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Abstract Previous research has shown that hiddenMarkov
model (HMM) analysis is useful for detecting certain chal-
lenging classes of malware. In this research, we consider the
related problem of malware classification based on HMMs.
We train multiple HMMs on a variety of compilers and mal-
ware generators. More than 8,000 malware samples are then
scored against thesemodels and separated into clusters based
on the resulting scores. We observe that the clustering results
could be used to classify the malware samples into their
appropriate families with good accuracy. Since none of the
malware families in the test set were used to generate the
HMMs, these results indicate that our approach can effective
classify previously unknownmalware, at least in some cases.
Thus, such a clustering strategy could serve as a useful tool
in malware analysis and classification.

1 Introduction

Automatically classifying malware is a challenging task. In
this research, we apply hidden Markov models and cluster
analysis to this problem. The use of hidden Markov mod-
els was inspired by previous research in metamorphic detec-
tion [3,36].

We train HMMs for several metamorphic generators and
several different compilers. The rationale is that, as in [3],
we can view the metamorphic generators, broadly speaking,
as a type of “compiler”. Then we use the resulting models to
score each of more than 8,000 malware samples. Based on
these scores, the malware samples are separated into clus-
ters using the k-means algorithm [18,21]. We analyze the
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resulting clusters and show that they correspond to certain
characteristics of the malware. Since none of the malware
families in our test set were used to generate the HMMs, our
results indicate that HMM-based analysis can be an effective
tool for automatically classifying new malware strains.

This paper is organized as follows. In Sect. 2, we give an
overview of previous work on malware classification. Sec-
tion 3 provides background information on hidden Markov
models and their role in malware research. Section 4 cov-
ers the k-means clustering algorithm and other related
approaches, while Sect. 5 discusses our implementation of
k-means clustering in more detail. Experimental results are
presented and analyzed in Sect. 6. Finally, Sect. 7 contains
our conclusion and suggestions for future work.

2 Related work

A considerable amount of previous work has been done on
malware classification. In this section, we discuss a few rep-
resentative sample of malware classification techniques that
have appeared in the literature.

2.1 Structured control flow

Control flow information can be used to analyze programs.
Such information is typically analyzed in the form of a
call graph. In [7], the authors propose a malware classifica-
tion system based on approximate matching of control flow
graphs. Control flow information is shown to be relatively
invariant among polymorphic and metamorphic malware.

2.2 Behavioral analysis

Classification systems can be based on static analysis
and/or behavioral analysis. Static-based techniques relies

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-014-0215-x&domain=pdf


60 C. Annachhatre et al.

on features extracted from static files, while dynamic-based
analysis relies on features that are extracted during code
execution (or emulation). Static-based approaches are gen-
erally more efficient, but also more limited in their abil-
ity to extract behavior-based information. Static approaches
sometimes use low-level features such as calls to exter-
nal libraries, strings, and byte sequences for classification
[13]. Other static approaches extract higher-level informa-
tion from binaries, such as sequences of API calls [7] or
opcode information [36].

Although variants in a malware family may have very
different static signatures, they almost certainly share char-
acteristic behavioral patterns. In [6], an automatic classifi-
cation system is analyzed. This system can be trained to
accurately identify newvariantswithin knownmalware fami-
lies, usingobserved similarities in behavioral features. Exam-
ples of behavioral features analyzed include resource usage
and the frequency of calls to specific kernel functions. The
results presented in [6] indicate that their behavioral classifier
can accurately identify new variants within certain malware
families.

2.3 Data mining methods

In [13], the authors extract the byte sequences from exe-
cutables and analyze the resulting n-grams. They consider
several classifiers including instance-based learning, Naïve
Bayes, decision trees, support vector machines (SVM), and
boosting. The best results in [13] are obtained using boosted
decision trees.

2.4 VILO

Malware classification schemes can be binary or familial.
In the binary malware classification problem, an unknown
executable is classified as either being malicious or benign,
while in the familial malware classification problem, a mali-
cious executable is classified as belonging to a particular
group of malware. Familial malware classification is consid-
ered in [16], where the authors develop a system referred to
as VILO. The VILO system makes use of three elements,
namely, opcode mnemonic permutation features (which the
authors refer to as N -perm feature vectors), TFIDF weight-
ing of features [12], and the nearest-neighbor algorithm. The
N -perms are obtained by sliding a window of size n over-
lapping opcodes. Such n-grams are somewhat more robust
against certain elementary code obfuscations such as instruc-
tion reordering [36].

VILO implements a nearest neighbor algorithm with
similarities computed over TFIDF-weighted N -perms. The
results in [16] showed thatVILO is a fast and effective learner
of real-world malware. TFIDF weighting ensures that fea-

tures that are common across many types of executables are
not overly emphasized [16].

3 Hidden Markov models

In this section, we provide an overview of hidden Markov
models (HMMs). We then briefly discuss previous malware-
related research involving HMMs.

HiddenMarkov models (HMMs) have proven to be a use-
ful tool for statistical pattern analysis in a wide variety of
applications, including speech recognition [24], biological
sequence analysis [14], software piracy detection [15], and—
most relevant to thework presented here—malware detection
[36]. This section gives a brief overview of training and scor-
ing using HMMs.

A statistical model that has states and known, fixed prob-
abilities for the state transitions is called a Markov process
or model [30]. In such a Markov model, the states are vis-
ible to the observer. In contrast, a hidden Markov model
(HMM) has states that are not directly observable [24].
HMMs can be viewed as a machine learning technique, in
the sense that the training process automatically extracts
the relevant statistical information from the training data.
An HMM also acts as a state machine, where every state
is associated with a probability distribution that relates the
hidden state to the set of observation symbols. As in any
Markov process, the transitions between states have fixed
probabilities.

We can train an HMM on a given observation sequences
[30]. We can also score an observation sequence against a
trained HMM to determine the probability of observing such
a sequence under the constraints of the specified model. The
more closely that the scored sequence matches the training
data, the higher the score.

Note that the training and scoring process as it is gen-
erally applied is in stark contrast to clustering. The goal of
clustering is to extract relevant structure—whichmay ormay
not actually exist—from a given dataset, without the aid of a
training set to determine thresholds. In other words, we apply
clustering when in a data exploration mode, while training
requires a dataset of some known type or types.

Before providing additional details on the training and
scoring algorithms, we must define some notation. The nota-
tion in Table 1 is fairly standard [30].

A hidden Markov model is defined by the matrices A, B
and π . Consequently, we denote an HMM as λ = (A, B, π).

Figure 1 gives a generic view of a hidden Markov model.
Note that the region above the dashed line is the “hidden”
part of the model, that is, we cannot directly observe the
state transitions. However, we can indirectly obtain informa-
tion about the hidden states via the observations O and the
probability distributions in the B matrix.
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Table 1 HMM notation

Notation Description

T Length of the observation sequence

N Number of hidden states in the model

M Number of distinct observation symbols

Q Distinct states of Markov process, {q0, q1, . . . , qN−1}
V Possible observations, denoted {0, 1, . . . , M − 1}
A N × N state transition probability matrix

B N × M observation probability matrix

π 1 × N initial state distribution matrix

O Observation sequence, (O0,O1, . . . ,OT−1)

Fig. 1 A hidden Markov model [30]

The utility of HMMs derives primarily from the fact that
there are efficient algorithms to solve each of the following
three problems [30].

