
J Comput Virol Hack Tech (2015) 11:51–58
DOI 10.1007/s11416-014-0224-9

CORRESPONDENCE

How to detect the Cuckoo Sandbox and to Strengthen it?

Olivier Ferrand

Received: 19 February 2014 / Accepted: 26 August 2014 / Published online: 4 September 2014
© Springer-Verlag France 2014

Abstract Nowadays a lot of malware are analyzed with
virtual machines. The Cuckoo sandbox (Cuckoo DevTeam:
Cuckoo sandbox. http://www.cuckoosandbox.org, 2013)
offers the possibility to log every actions performed by the
malware on the virtual machine. To protect themselves and
to evande detection, malware need to detect whether they
are in an emulated environment or in a real one. With a few
modifications and tricks on Cuckoo and the virtual machine
we can try to prevent malware to detect that they are under
analyze, or at least make it harder. It is not necessary to
apply all the modifications, because it may produce a sig-
nificant overhead and if malware checks his execution time,
it may detect an anomaly and consider that it is running in
a virtual machine. The present paper will show how a mal-
ware can detect the Cuckoo sandbox and how we can counter
that.

Keywords Computer security · Attacks · Malware ·
Cuckoo Sandbox · Virtual machine · VirtualBox

1 Introduction

The Cuckoo Sandbox [1] is an open source malware analy-
sis system. The development has started in summer 2010
in a Google Summer Code project. The actual version is
1.0. Its goal is to provide a way to analyze files automat-
ically and to provide all the interactions between the files
under analysis and the system. The main targets are Win-
dows executables, DLL, Internet URLs, PDF, Office docu-

O. Ferrand (B)
Operational Cryptology and Virology Laboratory (CVO),
ESIEA, Laval, France
e-mail: olivier.ferrand@esiea-ouest.fr; ferrand@esiea-ouest.fr

ments and Java files. In this paper, we present how a mal-
ware can detect whether Cuckoo is trying to analyze it or
not. For each attack presented, we give the mechanism used
for the detection of Cuckoo and an example of code which
allows to realize that. The presented techniques are work-
ing on the 0.4 and 0.5 versions of Cuckoo. Because it is a
very active project, future modifications may integrate further
protections to prevent our attacks which are presented in this
paper.

We will speak about solutions to avoid the detection. In
some cases, the same countermeasure can be used to counter
two or three attacks, so we give the most specific solution in
priority.

Finally, we will discuss about the detection of the vir-
tual machine which is hosted by Cuckoo. Actually a good
proportion of malware try to detect whether they are in a
virtual machine or a physical machine. With the knowl-
edge of internal mechanisms in Cuckoo, it is possible to add
some code in order to fool the malware by giving erroneous
information.

2 Detection of Cuckoo

In this part, we present the different techniques that may be
used by malware to detect whether they are under Cuckoo
analysis or not.

2.1 Hooks’ detection

The analysis of the dynamic link library cuckoomon.dll
source code and particulary the files cuckoomon.c and
hooking.c provides information about the technical imple-
mentation of hooks. Currently the only technique used is
HOOK_JMP_DIRECT, as shown in the following code:

123

http://www.cuckoosandbox.org

52 O. Ferrand

1 // get a random hooking technique , except
for "direct jmp"

// #define HOOKTYPE (1 + (random()
#define HOOKTYPE HOOK_JMP_DIRECT

void set_hooks_dll(const wchar_t *library ,
int len)

6 {
for (int i = 0; i < ARRAYSIZE(g_hooks)

; i++) {
if(! wcsnicmp(g_hooks[i].library ,

library , len)) {
hook_api (& g_hooks[i], HOOKTYPE

);
}

11 }
}

void set_hooks ()
{

16 // the hooks contain the gates as well
, so they have to be RWX

DWORD old_protect;
VirtualProtect(g_hooks , sizeof(g_hooks

), PAGE_EXECUTE_READWRITE ,
&old_protect);

21 hook_disable ();

// now , hook each api :)
for (int i = 0; i < ARRAYSIZE(g_hooks)

