidential
connections

Linux, Unix, Mac OS X, Windows http://www.paterva.com/web6/
products/download.php/

123

http://www.nmap.org/
http://www.fiddler2.com/fiddler2/
http://www.cirt.net/nikto2
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.w3af.org/download/
http://www.arachni-scanner.com/download/
http://www.arachni-scanner.com/download/
http://code.google.com/p/zaproxy/downloads/list
http://code.google.com/p/zaproxy/downloads/list
http://www.tenable.com/products/nessus/
http://www.tenable.com/products/nessus/
http://www.subgraph.com/vega_download.php
http://www.subgraph.com/vega_download.php
http://code.google.com/p/skipfish/downloads/list
http://code.google.com/p/skipfish/downloads/list
http://www.rapid7.com/products/metasploit/download.jsp/
http://www.rapid7.com/products/metasploit/download.jsp/
https://www.trustedsec.com/downloads/social-engineer-toolkit/
https://www.trustedsec.com/downloads/social-engineer-toolkit/
https://www.trustedsec.com/downloads/social-engineer-toolkit/
http://www.paterva.com/web6/products/download.php/
http://www.paterva.com/web6/products/download.php/

An overview of vulnerability assessment 47

Table 13 Some sample test cases generated for VAPT in bank A

Category Reference number Test name Vulnerability

Configuration Management
Testing

OWASP-CM-001 SSL/TLS Testing SSL Weakness

OWASP-CM-002 DB Listener Testing DB Listener Weak

OWASP-CM-003 Infrastructure and Application
configurationmanagement testing

Infrastructure and Application Configuration
management weak

OWASP-CM-004 Testing for File Extensions Handling File Extensions Handling

OWASP-CM-005 Old Backup and Unreferenced Files Old Backup and Unreferenced Files

Business Logic Testing OWASP-BL-001 Testing for Business Logic By Passable Business Logic

Authentication Testing OWASP-AT-001 Credentials Transport over an Encrypted
Channel

Credentials Transport over an Encrypted
Channel

OWASP-AT-002 Testing for User Enumeration User Enumeration

OWASP-AT-003 Testing for Guessable (Dictionary) User
Accounts

Guessable User Accounts

OWASP-AT-004 Brute Force Testing Credential Brute Forcing

OWASP-AT-005 Testing for bypassing Authentication Schema Bypassing Authentication Schema

Authorization Testing OWASP-AZ-001 Testing for Path Traversal Path Traversal

OWASP-AZ-002 Testing for bypassing Authorization Schema Bypassing Authorization Schema

OWASP-AZ-003 Testing for Privilege Escalation Privilege Escalation

Session Management OWASP-SM-001 Testing for Session Management Schema Bypassing Session Management Schema,
Weak Session Tokens

OWASP-SM-002 Testing for Cookies Attributes Cookies are set not ’HTTP Only’, ’Secure’
and No Time Validity

OWASP-SM-003 Testing for Session Fixation Session Fixation

OWASP-SM-004 Testing for Exposed Session Variables Exposed Sensitive Session Variables

Data Validation Testing OWASP-DV-001 Testing for Reflected Cross Site Scripting Reflected XSS

OWASP-DV-002 Testing for Stored Cross Site Scripting Stored XSS

OWASP-DV-003 Testing for DOM based Cross Site Scripting DOM XSS

OWASP-DV-004 Testing for Cross Site Flashing Cross Site Flashing

OWASP-DV-005 SQL Injection SQL Injection

Denial of Service Testing OWASP-DS-001 Testing for SQL Wildcards Attack SQL Wildcard Vulnerability

OWASP-DS-002 Locking Customer Accounts Locking Customer Accounts

OWASP-DS-003 Testing for DoS Buffer Overflows Buffer Overflows

OWASP-DS-004 User Specified Object Allocation User Specified Object Allocation

OWASP-DS-005 User Input as a Loop Counter User Input as a Loop Counter

Web Services Testing OWASP-WS-001 WS Information Gathering N.A

OWASP-WS-002 Testing WSDL WSDL Weakness

OWASP-WS-003 XML Structural Testing Weak XML Structure

OWASP-WS-004 XML Content Level Testing XML Content

OWASP-WS-005 HTTP GET Parameters/REST Testing WS HTTP GET Parameters/REST

OWASP-WS-006 Naughty SOAP attachments WS Naughty SOAP Attachments

OWASP-WS-007 Replay Testing WS Replay Testing

AJAX Testing OWASP-AJ-001 Testing AJAX AJAX Weakness

significantly less time than they would with brute force
attacks. As user can set password only with alphabets,
such a weakly formed password may allow an attacker
to break passwords in less time. This is violation to the
password policy maintained.