Problem 1 Given a model λ = (A, B, π) and an observa-
tion sequenceO, we can determine the probability P(O | λ).
That is, an observation sequence can be scored to see how
well it fits a given model.

Problem 2 Given a model λ = (A, B, π) and an observa-
tion sequenceO, we can determine an optimal state sequence
for theMarkovmodel. Here, “optimal” is in the sense ofmax-
imizing the expected number of correct states. This is in con-
trast to dynamic programming, where “optimal” is defined
as the highest scoring overall path.

Problem 3 Given an observation sequence O and the para-
meter N (the number of hidden states) we can determine a
model λ that maximizes probability of O. That is, we can
train a model to best fit an observation sequence.

For the research presented in this paper, the algorithms
for Problems 1 and 3 are used. First we train HMMs for a
variety of compilers and malware generators. When training
a model, we use the algorithm that solves Problem 3. The
resulting HMMs are then used to score a large collection of
malware samples. For this step, we are using the algorithm
that solves Problem 1.

Next, we discuss the HMMalgorithms in some detail. The
presentation here follows that in [30].

The so-called forward algorithm and backward algorithm
are used when training the model, and the forward algorithm
is also used for scoring. In these algorithms, we calculate

the probability of being in a state qi at time t , relative to a
given observation sequenceO.When scoring a sequence, the
forward algorithm is used to determines P(O | λ).

Define

αt (i) = P(O0,O1, . . . ,Ot , xt = qi | λ) (1)

for t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1. Note
that αt (i) is the probability of the partial observation
sequence up to time t , where the underlying Markov process
is in state qi at time t . A direct calculation of the αt (i)
requires 2T NT multiplications [30]. Fortunately, there is an
efficient recursive calculation, which is known as the for-
ward algorithm (or α pass). The forward algorithm proceeds
as follows.

1. Let α0(i) = πi bi (O0), for i = 0, 1, . . . , N − 1
2. For t = 1, 2, . . . , T −1 and i = 0, 1, . . . , N−1 compute

αt (i) =
N−1∑

j=1

αt−1( j)a ji bi (Ot )

The forward algorithm only requires about N 2T multi-
plications. Also, from the definition in (1), it is clear
that P(O | λ) = ∑N−1

i=0 αT−1(i). Therefore, the forward
algorithm provides an efficient method for scoring an obser-
vation sequence O against a given model λ. Below, we will
see that the forward algorithm also plays a pivotal role when
training an HMM.

There is an analogous backward algorithm (or β pass)
where we compute the partial sums from back-to-front.
Define

βt (i) = P(Ot+1,Ot+2, . . . ,OT−1, xt = qi , λ)

for t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1. The βt (i)
can be calculated efficiently as follows.

1. Let βT−1(i) = 1, for i = 0, 1, . . . , N − 1
2. For t = T − 2, T − 3, . . . , 0 and i = 0, 1, . . . , N − 1,

compute

βt (i) =
N−1∑

j=0

ai j b j (Ot+1)βt+1( j)

Next, define

γt (i) = P(xt = qi |O, λ)

for t = 0, 1, . . . , T −2 and i = 0, 1, . . . , N −1. Since αt (i)
measures the relevant probability up to time t and βt (i)mea-
sures the relevant probability after time t , we have

γt (i) = αt (i)βt (i)

P(O | λ)
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The most likely (hidden) state at time t is the state for
which γt (i) is maximized. Thus, we now have the tools to
efficiently solve Problem 1 (using the forward algorithm) and
Problem 2 (based on the γt (i)). Next, we turn our attention
to solving Problem 3, that is, training an HMM.

The Baum–Welch algorithm enables us to iteratively re-
estimate the parameters of the model λ = (A, B, π). Recall
that N is the number of hidden states and M is the number of
unique observation symbols, and these are given. Therefore,
themodel parameters thatwewant to determine consist of the
elements of the matrices A, B, and π , where A is N × N , B
is N × M and π is 1 × N . Each of these matrices is row-
stochastic.1

Let

γt (i, j) = P(xt = qi , xt+1 = q j |O, λ).

for t = 0, 1, . . . , T − 2 and i, j ∈ {0, 1, . . . , N − 1}. Note
that γt (i, j) is the probability of being in state qi at time t
and transiting to state q j at time t + 1. From the definitions
of α, β, A and B, it follows that

γt (i, j) = αt (i)ai j b j (Ot+1)βt+1( j)

P(O | λ)
.

Also, it is easily verified that

γt (i) =
N−1∑

j=0

γt (i, j).

Now, given the γt (i) and the γt (i, j), the model λ =
(A, B, π) can be re-estimated as follows [30].

1. For i = 0, 1, . . . , N − 1, let

πi = γ0(i) (2)

2. For i = 0, 1, . . . , N − 1 and j = 0, 1, . . . , N − 1,
compute

ai j =
T−2∑

t=0

γt (i, j)

/ T−2∑

t=0

γt (i). (3)

3. For j = 0, 1, . . . , N − 1 and k = 0, 1, . . . , M − 1,
compute

b j (k) =
∑

t∈{0,1,...,T−2}
Ot=k

γt ( j)

/ T−2∑

t=0

γt ( j). (4)

1 In a row stochastic matrix, each row defines a probability distribution.
That is, each element is in the range of 0 to 1, and the elements of any
row must sum to 1.

The numerator in (3) gives the expected number of transitions
fromstateqi to stateq j ,while the denominator is the expected
number of transitions from qi to any state. Consequently, the
ratio is the probability of transiting from state qi to state q j

which, based on the values of the γt (i) and γt (i, j), is our
current best estimate of ai j .

The numerator of (4) is the expected number of times we
are in state q j with observation k, while the denominator is
the expected number of times we are in state q j . The ratio is
the probability of observing symbol k, given that the model
is in state q j . Again, given the current values of γt (i), this is
is our best estimate of b j (k).

The re-estimation process is iterative. First, we initial-
ize λ = (A, B, π) by choosing random values such thatπi ≈
1/N and ai j ≈ 1/N and b j (k) ≈ 1/M . Note that it is neces-
sary that A, B andπ are randomized, since precisely uniform
values will result in a local maximum, from which the model
cannot climb to an improved solution [30]. In addition, π, A
and B must be row stochastic.

To summarize, the solution to Problem 3 proceeds as
follows.

1. Initialize, λ = (A, B, π).
2. Compute αt (i), βt (i), γt (i, j) and γt (i).
3. Re-estimate the model λ = (A, B, π).
4. Repeat steps 2 and 3 until a suitable stopping criteria is

met.

For the HMMs considered in this paper, we determined
experimentally that a threshold of 800 iterations is more than
sufficient for convergence. Hence, we use this number of iter-
ations as our stopping criteria.

Previous research has shown that an HMM trained on
opcode sequences can effectively distinguish highly meta-
morphic malware families from benign code [36]. In subse-
quent research [2–4,25,29], these HMM results have served
as a benchmark for comparing the effectiveness of various
proposed detection techniques. While some of this research
has improved on HMM analysis in certain challenging cases,
the HMM results remain competitive in nearly all cases. In
addition, in [3], HMMs are shown to be effective for iden-
tifying code generated by different compilers. Consequently
it is reasonable to consider the effectiveness of HMMs as a
tool for automatic malware classification.

4 Clustering

Cluster analysis is the process of grouping objects into sub-
sets that have meaning in the context of a particular problem.
In this section, we first discuss clustering in general terms.
Then we focus our attention on k-means clustering, which is
the technique employ in this paper.
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There are several different ways to categorize clustering
algorithms, which we now consider. Except where otherwise
noted, the discussion here is primarily derived from [10].