; i++) {
hook_api (& g_hooks[i], HOOKTYPE);

26 }

hook_enable ();
}

Listing 1 Hook selection in cuckoomon.c

The function, for this type of hook, which is defined in the file
hooking.c, is sufficiently explicit about the implementation
method as shown in the following extracted code:

1 // direct 0xe9 jmp
static int hook_api_jmp_direct(hook_t *h,

unsigned char *from ,
unsigned char *to)

{
// unconditional jump opcode

6 *from = 0xe9;

// store the relative address from
this opcode to our hook function

*(unsigned long *)(from + 1) = (
unsigned char *) to - from - 5;

return 0;
11 }

Listing 2 Implementation in hooking.c

With this information and the list of the hooked functions,
given by the table hook_t g_hooks[] in the file cuckoomon.c,
it is easy to create a code whose purpose is to obtain the
address of one function and check its first opcode.

FARPROC addr;
addr = GetProcAddress(LoadLibraryA("

kernel32.dll"),"DeleteFileW");
if (*(BYTE*) addr == 0xE9) printf("/!\\

Hooked by cuckoo\n");

Listing 3 Hook detection on with the function DeleteFileW

2.2 Folder’s detection

By default, Cuckoo uses a specific folder on the guest system
in order to store and retrieve some information to the host.
Under a Windows virtual machine, the default directory is
c:

∖
cuckoo.

def _get_root(self , root="", container
="cuckoo", create=True):

2 """Get Cuckoo path.
@param root: force root folder ,

don’t detect it.
@param container: folder which

will contain Cuckoo , not used
root parameter is used.

@param create: create folder.
"""

7 global ERROR_MESSAGE

if not root:
if self.system == "windows":

root = os.path.join(os.
environ["SYSTEMDRIVE"]
+ os.sep , container)

12 elif self.system == "linux" or
self.system == "darwin":

root = os.path.join(os.
environ["HOME"],
container)

else:
ERROR_MESSAGE = "Unable to

identify operating
system"

return False
17

if create and not os.path.exists(
root):
try:

os.makedirs(root)
except OSError as e:

22 ERROR_MESSAGE = e
return False

else:
if not os.path.exists(root):

ERROR_MESSAGE = "Directory
not found:

27 return False

return root

Listing 4 Setting up the shared folder in agent.py

Indeed it is relatively easy to detect it by looking for the
presence of the folder with a possible code like the following
one:

1 DWORD dwattrib ;
dwattrib = GetFileAttributes(L"c:\\ cuckoo"

);
if ((dwattrib != INVALID_FILE_ATTRIBUTES

) && (dwattrib &
FILE_ATTRIBUTE_DIRECTORY))
printf("/!\\ Folder c:\\ cuckoo found

!\n");

Listing 5 Detecting the cuckoo’s shared folder

2.3 Pipe’s detection

In a similar manner we used for Cuckoo’s directory, it is
possible to detect the presence of the pipe used to commu-
nicate between the host system and the guest system. Since

123

How to detect the Cuckoo Sandbox 53

the name is hardcoded, it is very easy to create a small piece
of code in order to detect the Cuckoo’s communication pipe.

1 HANDLE hFind;
hFind = CreateFile(L"\\\\.\\ pipe\\ cuckoo",

GENERIC_READ |
GENERIC_WRITE ,

0,
NULL ,

6 OPEN_EXISTING ,
0,
NULL);

if (hFind != INVALID_HANDLE_VALUE){
CloseHandle(hFind);

11 printf("/!\\ Pipe \\\\.\\ pipe\\ cuckoo
found !\n");

}

Listing 6 Detection of the pipe

2.4 Cuckoo’s agent detection

Even if Python is a common programming language, it is rel-
atively rare to find it running on a Windows client subsystem.
From that, in order to prevent a detection, a few malware may
try to detect the running process python.exe or pythonw.exe.
In case of doubt, the malware might try to detect the pres-
ence of an installation of python package on the machine or
checking a few names of directories or registry keys.