Recommendations: Password policy should be properly
enforced on all the users.

1. Name of Vulnerability : Internal IP Address Leak
Risk: Low

123

48 S. Shah, B. M. Mehtre

Fig. 15 Identified weak ciphers
on web servers of target bank A

Abstract: Following Web Servers were found to reveal
internal IP Addresses in response to the HTTP requests.

1. ***.153.***.186
2. ***.153.***.180

OWASP Reference: OWASP-CM-004
Ease of Exploitation: Hard
Impact: This should be avoided since it gives vital infor-
mation to the attacker about the internal IP schema being
followed by the Organization. This information can prove
to be valuable in further attacks.
Recommendations: Please follow the link for Instruc-
tions on preventing this kind of Information Disclo-
sure. http://support.microsoft.com/default.aspx?scid=KB
%3BEN-US%3BQ218180&ID=KB%3BEN-US%3BQ2
18180

1. Name of Vulnerability : Weak SSL Ciphers found
Risk: Low
Abstract: Web Server was found Running SSL version 2
as well as weak ciphers (i.e, less than 128 bit) which are
known to suffer from several cryptographic flaws.
Figure 15 shows the weak ciphers identified on web
servers:
OWASP Reference: OWASP-CM-001
Ease of Exploitation: Hard
Impact: An Attacker may be able to exploit these issues
to conduct man-in-middle attacks or deprecate commu-
nication between affected service and client.
Recommendations: Disable support for weak SSL
Ciphers on web server if not required. This section,
method, or task

5 Conclusion

In todays Electronic Era, Anything and Everything remains
connected and exposed. The organizations need to develop
an effective security infrastructure for Security Assurance
against the increasing number of advanced exploits and hack-
ing techniques.

VAPT is an efficient, cost effective and assured assess-
ment tool to analyze the status of current security posture of
an organization. It helps the organizations to remain protected
from the outsider and insider threats. VAPT being Proactive
in nature, enables an organization to know about the possible
set of attacks even before their actual occurrence. Hence orga-
nization can take Precautionary Steps to safeguard its Data
resources and component systems much before the attacker
actually attacks.

In this paper we have described the four phases of
vulnerability assessment as well as penetration testing.
We have also described the phases and methodologies of
VAPT . There are many commercial and Open Source
tools available for VAPT, out of which we have shortlisted
the best and the most popular list of Open Source/Free
Tools for each category of testing in VAPT. We have also
given the comparative analysis of all the techniques and
methodologies used in VAPT along with the standards
and precautions. A case study of a VAPT test conducted
on a bank system using the shortlisted tools is also dis-
cussed.

123

http://support.microsoft.com/default.aspx?scid=KB%3BEN-US%3BQ218180&ID=KB%3BEN-US%3BQ218180
http://support.microsoft.com/default.aspx?scid=KB%3BEN-US%3BQ218180&ID=KB%3BEN-US%3BQ218180
http://support.microsoft.com/default.aspx?scid=KB%3BEN-US%3BQ218180&ID=KB%3BEN-US%3BQ218180

An overview of vulnerability assessment 49

References

1. Tiller, J.S.: CISO’s Guide to Penetration Testing. CRC Press Pub-
lication, Boca Raton

2. The Canadian Institute of Chartered Accountants Infor-
mation Technology Advisory Committee, Using an Ethi-
cal Hacking Technique to assess Information security Risk,
Toronto. http://www.cica.ca/research-and-guidance/documents/
it-advisory-committee/item12038.pdf. Accessed 03 Oct 2013

3. Xiong, P., Peyton, L.: A model driven penetration test framework
for web applications. In: IEEE 8th Annual International Conference
on Privacy, Security and Trust (2010)

4. Liu, B., Shi, L., Cai, Z.: Software vulnerability discovery tech-
niques: a survey. In: IEEE 4th International Conference on Multi-
media Information Networking and Security (2012)

5. Duan, B., Zhang, Y., Gu, D.: An easy to deploy penetration testing
platform. In: IEEE 9th International Conference for young Com-
puter Scientists (2008)

6. Dr. Geer, D., Harthorne, J.: Penetration testing: a duet. In: IEEE
Proceedings of 18th Annual Computer Security Application Con-
ference, ACSAC’02 (2002)

7. Sparks, S., Embleton, S., Cunningham, R., Zou, C.: Automated vul-
nerability analysis: leveraging control flow for evolutionary input
crafting. In: IEEE 23rd Annual Computer Security Applications
Conference (2007)