• Exclusive versus non-exclusive: An exclusive classifica-
tion is a partition of the set of objects, that is, each
object belongs to exactly one subset, or cluster. Non-
exclusive classification allows for overlapping classifica-
tion, in which objects can be assigned to more than one
cluster.

• Intrinsic versus extrinsic: Intrinsic classification relies on
unsupervised learning, that is, no predetermined labels are
applied to the objects. In contrast, extrinsic classification
requires category labels on the objects and is therefore a
form of supervised learning.

• Agglomerative versus divisive: In an agglomerative
approach, each point is initially considered as a cluster
in itself. The two “nearest” clusters are combined into one
cluster repeatedly until all clusters are merged into a sin-
gle cluster. Consequently, agglomerative clustering can be
viewed as a “bottom up” approach. In contrast, divisive is
a “top down” approach where all observations start in one
cluster, and splits are performed recursively as the cluster-
ing algorithm proceeds.

• Hierarchical versus partitional: As the name implies, hier-
archical clustering algorithms break up the data into a hier-
archy of clusters. In contrast, partitional algorithms divide
the data set into mutually disjoint partitions. Hierarchi-
cal clustering algorithms produce a hierarchy of clusters
called a dendogram, either bymerging smaller clusters into
larger ones or dividing larger clusters to smaller ones [9].
One of the most popular partitional clustering algorithms
is the k-means clustering algorithm,whichwe now discuss
in more detail.

4.1 k-Means clustering algorithm

In this research, we have applied the k-means clustering algo-
rithm to malware classification. This procedure classifies the
dataset into k clusters, where the number k is specified in
advance. Finding globally optimal clusters in k-means is an
NP-hard problem, but there is a simple and fast heuristic that
will converge to “locally” optimal clusters.

The k-means (heuristic) algorithm is one of the simplest
unsupervised learning algorithms for the clustering prob-
lem [17]. Initially, we specify k and a centroid for each of
the k clusters. These initial centroids can be chosen at ran-
dom, or they can be selected to satisfy some property, such
as being spaced uniformly throughout the data. Once the ini-
tial centroids have been selected, each data point is associated
with its nearest centroid and placed in the corresponding clus-
ter. The centroids are then recalculated based on the current
placement of data points. The process of computing centroids

and regrouping the data points is repeated until the distance
between the previous and newly-computed centroids is neg-
ligible. In practice, it is usually desirable to repeat the entire
clustering processwithmultiple sets of initial centroids, since
the solution may depend heavily on the initial placement of
centroids.

Supposewehave a set of N malware samples, denotedm1,

m2, . . . ,mN . Then for the malware classification results pre-
sented in Sect. 6, the k-means clustering algorithm proceeds
as follows.

1. Specify the number of clusters k.
2. Initialize the k centroids.Denote these centroids asC1, C2,

. . . , Ck .
3. Determine the Euclidean distance of each malware sam-

ple from each centroid Ci , that is, compute d(mi , C j )

for i = 1, 2, . . . , N and j = 1, 2, . . . , k.
4. Each malware file is associated with its nearest centroid,

that is,mi is assigned to the cluster j for which d(mi , C j )

is minimized.
5. Recalculate the centroids for each cluster.
6. Repeat steps 3 through 5 until there is minimal change in

cluster centroids.

Weprovidemore implementation-specificdetails inSect. 5.4.
Note that in our experiments, we tested several values
of k, and for each k, several different initial clusters were
considered.

The k-means clustering algorithm is generally computa-
tionally faster than comparable hierarchical clustering algo-
rithms. In addition, k-means tends to produce tighter clusters
than hierarchical clustering. However, a possible disadvan-
tage of k-means clustering is that the value of k must be
specified in advance, and we may have no good estimate for
the optimal number of clusters. Another possible concern
is that different initial values for the centroids may produce
different clusters. In an attempt tominimize these issues, var-
ious measures are available to quantify the “quality” of a set
of clusters. Next, we briefly discuss two such measures.

4.2 Cluster quality

Intuitively, it seems clear that we should prefer results
where individual clusters are tightly packed and the distance
between clusters is relatively large. These properties, referred
to as cohesion and separation, respectively, can be combined
into a single number known as the silhouette coefficient [11].

For an element x , we compute its silhouette coeffi-
cient as follows. Suppose we have a set of k clusters,
denotedC1,C2, . . . ,Ck , where x belongs to clusterC�. Let a
be the average distance between x and all of the other points
in its cluster C�. For each j , such that j �= �, let b j be the
average distance between x and all of the points in clusterC j .
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Fig. 2 Silhouette coefficient example

Let b be the minimum of these b j . Then the silhouette coef-
ficient of x is given by

S(x) = b − a

max{a, b} . (5)

A silhouette coefficient calculation is illustrated in Fig. 2.
Note that a in Eq. (5) is dependent on the cohesiveness

of the cluster that x belongs to while, in a sense, b measures
the distance from x to the nearest other cluster. Also, typi-
cally, b > a in which case S(x) = 1 − a/b. Intuitively, if x
is “well-clustered” then a would be relatively small and b
relatively large, resulting in S(x) near 1. Conversely, if a is
nearly as large as b, then S(x) is close to 0 and we have con-
siderably less confidence that x is properly clustered. The
average of S(x) over all points x can be viewed as a topolog-
ical measure of the quality of a given clustering. We employ
the silhouette coefficient when analyzing our experimental
results in Sect. 6.

An even simpler measure of cluster quality is “purity,” in
the sense of cluster uniformity [11]. Let mi j be the number
of elements of type i in cluster C j and m j the total number
of elements in C j . Also, letm = ∑

m j , that is,m is the total
number of elements. Then we compute pi j = mi j/m j and

Uj = max
i

{pi j }. (6)

Note thatUj is in the range 0–1, andUj = 1 implies that C j

contains only one type of element, in which case the cluster
has the maximum possible purity. The overall purity for the
clustering is computed as the weighted sum

U =
k∑

j=1

m j

m
Uj .

We also use this concept of purity in Sect. 6.

Table 2 Number of files
to train HMMs Case Files

GCC 75

Clang 72

TurboC 64

MinGW 72

MWOR 100

NGVCK 50

TASM 56

5 Implementation

This section provides implementation details for the exper-
iments we performed. First, we give information related to
training the HMMs. Then we provide a brief overview of the
dataset and how it is processed, and how the scores are com-
puted. Finally, we discuss our use of the k-means clustering
algorithm.

5.1 Training HMMs

As in [3], hiddenMarkovmodelswere trained for each of four
different compilers, namely, GCC, MinGW, TurboC, and
Clang. Another HMM was trained on hand-written assem-
bly code, which we refer to as the TASM model. In addi-
tion, we generated models for two metamorphic malware
generators, namely, the Next Generation Virus Construction
Kit (NGVCK) [35] and the experimental metamorphic worm
(MWOR) developed and analyzed in [29].

For each model, we used 800 iterations of the Baum–
Welch re-estimation algorithm. We experimented with the
number of hidden states ranging from N = 2 to N = 6. Since
the number of hidden states had little impact, in Sect. 6, we
only provide results for N = 2 hidden states. The number of
assembly code files used for training each model is given in
Table 2.