2.5 Antihooking

This trick is not a real detection one, but it is more close to
a way to avoid the analysis by Cuckoo. By default Cuckoo
sets 3 hooks for the creation of a new process and use them
to analyse the new process. One technique consists in using
two executables, the first will initially restore its API calls,
then run the second. As the 3 API are restored, Cuckoo will
not detect that the second executable has been launched, so
this one will not be analyzed. The following code shows how
to restore the original API for a Windows XP with SP2/SP3
operating system.

DWORD old_protect;
BYTE *op2;

3 BYTE *op3;
BYTE *op1;

op1 = (BYTE *) GetProcAddress(LoadLibraryA
("ntdll.dll"),"ZwCreateProcess");

VirtualProtect(op1 , 10,
PAGE_EXECUTE_READWRITE , &old_protect);

8 *(op1) = 0xb8;
*(op1+1) = 0x2f;
*(op1+2) = 0x00;
*(op1+3) = 0x00;
*(op1+4) = 0x00;

13

op2 = (BYTE *) GetProcAddress(LoadLibraryA
("ntdll.dll"),"ZwCreateProcessEx");

VirtualProtect(op2 , 10,
PAGE_EXECUTE_READWRITE , &old_protect);

*(op2) = 0xb8;
*(op2+1) = 0x30;

18 *(op2+2) = 0x00;
*(op2+3) = 0x00;

*(op2+4) = 0x00;

op3 = (BYTE *) GetProcAddress(LoadLibraryA
("kernel32.dll"),"
CreateProcessInternalW");

23 VirtualProtect(op3 , 10,
PAGE_EXECUTE_READWRITE , &old_protect);

*(op3) = 0x68;
*(op3+1) = 0x08;
*(op3+2) = 0x0A;
*(op3+3) = 0x00;

28 *(op3+4) = 0x00;

Listing 7 Call restoration on Windows XP SP2/3

3 Detection of VirtualBox

Because Cuckoo is in a Virtual Machine, it is important to
secure the Virtual Machine to avoid the most current detec-
tion techniques. In this part, we will discuss about two sec-
tions: the first is about the detection of VirtualBox without
the Guest Additions while the second is with the Guest Addi-
tions. The guest additions are used to provide closer integra-
tion between host and guest and to improve the interactive
performance of guest systems. Even if they are useful for a
classical use of a virtual machine, in case of malware analy-
sis, they generally offer an advantage to the malware.

3.1 Case without the Guest Additions installed

The first possibility is to read a few registry keys. The fol-
lowing codes are the main used by the malware to detect a
VirtualBox guest. They read the APCI, IDE and SYSTEM
keys and their subkeys in order to find relationships with
VirtualBox, generally with the name vbox or virtualbox.

HK = 0;
2 char *subkey = "SYSTEM \\ CurrentControlSet

\\Enum\\IDE";
if ((ERROR_SUCCESS ==

RegOpenKeyEx (HKEY_LOCAL_MACHINE ,
subkey , 0, KEY_READ , &HK)) && HK)

{
unsigned long n_subkeys = 0;

7 unsigned long max_subkey_length = 0;
if (ERROR_SUCCESS ==
RegQueryInfoKey (HK , 0, 0, 0, &

n_subkeys , &max_subkey_length , 0,
0, 0,

0, 0, 0))
{

12 if (n_subkeys)
{

char *pNewKey =
(char *) LocalAlloc (

LMEM_ZEROINIT ,
max_subkey_length + 1);

for (unsigned long i = 0; i <
n_subkeys; i++)

17 {
memset (pNewKey , 0,

max_subkey_length + 1);
HKEY HKK = 0;
if (ERROR_SUCCESS ==

RegEnumKey (HK , i, pNewKey ,
max_subkey_length + 1))

123

54 O. Ferrand

22 {
if ((RegOpenKeyEx (HK , pNewKey

, 0, KEY_READ , &HKK) ==
ERROR_SUCCESS) && HKK)
{

unsigned long nn = 0;
27 unsigned long maxlen = 0;

RegQueryInfoKey (HKK , 0, 0, 0,
&nn , &maxlen , 0, 0, 0,

0, 0, 0);
char *pNewNewKey =

(char *) LocalAlloc (
LMEM_ZEROINIT , maxlen +
1);