8. Open Web Application Security Project. OWASP Top 10
Project. http://www.owasp.org/index.php/category:OWASP_Top_
Ten_Project. Accessed 03 Oct 2013

9. Turpe, S., Eichler, J.: Testing production systems safely: common
precautions in penetration testing. In: IEEE Academy Industrial
Conference (2009)

10. Halfold, W., Choudhary, S., Orso, A.: Penetration testing with
improved input vector identification. In: IEEE International Con-
ference on Software Testing Verification and Validation (2009)

11. Austin, A., Williams, L.: One technique is not enough: a compar-
ison of vulnerability discovery techniques. In: IEEE International
Symposium on Empirical Software Engineering and Measurement
(2011)

12. The MITRE Corporation, Common Weakness Enumeration. http://
www.cwe.mitre.org/. Accessed 03 Oct 2013

13. SANS Institute. SANS Top 25 Software Errors. http://www.sans.
org/top25-software-errors/. Accessed 03 Oct 2013

14. Institute for Security and Open Methodologies. Open Source Secu-
rity Testing Methodology Manual. http://www.isecom.org/mirror/
OSSTMM.3.pdf. Accessed 03 Oct 2013

15. Payment Card Industry Security Standards. Payment Card Indus-
try Data Security Standard. http://www.pcisecuritystandards.org/
documents/pci_dss_v2.pdf. Accessed 03 Oct 2013

16. Open Web Application Security Project. OWASP Testing Guide.
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.
pdf. Accessed 03 Oct 2013

17. International Organization for Standardization. IEC/ISO
27001:2013. http://www.iso.org/iso/home/store/catalogue_ics/cat
alogue_detail_ics.htm?csnumber=54534. Accessed 03 Oct 2013

18. LanFang, W., HaiZhou, K.: A research of behavior based penetra-
tion testing model of the network. In: IEEE International Confer-
ence on Industrial Control and Electronics Engineering (2012)

19. iVolution Security Technologies. Benefits of Penetration Test-
ing. http://www.ivolutionsecurity.com/pen_testing/benefits.php.
Accessed 03 Oct 2013

20. Antunes, N., Vieira, M.: Benchmarking vulnerability detection
tools for web services. In: IEEE International Conference on Web
Services (2010)

21. White Hat Statistics Report’ 2013. https://www.whitehatsec.com.
Accessed 03 Oct 2013

22. Shah, S.: Vulnerability assessment and penetration testing (VAPT)
techniques for cyber defence. IET-NCACNS’ SGGS, Nanded
(2013)

23. Shah, S., Mehtre, B.M.: A modern approach to cyber security
analysis using vulnerability assessment and penetration testing. In:
NCRTCST’ 2013, Hyderabad, India

24. Shah, S., Mehtre, B.M.: School of Computer and Information Sci-
ences, University of Hyderabad, Hyderabad, India. In: 2013 IEEE
International Conference on Computational Intelligence and Com-
puting Research (ICCIC)

25. McDermott, J.P.: Attack net penetration testing. In: Proceedings of
the 2000 Workshop on New Security Paradigms. ACM Press, New
York (2001)

123

http://www.cica.ca/research-and-guidance/documents/it-advisory-committee/item12038.pdf
http://www.cica.ca/research-and-guidance/documents/it-advisory-committee/item12038.pdf
http://www.owasp.org/index.php/category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/category:OWASP_Top_Ten_Project
http://www.cwe.mitre.org/
http://www.cwe.mitre.org/
http://www.sans.org/top25-software-errors/
http://www.sans.org/top25-software-errors/
http://www.isecom.org/mirror/OSSTMM.3.pdf
http://www.isecom.org/mirror/OSSTMM.3.pdf
http://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
http://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54534
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54534
http://www.ivolutionsecurity.com/pen_testing/benefits.php
https://www.whitehatsec.com

	An overview of vulnerability assessment and penetration testing techniques
	Abstract
	1 Introduction
	2 Background
	2.1 Vulnerability
	2.2 Vulnerability types
	2.3 Vulnerability assessment
	2.4 Vulnerability assessment techniques
	2.5 Penetration testing
	2.6 Penetration testing strategies
	2.7 Types of penetration testing
	2.8 Benefits of conducting periodic VAPT

	3 VAPT methodology
	3.1 Phases of vulnerability assessment and penetration testing (VAPT)
	3.2 Vulnerability assessment and penetration testing (VAPT) standards
	3.3 Tools to conduct vulnerability assessment and penetration testing (VAPT)
	3.4 Vulnerability assessment and penetration testing (VAPT) models
	3.5 Precautions while conducting VAPT

	4 Case study
	5 Conclusion
	References