5.2 Dataset

For this research, we obtained the dataset available from the
Malicia project website [22]. This dataset contains more than
11,000malware binaries collected frommore than 500 drive-
by download servers over a period of 11 months [22]. Each
malware sample is available in the form of a binary. In addi-
tion, a database is provided that contains metadata on each
sample, including when the malware was collected, where
it was collected, and the malware family type. However,
the malware type was unspecified or listed as “unknown”
for a significant percentage of the files. Type information
was necessary for the analysis of the clusters we obtained
(as discussed in Sect. 6) and hence only the samples with
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Table 3 Malware scores
Malware sample Hidden Markov models

GCC MinGW TurboC Clang TASM MWOR NGVCK

m1 a1 b1 c1 d1 e1 f1 g1

m2 a2 b2 c2 d2 e2 f2 g2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

mn an bn cn dn en fn gn

a specified type were included in our research. We found
8,119 of these malware samples had a specified family type
and hence these files were used in our malware classifica-
tion experiments. Since our classification is based on opcode
sequences, each of the corresponding 8,119 executable (exe
or dll) files was disassembled using objdump. After dis-
assembly, the opcode sequences were extracted and scored
against each of the HMMs discussed in Sect. 5.1.

5.3 Scoring

After successful training, an HMM should assign higher
scores to files that are more similar to the training dataset
and lower scores to files that are less similar. The HMM
score is computed in the form of a log likelihood. Since this
score is length dependent, as in [36] and elsewhere, we nor-
malize by the length to obtain a log likelihood per opcode
(LLPO) score. Consequently, we can directly compare scores
regardless of the length of the files.

5.4 Clustering

Each malware sample mi is first scored against each of the
seven HMMs as discussed above. The resulting 7-tuple of
scores is used for clustering. We experimented with the
number of clusters ranging from k = 2 to k = 15. For
each k, we select the initial centroids so they are “uni-
formly” spaced throughout the data. That is, we first com-
pute amin = mini {ai } and amax = maxi {ai }, and similarly
for b through g. Next, let

ã = amax − amin

k + 1

with b̃, c̃, . . . , g̃ defined similarly. Then the initial centroids
are given by

C� = (amin + � · ã, bmin + � · b̃, . . . , gmin + � · g̃)
for � = 1, 2, . . . , k. Note that for each dimension, we are
simply dividing the range of values into k + 1 equal-sized
segments, and for C� we select the edge of segment �.

The process of recomputing the centroids is also straight-
forward. Suppose cluster �, with centroid C�, contains the n
malware samples, m1,m2, . . . ,mn . Then the relevant scores

Table 4 Dataset malware
distribution Family Files

Cleaman 32

Cridex 74

Cutwail 2

dprn 1

Fakeav-rena 2

Fakeav-webprotection 3

Harebot 53

Ramnit 4

RansomNoaouy 5

Russkill 1

Securityshield 58

Smarthdd 68

Spyeye-ep 5

Ufasoft-bitcoin 3

Winrescue 5

Winwebsec 4,361

Zbot 2,136

Zeroaccess 1,306

Total 8,119

for these samples are given in Table 3.We calculate the mean
in each dimension. For example, the mean of scores in the
“a” dimension for the data in Table 3 is computed as

amean = (a1 + a2 + · · · + an)

n
.

The resulting means form a seven-tuple which is our new �th
centroid, that is, we let

C� = (amean, bmean, cmean, dmean, emean, fmean, gmean)

Each of the k centroids is updated similarly.
Once the new centroids have been computed, the mal-

ware samples are regrouped by placing each sample in the
cluster corresponding to the nearest of the k centroids. This
process of recomputing centroids and regrouping the data
points continues until the Euclidean distance between the
previous centroids and the new centroids is negligible, or
until the regrouping has no effect.
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Fig. 3 Stacked column charts (grouped by cluster)

6 Experiments and results

This section provides information on our experimental
results. First, we summarize the hardware and software used
in the experiments. Then we present and discuss our main
results.

6.1 Setup

Since we are dealing with live malware, for recovery pur-
poseswe used a virtualmachine container. The specifications
of the host machine and guest virtual machine are as follows.

Host Sony Vaio T15, Intel Corei5-3337U (1.80 GHz),
4.00 GB RAM, Windows 8

Guest Oracle VirtualBox 4.2.18 VM (1 GBmemory), Linux
Ubuntu 12.04.3 LTS

The malware samples were scored on the guest machine.
All processing that did not directly involve malware files
(HMM training, k-means clustering, and so on) was per-
formed on the host machine.

6.2 Results

As mentioned in Sect. 5, in addition to the malware bina-
ries, we also havemetadata available. This metadata includes
information on themalware family type.We use thismalware
family type to gauge the success of our classification tech-
nique. After filtering out some samples that lacked family
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Fig. 4 Stacked column charts (grouped by family)

information,we had a dataset containing 8,119malware sam-
ples suitable for our experiments.

6.2.1 Classification and clustering

We performed clustering using k-means as discussed pervi-
ously. We tested each k from 2 to 15. Here, we only present
selected cases; for additional results see [1].

As can be seen from Table 4, among the samples in our
dataset, there are three dominant families, namely, Winweb-
sec, Zbot, and Zeroaccess. Next, we briefly discuss these
three dominant malware families.

Winwebsec is a category ofWindowsmalware that falsely
claims to be anti-virus softwares. The software offers to
remove non-existent threats for a fee [34].

Zbot is a family of Trojans that steals information. It usu-
ally targets system information, online credentials, and bank-
ing details, but it can be customized to gather other informa-
tion [32].

Zeroaccess is a family of Trojans that installs an advanced
rootkit. It can also create a hidden file system, download
more malware, and open a back door on the compromised
computer, among several other features [33].

In Fig. 3, we present our clustering results in the form
of a stacked column charts, grouped by cluster, for various
numbers of clusters.We see that theWinwebsec family dom-
inates the largest cluster, while Zbot and Zeroaccess tend to
be grouped together until we have a larger number of clusters
(and even then, there is significant overlap between these two
sets). Also, for larger values of k, many of the minor clusters
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Table 5 Average silhouette
coefficient k Average S(x)

2 0.739459

3 0.738550

4 0.514427

5 0.582394

6 0.597563

7 0.370226

8 0.468524

9 0.618155

10 0.469868

11 0.460107

12 0.471207

13 0.546385

14 0.500108

15 0.502736

tend to be highly uniform. Figure 4 contains the same results
as in Fig. 3, but grouped by family.

As discussed inSect. 4.2, the average silhouette coefficient
provides a measure of the quality of a given clustering. For

our experiments with k = 2 to k = 15 clusters, the average
silhouette coefficient is given in Table 5.

Next, we consider a score based on these clusterings,
and plot Receiver Operating Characteristic (ROC) curves for
each. To construct an ROC curve, the true positive rate is
plotted against the false positive rate as a threshold varies
through the range of data values. The area under the ROC
curve (AUC) provides a convenient measure of the quality of
a binary classifier. An AUC of 1.0 indicates ideal separation
(i.e., there exists a threshold for which no detection errors
occur), while an AUC of 0.5 indicates that the classifier is no
more successful than flipping a coin.