32 if (RegEnumKey (HKK , 0,
pNewNewKey , maxlen + 1) ==
ERROR_SUCCESS)

{
HKEY HKKK = 0;
if (RegOpenKeyEx

37 (HKK , pNewNewKey , 0,
KEY_READ ,

&HKKK) == ERROR_SUCCESS)
{

unsigned long size = 0xFFF
;

unsigned char ValName [0
x1000] = { 0 };

42 if (RegQueryValueEx
(HKKK , "FriendlyName",

0, 0, ValName ,
&size) ==

ERROR_SUCCESS)
{

ToLower (ValName);
47 if (strstr ((char *)

ValName , "vbox"))
{

printf("Virtualbox
detected\n");

}
}

52 RegCloseKey (HKKK);
}

}
LocalFree (pNewNewKey);
RegCloseKey (HKK);

57 }
}
}

LocalFree (pNewKey);
}

62 }
RegCloseKey (HK);

}

Listing 8 First method

1 HK = 0;
if (RegOpenKeyEx

(HKEY_LOCAL_MACHINE , "HARDWARE \\
DESCRIPTION \\ System", 0, KEY_READ ,

&HK) == ERROR_SUCCESS)
{

6 unsigned long type = 0;
unsigned long size = 0x100;
char *systembiosversion = (char *)

LocalAlloc (LMEM_ZEROINIT , size +
10);

if (ERROR_SUCCESS ==
RegQueryValueEx (HK , "

SystemBiosVersion", 0, &type ,
11 (unsigned char *)

systembiosversion , &size)
)

{
ToLower ((unsigned char *)

systembiosversion);
if (type == REG_SZ || type ==

REG_MULTI_SZ)

{
16 if (strstr (systembiosversion , "

vbox"))
{

printf("VirtualBox detected\n");
}

}
21 }

LocalFree (systembiosversion);

type = 0;
size = 0x200;

26 char *videobiosversion = (char *)
LocalAlloc (LMEM_ZEROINIT , size +
10);

if (ERROR_SUCCESS ==
RegQueryValueEx (HK , "VideoBiosVersion

", 0, &type ,
(unsigned char *)

videobiosversion , &size))
{

31 if (type == REG_MULTI_SZ)
{

char *video = videobiosversion;
while (*(unsigned char *) video)

{
36 ToLower ((unsigned char *) video);

if (strstr (video , "oracle") ||
strstr (video , "virtualbox"))

{
printf("VirtualBox detected\n"

);
}

41 video = &video[strlen (video) +
1];

}
}
}

LocalFree (videobiosversion);
46 RegCloseKey (HK);

}

Listing 9 Second method

The second technique consists in looking for the shared
folders having a specific name such as VirtualBox Shared
Folders. It can be done with the following code:

unsigned long pnsize = 0x1000;
char *provider = (char *) LocalAlloc (

LMEM_ZEROINIT , pnsize);
3 int retv = WNetGetProviderName (

WNNC_NET_RDR2SAMPLE , provider , &pnsize
);

if (retv == NO_ERROR)
{

if (lstrcmpi (provider , "VirtualBox
Shared Folders") == 0)

{
8 printf("VirtualBox detected\n");

}
}

Listing 10 Third method

3.2 Case with the Guest Additions installed

In this subsection, we discuss the detection techniques of
VirtualBox using the guest additions. The first one deals with
finding the VBoxMiniRdrDN driver. This one is used to create
shared folders between the host and the guest machine.

123

How to detect the Cuckoo Sandbox 55

HANDLE hF1 = CreateFile ("\\\\.\\
VBoxMiniRdrDN", GENERIC_READ ,

FILE_SHARE_READ |
FILE_SHARE_WRITE |

FILE_SHARE_DELETE , 0,
OPEN_EXISTING , 0, 0);

5 if (hF1 != INVALID_HANDLE_VALUE)
{

printf ("VirtualBox detected");
}

Listing 11 Shared folder detection

We can detect although the presence of a few registry keys
and the Dynamic Link Library VBoxHook.dll which is used
to load the different drivers for the Guest Addition.