The basis for our score is the silhouette coefficient, as
discussed in Sect. 4.2. We are given a set of clusters, where x
is an element of one, say, clusterC j . To compute a score for x ,
we first calculate S(x), the silhouette coefficient of x . Recall
that S(x) is ameasure of the quality of the clustering of x , that
is, it provides a measure of the confidence we have that x is
properly clustered. Next, as in Eq. (6), we let pi j = mi j/m j ,
wheremi j is the number of elements of family i in clusterC j ,
and m j is the number of elements in cluster C j . Finally, we
define the scoring functions

scorei (x) = pi j S(x) (7)

Fig. 5 Score scatterplots for k = 9 clusters
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Fig. 6 ROC curves for k = 3

where scorei (x) is the score of x with respect to family i .
Themotivation for the score in Eq. (7) is that the silhouette

coefficient S(x) quantifies the confidence we have that x is in
the correct cluster, while pi j gives us the relative probability
that a member of family i is in cluster C j . Both of these fac-
tors are relevant when considering the likelihood of a match.
However, there are many other possible scores that could be
considered and we do not claim that this is an optimal score.
The results here are only intended to provide a reasonable
lower bound on classification success based on the available
clusters.

Here, we only consider the three dominant families in our
dataset, where

score0(x) = Winwebsec score of file x

score1(x) = Zbot score of file x

score2(x) = Zeroaccess score of file x .

Also, note thatwe are only using information gleaneddirectly
from the clusters to determine the score. Computing the score
does not require any knowledge of the actual family type
of the file x and hence could easily be applied to files of
unknown type that were not part of the original clustering
process. In addition, none of the samples in the clusters were
used to train the HMMs that generate the vector of scores
used for clustering. Consequently, when we score files from
the clusters, we are not scoring any files from the training set.
We emphasize these points because the process used here is
somewhat different than the training and scoring process, as it
is usually applied to binary classification problems. Here, we
compute and analyze scores merely as a means to (roughly)
quantify the success and potential utility of our clustering
technique, not to make strong claims about detection rates.

Again, the HMMs that form the basis for clustering (and
hence scoring) were intentionally not trained on the actual
families under consideration. The goal here is to see how
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Fig. 7 ROC curves for k = 9

well these models can be adapted to the classification of the
families under consideration. It is also important to realize
that the non-family files being scored consist entirely of other
malware, that is, no benign files are used. Intuitively, we
expect that, in general, malware is more like other malware
than it is like benign files. Consequently, these results can be
viewed as something of a worst-case scenario, with respect
to classification rates.

Using the scoring function in Eq. (7), we scored all
of the elements for each of our clustered sets for k =
2, 3, . . . , 15, for each of the families Winwebsec, Zbot, and
Zeroaccess, i.e., using score0, score1, and score2, respec-
tively. Figure 5 contains scatterplots for the k = 9 case.
Also, ROC curves are given for each of these three fami-
lies for k = 3 and k = 9 in Figs. 6 and 7, respectively.
The AUC values for k = 2, 3, . . . , 15 (and all three fam-
ilies) appear in Table 6. Note that the AUC can be inter-

preted as the probability that a randomly chosen positive
instance will score higher than a randomly chosen negative
instance [5].

Lastly, we performed experiments testing every possible
score combination from the 7 HMMs listed in Table 2. Our
goal is to determine whether a proper subset of these scores
might yield better results than using the all of the scores.
These experiments were conducted for k = 2, 3, . . . , 15
clusters. To measure the quality of the resulting clus-
terings, we rely on the concept of purity, as defined in
Sect. 4.2.

Suppose we have a set of clusters and a we are given a new
file to classify. We would score the file using the HMMs, and
assign the new file to a cluster based on the nearest centroid.
We could then simply classify the file according to the dom-
inant family in its assigned cluster. Under this scenario, the
ideal case occurs when each cluster consists entirely ofmem-
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Table 6 Area under the ROC curve

k AUC

Winwebsec Zbot Zeroaccess

2 0.8825 0.6154 0.7826

3 0.8850 0.6888 0.7847

4 0.7274 0.7025 0.8085

5 0.8982 0.7340 0.7794

6 0.8916 0.7311 0.8902

7 0.8830 0.7060 0.9247

8 0.8937 0.6937 0.8559

9 0.8840 0.7680 0.8741

10 0.9177 0.8646 0.7631

11 0.9370 0.7160 0.7256

12 0.9496 0.7468 0.7977

13 0.9120 0.7535 0.9382

14 0.9298 0.8922 0.8650

15 0.9356 0.8915 0.8657

bers of one family. Therefore, we define a purity-based score
where, for simplicity, we restrict our attention to the three
dominant families in our dataset, namely, Winwebsec, Zbot,
and Zeroaccess.

Suppose that C1,C2, . . . ,Ck are the clusters obtained
from the k-means algorithm. Let

xi = number of Winwebsec files in cluster Ci

yi = number of Zbot files in cluster Ci

zi = number of Zeroaccess files in cluster Ci

and let Mi = max{xi , yi , zi }. Then we define a score for this
particular set of clusters as

score = M1 + M2 + · · · + Mk

T

where T is the total of all Winwebsec, Zbot, and Zeroaccess
files. In the ideal case, each cluster is a solid color (neglecting
the files not in the threemajor families), and we have score =
1. In general, 0 ≤ score < 1, and the smaller the score, the
further we are from the ideal case.

Our score results appear in Fig. 8 in the formof a heatmap.
In the left-hand column, the score combination is represented
by the given binary vector, where the bit order corresponds
to

GCC,MinGW,TurboC,Clang,TASM,MWOR,NGVCK.

For example, the number 127 in the left-hand columnofFig. 8
indicated that scores in that row used all seven HMMs, while
63 implies that all scores other than the model for GCC were
use, 124 means that all scores except MWOR and NGVCK
were used, etc. Also, note that in each of these experiments,

Combination k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15
1111111 0.5656 0.6833 0.7655 0.7056 0.7054 0.7018 0.7009 0.7079 0.7819 0.7824 0.7033 0.7824 0.7104 0.7775
1111110 0.6770 0.6842 0.7647 0.7067 0.7866 0.7051 0.7847 0.7024 0.7832 0.7791 0.7824 0.7869 0.7760 0.7906
1111101 0.6767 0.6837 0.7666 0.7045 0.7834 0.6995 0.7800 0.7105 0.7776 0.7785 0.7778 0.7787 0.7800 0.7782
1111100 0.6767 0.6850 0.6854 0.7050 0.7825 0.7046 0.7770 0.6997 0.7818 0.7771 0.7801 0.7821 0.7756 0.7785
1111011 0.6768 0.6833 0.6799 0.7056 0.7860 0.7829 0.7834 0.7820 0.7873 0.7757 0.7861 0.7839 0.7869 0.7684
1111010 0.6774 0.6846 0.6837 0.7061 0.7841 0.7824 0.7826 0.7818 0.7802 0.7766 0.7830 0.7797 0.7832 0.7843
1111001 0.6767 0.6838 0.6859 0.7043 0.7832 0.7812 0.7823 0.7741 0.7856 0.7759 0.7771 0.7756 0.7771 0.7789
1111000 0.6767 0.6838 0.7001 0.7766 0.7019 0.7803 0.7748 0.7727 0.7789 0.7759 0.7810 0.7773 0.7787 0.7821
1110111 0.5658 0.6795 0.6801 0.6800 0.7010 0.7037 0.7011 0.7069 0.7102 0.7197 0.7915 0.7049 0.7997 0.7165
1110110 0.5658 0.6790 0.6796 0.7009 0.7001 0.7938 0.7010 0.7042 0.7110 0.7096 0.7213 0.7179 0.7186 0.7170
1110101 0.5658 0.6799 0.6804 0.7026 0.7024 0.7065 0.7068 0.7068 0.7058 0.7145 0.8025 0.7265 0.8114 0.7355
1110100 0.5658 0.6833 0.6838 0.7049 0.7001 0.7987 0.7008 0.7143 0.7277 0.7010 0.8158 0.7175 0.8011 0.7138
1110011 0.5658 0.6795 0.6818 0.7004 0.7033 0.7061 0.7768 0.7056 0.7159 0.7159 0.7718 0.7161 0.7748 0.7779
1110010 0.5658 0.6790 0.6842 0.7005 0.6990 0.7059 0.7844 0.7092 0.7097 0.7885 0.7727 0.7885 0.7646 0.7727
1110001 0.5658 0.6794 0.6817 0.7018 0.7029 0.7063 0.7830 0.7054 0.7823 0.7820 0.7714 0.7824 0.7170 0.7715
1110000 0.5658 0.6837 0.6783 0.7050 0.7125 0.7038 0.7050 0.7210 0.7765 0.7869 0.7727 0.7768 0.7091 0.7727
1101111 0.6768 0.6841 0.7559 0.7055 0.7851 0.7825 0.7724 0.7814 0.7793 0.7101 0.7803 0.7702 0.7857 0.7759
1101110 0.6774 0.6846 0.6837 0.7061 0.7844 0.7807 0.7828 0.7805 0.7788 0.7773 0.7819 0.7652 0.7823 0.7669
1101101 0.6767 0.6838 0.7574 0.7040 0.7824 0.7010 0.7856 0.7721 0.7847 0.7733 0.7756 0.7138 0.7756 0.7618
1101100 0.6767 0.6838 0.6800 0.7004 0.7773 0.7798 0.7805 0.7738 0.7785 0.7732 0.7743 0.7766 0.7784 0.7816
1101011 0.6770 0.6841 0.6837 0.7814 0.7756 0.7756 0.7756 0.7748 0.7768 0.7773 0.7785 0.7855 0.7762 0.7818
1101010 0.6774 0.6846 0.6846 0.7867 0.7843 0.7787 0.7743 0.7759 0.7782 0.7774 0.7783 0.7551 0.7958 0.7956
1101001 0.6767 0.6840 0.7042 0.7794 0.7691 0.7787 0.7729 0.7820 0.7770 0.7814 0.7770 0.7783 0.7776 0.7534
1101000 0.6765 0.6838 0.7050 0.7775 0.7721 0.7733 0.7725 0.7747 0.7719 0.7891 0.7769 0.7730 0.7724 0.7974
1100111 0.5658 0.6794 0.6813 0.6815 0.7033 0.7061 0.7058 0.7058 0.7105 0.7138 0.7140 0.7128 0.7191 0.7742
1100110 0.5658 0.6788 0.6840 0.7006 0.7058 0.7055 0.7020 0.7775 0.7101 0.7718 0.7609 0.7807 0.7915 0.7694
1100101 0.5658 0.6801 0.6803 0.7041 0.7036 0.7061 0.7067 0.7538 0.7815 0.7815 0.7175 0.7818 0.7175 0.7687
1100100 0.5658 0.6841 0.7524 0.7055 0.7125 0.7047 0.7136 0.7721 0.7687 0.7748 0.7213 0.7698 0.7545 0.7747
1100011 0.6723 0.6794 0.6795 0.6799 0.7005 0.7074 0.7511 0.7628 0.7568 0.7574 0.7674 0.7560 0.7686 0.7696
1100010 0.6717 0.6788 0.6836 0.7046 0.7045 0.7086 0.7105 0.7136 0.7710 0.7643 0.7588 0.7756 0.7596 0.7671
1100001 0.6750 0.6809 0.6814 0.7020 0.7020 0.7571 0.7589 0.7574 0.7614 0.7614 0.7611 0.7637 0.7551 0.7637
1100000 0.6776 0.6844 0.7049 0.7702 0.7598 0.7735 0.7591 0.7721 0.7624 0.7489 0.7807 0.7538 0.7792 0.7524
1011111 0.6768 0.6841 0.6847 0.7061 0.7941 0.7055 0.7879 0.7027 0.7855 0.7888 0.7802 0.7888 0.7843 0.7853
1011110 0.6774 0.6849 0.6855 0.7068 0.7898 0.7060 0.7883 0.6996 0.7893 0.7996 0.7848 0.7864 0.7801 0.7884
1011101 0.6767 0.6844 0.7747 0.7045 0.7891 0.7001 0.7819 0.7055 0.7860 0.7848 0.7800 0.7810 0.7776 0.7805
1011100 0.6767 0.6841 0.6846 0.7049 0.7942 0.6997 0.7938 0.6996 0.7802 0.7802 0.7796 0.7802 0.7770 0.7796
1011011 0.6770 0.6841 0.6799 0.7060 0.7885 0.7855 0.7894 0.7848 0.7887 0.7768 0.7814 0.7848 0.7885 0.7842
1011010 0.6774 0.6846 0.6837 0.7120 0.7124 0.7834 0.7775 0.7843 0.7811 0.7810 0.7811 0.7814 0.7810 0.7812
1011001 0.6768 0.6844 0.6847 0.7045 0.7871 0.7844 0.7888 0.7843 0.7885 0.7778 0.7775 0.7778 0.7773 0.7771
1011000 0.6767 0.6841 0.7052 0.7869 0.7074 0.7815 0.7768 0.7732 0.7774 0.7770 0.7796 0.7794 0.7673 0.7792
1010111 0.5656 0.6797 0.6804 0.6847 0.7059 0.7948 0.7014 0.7019 0.7142 0.7069 0.8033 0.7150 0.7967 0.8011
1010110 0.5658 0.6722 0.6796 0.7010 0.7010 0.7002 0.7059 0.7047 0.7997 0.7042 0.8023 0.7181 0.7125 0.8062
1010101 0.5656 0.6799 0.6804 0.6846 0.7145 0.8040 0.7013 0.7152 0.8114 0.7149 0.8112 0.7278 0.8112 0.8111
1010100 0.5658 0.6776 0.6849 0.7059 0.6992 0.6993 0.7008 0.7152 0.8160 0.7005 0.8152 0.8152 0.8019 0.8157
1010011 0.5652 0.6795 0.6801 0.6808 0.7029 0.7037 0.7873 0.7812 0.7924 0.7917 0.7700 0.7911 0.7714 0.7869