In the spirit of the previous method we used on Cuckoo,
we can detect the presence of a pipe with the specific name
of the system tray which has been created by the add-on for
the guest.

1 HANDLE hxx = CreateFile ("\\\\.\\ pipe\\
VBoxTrayIPC", GENERIC_READ ,

FILE_SHARE_READ | FILE_SHARE_WRITE
, 0, OPEN_EXISTING , 0, 0);

if (hxx != INVALID_HANDLE_VALUE)
{

printf ("VirtualBox detected\n");
6 }

Listing 12 Pipe detection

Another way consists in detecting any GUI process with a
specific name with respect to the VirtualBox tray.

HWND hY1 = FindWindow ("
VBoxTrayToolWndClass", 0);

HWND hY2 = FindWindow (0, "VBoxTrayToolWnd
");

if (hY1 || hY2)
4 {

printf ("VirtualBox detected\n");
}

Listing 13 GUI detection

4 Countermeasures

In this section, we will speak about the different counter-
measures which can be used in order to perform more stealth
analysis, without being detected by malware. The first sub-
section relates to Cuckoo while the second deals with Vir-
tualBox. A few of these countermeasures can be used with
Cuckoo and VirtualBox.

4.1 Cuckoo

According to AlienVault [3], it is possible to modify the cuck-
oomon.dll file. But this way may have performance impacts
for a deep analysis because we have to check each request
towards the registry table. Indeed if we try to analyze a

process which manipulates a huge amount of registry keys,
Cuckoo checks all the keys and compare those keys with dif-
ferent values. The same issue remains unchanged for files,
even if they are less used.

4.1.1 Using cuckoomon.dll

To avoid some accesses to special keys, it is possible to edit
the file hook_file.c and to add directly some specific response
that we want to see returned to the malware. For example,
we can modify the following code:

HOOKDEF(LONG , WINAPI , RegOpenKeyExA ,
__in HKEY hKey ,
__in_opt LPCTSTR lpSubKey ,

4 __reserved DWORD ulOptions ,
__in REGSAM samDesired ,
__out PHKEY phkResult

) {
LONG ret = Old_RegOpenKeyExA(hKey ,

lpSubKey , ulOptions , samDesired ,
9 phkResult);

LOQ("psP", "Registry", hKey , "SubKey",
lpSubKey , "Handle", phkResult);

return ret;
}

Listing 14 Original code

into:

HOOKDEF(LONG , WINAPI , RegOpenKeyExA ,
__in HKEY hKey ,

3 __in_opt LPCTSTR lpSubKey ,
__reserved DWORD ulOptions ,
__in REGSAM samDesired ,
__out PHKEY phkResult

) {
8 LONG ret;

if ((strstr(lpSubKey , "VirtualBox") !=
NULL) || (strstr(lpSubKey , "VBox"

) != NULL)) {
ret = 1;
LOQ("s", "Blocked Registry key", "

RegOpenKeyExA");
}

13 else {
ret = Old_RegOpenKeyExA(hKey ,

lpSubKey , ulOptions ,
samDesired ,
phkResult);

}
LOQ("psP", "Registry", hKey , "SubKey",

lpSubKey , "Handle", phkResult);
18 return ret;

}

Listing 15 Modified code

Whenever the malware try to access to the subkey VirtualBox
or VBox with the RegOpenKeyExA API, Cuckoo will log
that and will return that the key does not exist. In the same
way, we have to modify the RegQueryValueExA hook, in
order to block access to some keys.
By default, Cuckoo does not log the GetFileAttributesA API,
so we must add it to the source file. Using the msdn docu-
mentation [2] we can write the following code in order to log
and bypass detection mechanisms from the malware:

123

56 O. Ferrand

1 HOOKDEF(DWORD , WINAPI , GetFileAttributesA ,
__in LPCTSTR lpFileName

) {
if (strstr(lpFileName , "cuckoo") !=

NULL) {
LOQ("s", "Blocked File access", "

GetFileAttributesA");
6 return INVALID_FILE_ATTRIBUTES;

}
else

return Old_GetFileAttributesA(
lpFileName);

}

Listing 16 New hook’s code

Technically it is easy to add new hooks. For any new tech-
nique we can create a new countermeasure by adding a hook
in the dll. But it takes time to react to each new attack, mainly
when it depends from the number of operations performed by
malicious codes. In addition, if the malware compute execu-
tion time, it may guess that it is under analysis. The quantity
of logs can be too huge to allow a simple analysis.