1010010 0.6714 0.6782 0.6788 0.7013 0.7050 0.7050 0.8012 0.7095 0.8044 0.8062 0.7084 0.7223 0.7155 0.7218
1010001 0.6738 0.6815 0.6801 0.7029 0.7009 0.7008 0.7989 0.7925 0.7983 0.7983 0.7675 0.7967 0.7104 0.7741
1010000 0.6776 0.6850 0.6855 0.7056 0.7073 0.7002 0.7032 0.7956 0.7689 0.7984 0.7009 0.7984 0.6997 0.7809
1001111 0.6772 0.6844 0.6806 0.7065 0.7885 0.7859 0.7871 0.7851 0.7764 0.7814 0.7780 0.7885 0.7928 0.7859
1001110 0.6774 0.6847 0.6837 0.7120 0.7928 0.7842 0.7839 0.7867 0.7894 0.7797 0.7843 0.7793 0.7842 0.7782
1001101 0.6768 0.6844 0.6851 0.7045 0.7867 0.7842 0.7883 0.7737 0.7725 0.7803 0.7723 0.7802 0.7757 0.7655
1001100 0.6767 0.6842 0.7052 0.7834 0.7278 0.7824 0.7762 0.7734 0.7750 0.7851 0.7818 0.7761 0.7748 0.7784
1001011 0.6772 0.6844 0.6836 0.7924 0.7830 0.7830 0.7765 0.7837 0.7760 0.7801 0.7798 0.7847 0.7889 0.7806
1001010 0.6774 0.6947 0.6837 0.7887 0.7861 0.7054 0.7796 0.7783 0.7853 0.7784 0.7943 0.7962 0.7762 0.8012
1001001 0.6768 0.6841 0.6837 0.7847 0.7814 0.7821 0.7768 0.7766 0.7771 0.7697 0.7773 0.7701 0.7816 0.7734
1001000 0.6767 0.6838 0.7102 0.7123 0.7829 0.7759 0.7753 0.7756 0.7756 0.7824 0.7888 0.7706 0.7934 0.7803
1000111 0.5656 0.6796 0.6842 0.6849 0.7834 0.7022 0.7069 0.7756 0.7058 0.7797 0.7168 0.7800 0.7806 0.7701
1000110 0.5658 0.6769 0.6776 0.7000 0.7054 0.7054 0.7031 0.8070 0.7837 0.7735 0.8029 0.7891 0.8212 0.7693
1000101 0.5656 0.6814 0.6805 0.6849 0.7042 0.7014 0.7058 0.7974 0.7055 0.7965 0.7134 0.8037 0.7956 0.7693
1000100 0.6767 0.6850 0.6856 0.7051 0.6996 0.7969 0.7001 0.7848 0.7688 0.7825 0.8015 0.7805 0.8005 0.7833
1000011 0.6722 0.6796 0.6838 0.6799 0.7041 0.7818 0.7812 0.7636 0.7619 0.7706 0.7703 0.7732 0.7793 0.7720
1000010 0.6713 0.6750 0.6836 0.6845 0.7078 0.7791 0.7753 0.7753 0.7739 0.7828 0.7741 0.7766 0.7769 0.7792
1000001 0.6759 0.6832 0.6799 0.7615 0.7784 0.7816 0.7624 0.7682 0.7650 0.7694 0.7603 0.7696 0.7605 0.7706
1000000 0.6767 0.6838 0.7002 0.7764 0.7721 0.7669 0.7643 0.7953 0.7964 0.7950 0.7988 0.7983 0.7803 0.7807
0111111 0.5656 0.6804 0.6811 0.7040 0.7004 0.7794 0.7011 0.7793 0.7150 0.7853 0.7168 0.7917 0.7844 0.7759
0111110 0.5658 0.6833 0.6840 0.7063 0.7008 0.7159 0.7006 0.7787 0.7083 0.7825 0.7149 0.7885 0.7848 0.7202
0111101 0.5656 0.6844 0.6849 0.7046 0.7147 0.7835 0.7004 0.7837 0.7015 0.7979 0.7127 0.7943 0.7961 0.7874
0111100 0.5658 0.6850 0.6855 0.7047 0.6991 0.7114 0.6996 0.7785 0.7134 0.7816 0.7143 0.7843 0.7952 0.7773
0111011 0.6753 0.6804 0.6836 0.7038 0.7042 0.7046 0.7727 0.7068 0.7735 0.7169 0.7816 0.7734 0.7789 0.7761
0111010 0.6770 0.6842 0.6837 0.7116 0.7869 0.7059 0.7820 0.7115 0.7852 0.7122 0.7851 0.7106 0.7816 0.7424
0111001 0.6763 0.6835 0.6920 0.7040 0.7812 0.7026 0.7814 0.7164 0.7807 0.7152 0.7794 0.7155 0.7815 0.7714
0111000 0.6765 0.6847 0.6786 0.7040 0.7796 0.6999 0.7747 0.7064 0.7751 0.7059 0.7924 0.7123 0.7798 0.7224
0110111 0.5658 0.6800 0.6808 0.6822 0.7018 0.7017 0.7161 0.7027 0.7110 0.7257 0.7114 0.7257 0.7275 0.7278
0110110 0.5658 0.6719 0.6787 0.7002 0.7002 0.7002 0.7004 0.7010 0.7095 0.7086 0.7109 0.7129 0.7255 0.7175
0110101 0.5658 0.6886 0.6891 0.6933 0.7149 0.7129 0.7154 0.7220 0.7222 0.7387 0.7183 0.7387 0.7388 0.7457
0110100 0.5659 0.6870 0.6941 0.7115 0.7116 0.7106 0.7168 0.7169 0.7169 0.7593 0.7169 0.7165 0.7587 0.7158
0110011 0.5658 0.6796 0.6796 0.6808 0.7006 0.7095 0.7008 0.7008 0.7142 0.7090 0.7209 0.7190 0.7213 0.7266
0110010 0.5658 0.6760 0.6767 0.6992 0.6992 0.6981 0.7001 0.7022 0.7081 0.7081 0.7102 0.7261 0.7166 0.7283
0110001 0.5658 0.6883 0.6891 0.6809 0.7015 0.7140 0.7140 0.7014 0.7140 0.7111 0.7143 0.7087 0.7223 0.7300
0110000 0.5658 0.6904 0.6911 0.7101 0.7102 0.7158 0.7019 0.7155 0.7173 0.7152 0.7166 0.7106 0.7106 0.7127
0101111 0.5656 0.6824 0.6840 0.7047 0.7055 0.7056 0.7059 0.7161 0.7803 0.7723 0.7719 0.7776 0.7234 0.7709
0101110 0.6770 0.6842 0.6837 0.7065 0.7821 0.7058 0.7820 0.7158 0.7839 0.7839 0.7839 0.7853 0.7778 0.7837
0101101 0.6767 0.6835 0.7551 0.7045 0.7727 0.7029 0.7732 0.7193 0.7778 0.7555 0.7857 0.7860 0.7815 0.7860
0101100 0.6765 0.6837 0.6900 0.7010 0.7716 0.7002 0.7703 0.7161 0.7755 0.7190 0.7730 0.7751 0.7757 0.7861
0101011 0.6760 0.6833 0.6799 0.6928 0.7055 0.7143 0.7339 0.7333 0.7332 0.7764 0.7377 0.7826 0.7429 0.7824
0101010 0.6774 0.6846 0.6837 0.7848 0.7105 0.7783 0.7727 0.7815 0.7755 0.7814 0.7753 0.7826 0.7773 0.7829
0101001 0.6767 0.6840 0.6837 0.7507 0.7346 0.7511 0.7331 0.7612 0.7374 0.7776 0.7373 0.7796 0.7315 0.7779
0101000 0.6765 0.6837 0.7099 0.7780 0.7730 0.7728 0.7741 0.7354 0.7741 0.7377 0.7797 0.7359 0.7794 0.7514
0100111 0.5658 0.6799 0.6805 0.6809 0.7017 0.7017 0.7018 0.7018 0.7187 0.7106 0.7264 0.7268 0.7346 0.7291
0100110 0.5658 0.6610 0.6617 0.6817 0.6888 0.6878 0.7005 0.7024 0.7105 0.7105 0.7184 0.7336 0.7177 0.7161