4.1.2 Modifying Cuckoo directly

Another approach consists in modifying directly Cuckoo.
Since Cuckoo is an opensource project, we can modify the
agent.py file in order to change the name of the directory used
for the analysis. We can use a more common name such as
“windows_” or “nt” or anything else we want. So the malware
will not be able to guess whether it is running with Cuckoo
or not, because it will not be able to find fixed file/registry
names.
For the pipe, the same system is used, but this time we have
to modify the core of Cuckoo although.
The last modification that we can perform on Cuckoo is to
compile the file agent.py, in order to produce an executable.
We can use py2exe to perform this action. It relies on the fact
that there are not real reason to find the processes python.exe
or pythonw.exe running in a classical computer. So if the agent
is in the form of an executable, the malware will see another
process like or among many others. By doing that, the python
package is no longer necessary on the guest machine.

4.2 VirtualBox

Because strengthening Cuckoo is not the only possible solu-
tion, we have to modify our virtual machines although. Some
of the previous actions can be done directly with the Virtual-
Box Manager [4]. One of the first thing to do is to anonymize
the hardware on the virtual machine. The best way to do this,
is to not install the VirtualTools on the guest machine because
it creates a lot of files on the system and many of them can
be detected easily. The rest of the work can be divided in two
parts.

4.2.1 Registry

Virtualbox creates a lot of registry keys. Those keys can be
removed easily with a small batch file. Before removing those
keys, it is better to copy them under another name without
any reference to VirtualBox. Some keys can only be removed
in the safe boot mode of Windows or require the system
permission rights. The file can be as the following one:

@reg copy HKLM\HARDWARE\ACPI\DSDT\VBOX__
HKLM\HARDWARE\ACPI\DSDT\backup__ /s /f

@reg delete HKLM\HARDWARE\ACPI\DSDT\VBOX__
/f

@reg copy HKLM\HARDWARE\ACPI\RSDT\VBOX__
HKLM\HARDWARE\ACPI\RSDT\backup__ /s /f

@reg delete HKLM\HARDWARE\ACPI\RSDT\VBOX__
/f

5 @reg copy HKLM\HARDWARE\ACPI\FADT\VBOX__
HKLM\HARDWARE\ACPI\FADT\backup__ /s /f

@reg delete HKLM\HARDWARE\ACPI\FADT\VBOX__
/f

@reg copy HKEY_LOCAL_MACHINE\HARDWARE\ACPI
\DSDT\backup__\VBOXBIOS

HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\
backup__\myBIOS /s /f

10 @reg delete HKEY_LOCAL_MACHINE\HARDWARE\
ACPI\DSDT\backup__\VBOXBIOS /f

@reg copy HKEY_LOCAL_MACHINE\HARDWARE\ACPI
\FADT\backup__\VBOXFACP

HKEY_LOCAL_MACHINE\HARDWARE\ACPI\FADT\
backup__\myFACP /s /f

@reg delete HKEY_LOCAL_MACHINE\HARDWARE\
ACPI\FADT\backup__\VBOXFACP /f

@reg copy HKEY_LOCAL_MACHINE\HARDWARE\ACPI
\RSDT\backup__\VBOXRSDT

15 HKEY_LOCAL_MACHINE\HARDWARE\ACPI\RSDT\
backup__\myRSDT /s /f

@reg delete HKEY_LOCAL_MACHINE\HARDWARE\
ACPI\RSDT\backup__\VBOXRSDT /f

@reg add HKEY_LOCAL_MACHINE\HARDWARE\
DESCRIPTION\System /v

SystemBiosVersion /t REG_MULTI_SZ /d "
backup -1" /f

20 @reg add HKEY_LOCAL_MACHINE\HARDWARE\
DESCRIPTION\System /v

VideoBiosVersion /t REG_MULTI_SZ /d "
VGABIOS 1.0" /f

Listing 17 Sample of batch file

The key names may depend on the operating system or the
version number of VirtualBox.

4.2.2 Hardware

Since the version 4.2 of VirtualBox, it is possible to mod-
ify some hardware part with the VirtualBox Manager. The
hdparm command give us enough information to configure
correctly the hard drive and the CDROM drive.

root@VxLab :~# hdparm -i /dev/sda

/dev/sda:
4

Model=ST2000DM001 -9YN164 , FwRev=CC4B ,
SerialNo=W1E1CVJX

Config ={ HardSect NotMFM HdSw >15 uSec
Fixed DTR >10Mbs RotSpdTol >.5 }

123

How to detect the Cuckoo Sandbox 57

RawCHS =16383/16/63 , TrkSize=0, SectSize
=0, ECCbytes =4

BuffType=unknown , BuffSize=unknown ,
MaxMultSect =16, MultSect =16

9 CurCHS =16383/16/63 , CurSects =16514064 ,
LBA=yes , LBAsects =3907029168

IORDY=on/off , tPIO={min:120,w/IORDY :120},
tDMA={min:120,rec :120}

PIO modes: pio0 pio1 pio2 pio3 pio4
DMA modes: mdma0 mdma1 mdma2
UDMA modes: udma0 udma1 udma2 udma3 udma4

udma5 *udma6
14 AdvancedPM=yes: unknown setting

WriteCache=enabled
Drive conforms to: unknown: ATA/ATAPI

-4,5,6,7

* signifies the current active mode

19 root@VxLab :~#

Listing 18 Getting the hard drive information

We can change some information of the hard drive and the
CDROM drive using the information from the previous com-
mand.

1 VBoxManage setextradata "<vmname >" "
VBoxInternal/Devices/piix3ide /0/ Config
/PrimaryMaster/SerialNumber" "
SerialNo"

VBoxManage setextradata "<vmname >" "
VBoxInternal/Devices/piix3ide /0/ Config
/PrimaryMaster/FirmwareRevision" "<
FwRev >"

VBoxManage setextradata "<vmname >" "
VBoxInternal/Devices/piix3ide /0/ Config
/PrimaryMaster/ModelNumber" "<Model >"

Listing 19 Changing the hard drive information for the PIIX3 controlor

By default the MAC address is directly tagged as an Oracle
card. In order to prevent a detection by the analysis of the
network card by a malware, we can change its prefix by an
other constructor.

VBoxManage modifyvm "<vmname >" --
macaddressX <MAC >

The real information of the computer can be obtained with the
command : dmidecode. The following extract shows which
information can be changed:

Bios information (-t 0)
VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/
Config/DmiBIOSVendor" "
Vendor"

4 VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiBIOSVersion" "
Version"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiBIOSReleaseDate" "
Release Date"

VBoxManage setextradata "VM name"
9 "VBoxInternal/Devices/pcbios /0/

Config/DmiBIOSReleaseMajor" X
VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/
Config/DmiBIOSReleaseMinor " X

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiBIOSFirmwareMajor" X
14 VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/
Config/DmiBIOSFirmwareMinor" X

System Information (-t 1)
VBoxManage setextradata "VM name"

19 "VBoxInternal/Devices/pcbios /0/
Config/DmiSystemVendor" "
Manufacturer"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiSystemProduct" "
Product Name"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiSystemVersion" "
Version"

24 VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiSystemSerial" "
Serial Number"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiSystemSKU" "
SKU Number"

VBoxManage setextradata "VM name"
29 "VBoxInternal/Devices/pcbios /0/

Config/DmiSystemFamily" "
Family"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiSystemUuid" "
UUID"

Base Board Information (-t 2)
34 VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/
Config/DmiBoardVendor" "
Manufacturer"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiBoardProduct" "
Product Name"

VBoxManage setextradata "VM name"
39 "VBoxInternal/Devices/pcbios /0/

Config/DmiBoardVersion" "
Version"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiBoardSerial" "
Serial Number"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiBoardAssetTag" "
Asset Tag"

44 VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiBoardLocInChass" "
Location in Chassis"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiBoardType" 10
MotherBoard

49 ### Chassis Information (-t 3)
VBoxManage setextradata "VM name"

"VBoxInternal/Devices/pcbios /0/
Config/DmiChassisVendor" "
Manufacturer"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiChassisVersion" "
Version"

54 VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiChassisSerial" "
Serial Number"

123

58 O. Ferrand

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiChassisAssetTag" "
Asset Tag"

VBoxManage setextradata "VM name"
59

Processor Information (-t 4)
"VBoxInternal/Devices/pcbios /0/

Config/DmiProcManufacturer" "
Manufacturer"

VBoxManage setextradata "VM name"
"VBoxInternal/Devices/pcbios /0/

Config/DmiProcVersion" "
Version"

64 VBoxManage setextradata "VM name"

OEM Strings (-t 11)
"VBoxInternal/Devices/pcbios /0/

Config/DmiOEMVBoxVer" "
Version"

VBoxManage setextradata "VM name"
69 "VBoxInternal/Devices/pcbios /0/

Config/DmiOEMVBoxRev" "
Revision"

Listing 20 DMI information to change

A good idea is to change the original BIOS code with the
real BIOS code of the host computer. With this modification
the behavior will be really close to a real machine hosting.

1 dd if=/sys/firmware/acpi/tables/SLIC of=
SLIC.bin

VBoxManage setextradata "<VM name >" "
VBoxInternal/Devices/acpi /0/ Config/
CustomTable" SLIC.bin

Listing 21 Changing the BIOS

5 Conclusion

In this document, we have shown how to detect Cuckoo and
how we can prevent its detection by strengthening Cuckoo.
More generally we can configure a virtual machine with Vir-
tualBox in a closer way. In all cases, Cuckoo remains reliable
and advanced enough to perform automatic and relatively
comprehensive analyses of malware. With this hardening
it becomes more difficult for malware to bypass a virtual
machine equipped with the Cuckoo analysis system. The
main problem is to find the best trade-off between perfor-
mance and the time used to carry out such an analysis.

References

1. Cuckoo DevTeam: Cuckoo sandbox (2013). http://www.
cuckoosandbox.org

2. msdn: Getfileattributes function (2013). http://msdn.microsoft.com/
en-us/library/windows/desktop/aa364944(v=vs.85).aspx

3. Ortega, A.: Hardening cuckoo sandbox against vm aware
malware (2012). http://labs.alienvault.com/labs/index.php/2012/
hardening-cuckoo-sandbox-against-vm-aware-malware/

4. VirtualBox: Virtualbox manual (2013). http://www.virtualbox.org/
manual/

123

http://www.cuckoosandbox.org
http://www.cuckoosandbox.org
http://msdn.microsoft.com/en-us/library/windows/desktop/aa364944(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa364944(v=vs.85).aspx
http://labs.alienvault.com/labs/index.php/2012/hardening-cuckoo-sandbox-against-vm-aware-malware/
http://labs.alienvault.com/labs/index.php/2012/hardening-cuckoo-sandbox-against-vm-aware-malware/
http://www.virtualbox.org/manual/
http://www.virtualbox.org/manual/

	How to detect the Cuckoo Sandbox and to Strengthen it?
	Abstract
	1 Introduction
	2 Detection of Cuckoo
	2.1 Hooks' detection
	2.2 Folder's detection
	2.3 Pipe's detection
	2.4 Cuckoo's agent detection
	2.5 Antihooking

	3 Detection of VirtualBox
	3.1 Case without the Guest Additions installed
	3.2 Case with the Guest Additions installed

	4 Countermeasures
	4.1 Cuckoo
	4.1.1 Using cuckoomon.dll
	4.1.2 Modifying Cuckoo directly

	4.2 VirtualBox
	4.2.1 Registry
	4.2.2 Hardware

	5 Conclusion
	References