0100101 0.5658 0.6878 0.6886 0.6937 0.7022 0.7020 0.7156 0.7010 0.7155 0.7237 0.7445 0.7197 0.7154 0.7448
0100100 0.5658 0.6888 0.6895 0.7027 0.7169 0.7169 0.7160 0.7166 0.7168 0.7359 0.7168 0.7359 0.7154 0.7174
0100011 0.5658 0.6797 0.6849 0.6849 0.7069 0.7070 0.7143 0.7170 0.7160 0.7137 0.7301 0.7282 0.7346 0.7286
0100010 0.5656 0.6574 0.6847 0.6805 0.7046 0.7047 0.7077 0.7084 0.7120 0.7242 0.7231 0.7254 0.7266 0.7370
0100001 0.5658 0.6800 0.6837 0.6961 0.7195 0.7166 0.7181 0.7202 0.7322 0.7309 0.7373 0.7319 0.7279 0.7301
0100000 0.5658 0.6808 0.6940 0.7125 0.7125 0.7149 0.7104 0.7142 0.7142 0.7011 0.7156 0.7141 0.7014 0.7152
0011111 0.6754 0.6820 0.6820 0.7050 0.7058 0.7878 0.7059 0.7880 0.7174 0.7917 0.7178 0.7917 0.7879 0.7812
0011110 0.6773 0.6779 0.6854 0.7068 0.7068 0.8048 0.7008 0.7905 0.7084 0.7916 0.8038 0.8102 0.8032 0.7511
0011101 0.6767 0.6840 0.6845 0.7045 0.7092 0.7924 0.7001 0.7879 0.7128 0.7873 0.7119 0.8015 0.7834 0.7791
0011100 0.6768 0.6774 0.6847 0.7043 0.7001 0.7996 0.7000 0.7847 0.7141 0.7839 0.7939 0.7999 0.7939 0.7759
0011011 0.6759 0.6827 0.7657 0.6849 0.7873 0.7050 0.7851 0.7088 0.7847 0.7161 0.7862 0.7741 0.7784 0.7879
0011010 0.6777 0.6851 0.6772 0.7120 0.7884 0.7056 0.7815 0.7087 0.7847 0.7801 0.7846 0.7844 0.7887 0.7844
0011001 0.6768 0.6844 0.7652 0.7049 0.7850 0.7042 0.7841 0.7150 0.7841 0.7096 0.7779 0.7201 0.7792 0.7129
0011000 0.6768 0.6842 0.7036 0.7109 0.7798 0.6995 0.7710 0.7727 0.7712 0.7787 0.7771 0.7734 0.7784 0.7770
0010111 0.5656 0.6640 0.6705 0.6700 0.6918 0.6920 0.6920 0.7031 0.6958 0.7095 0.7093 0.7105 0.7146 0.7106
0010110 0.5589 0.5602 0.6034 0.5871 0.5872 0.6415 0.6415 0.6467 0.6515 0.6515 0.7011 0.6472 0.7020 0.7019
0010101 0.5657 0.6796 0.6894 0.6927 0.7052 0.7138 0.7102 0.7149 0.7156 0.7329 0.7073 0.7166 0.7382 0.7360
0010100 0.5591 0.5718 0.5626 0.5630 0.5830 0.5834 0.5834 0.5936 0.5936 0.5936 0.6117 0.5931 0.6009 0.6022
0010011 0.5650 0.6630 0.6694 0.6806 0.6899 0.6900 0.7005 0.7006 0.7032 0.7005 0.7224 0.7224 0.7068 0.7213
0010010 0.5589 0.6125 0.6073 0.5590 0.6446 0.6448 0.6467 0.6182 0.6398 0.7019 0.6269 0.6478 0.6928 0.7633
0010001 0.6768 0.6774 0.6837 0.6915 0.7047 0.7049 0.7115 0.7134 0.7068 0.7079 0.7356 0.7347 0.7052 0.7346
0010000 0.5591 0.5809 0.5606 0.5604 0.6394 0.6401 0.6009 0.6103 0.6103 0.6532 0.6531 0.6155 0.6535 0.6531
0001111 0.6763 0.6836 0.7644 0.6850 0.7871 0.7058 0.7852 0.7101 0.7862 0.7873 0.7833 0.7875 0.7724 0.7875
0001110 0.6777 0.6854 0.6858 0.7120 0.7879 0.7061 0.7818 0.7091 0.7842 0.7848 0.7850 0.7865 0.7798 0.7851
0001101 0.6768 0.6844 0.7637 0.7042 0.7838 0.7047 0.7837 0.7834 0.7834 0.7784 0.7823 0.7774 0.7812 0.7800
0001100 0.6769 0.6844 0.6788 0.7061 0.7737 0.7058 0.7733 0.7747 0.7727 0.7782 0.7746 0.7746 0.7702 0.7689
0001011 0.6769 0.6838 0.6836 0.7575 0.7101 0.7844 0.7689 0.7773 0.7683 0.7823 0.7719 0.7824 0.7727 0.7830
0001010 0.6779 0.6965 0.6842 0.7783 0.7110 0.7115 0.7686 0.7047 0.7712 0.7710 0.7703 0.7757 0.7794 0.7837
0001001 0.6767 0.6841 0.6836 0.7818 0.7774 0.7775 0.7753 0.7779 0.7759 0.7357 0.7755 0.7357 0.7510 0.7383
0001000 0.6769 0.6981 0.7165 0.7041 0.7715 0.7606 0.7683 0.7600 0.7636 0.7768 0.7718 0.7707 0.7703 0.7766
0000111 0.5656 0.6618 0.6668 0.6604 0.6768 0.6900 0.7017 0.7018 0.7213 0.7263 0.7018 0.7190 0.7336 0.7120
0000110 0.5598 0.5604 0.6157 0.5607 0.6387 0.6389 0.6444 0.6359 0.6430 0.6427 0.6530 0.6498 0.6610 0.6664
0000101 0.5657 0.6808 0.6874 0.6878 0.6803 0.7002 0.7015 0.7172 0.7172 0.7248 0.7255 0.7969 0.7359 0.8020
0000100 0.5591 0.5748 0.5745 0.5930 0.5961 0.5962 0.5962 0.5967 0.5967 0.5991 0.6036 0.6036 0.6011 0.6044
0000011 0.5650 0.6523 0.6849 0.6849 0.6958 0.6809 0.7160 0.7155 0.7250 0.7248 0.7256 0.7337 0.7450 0.7538
0000010 0.6132 0.6399 0.6559 0.6569 0.6613 0.6814 0.6823 0.6863 0.6863 0.7020 0.7054 0.7218 0.7306 0.7306
0000001 0.6714 0.6779 0.6822 0.6954 0.6959 0.6965 0.7001 0.7169 0.7245 0.7245 0.7219 0.7264 0.7304 0.7304
0000000 0.6714 0.6779 0.6822 0.6954 0.6959 0.6965 0.7001 0.7169 0.7245 0.7245 0.7219 0.7264 0.7304 0.7304

Fig. 8 Heat map of HMM score combinations versus k http://cs.sjsu.
edu/faculty/stamp/heatmap/heatmapsBig.pdf
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we used N = 2 hidden states for all HMMs, and uniform
initial placement of centroids.

From Fig. 8, we see that six or more clusters are needed
to obtain the best results, and that there are various score
combinations that yield near-optimal results. Also, since the
best results exceed 0.82, we could properly classify malware
from these three families at such a rate, by simply choosing
the dominant family in each cluster.

Interestingly, comparing the AUC values in Table 6 to the
top row in Fig. 8, we see that a score based on the silhou-
ette coefficient can do somewhat better than the purity-based
calculation used to construct the heatmap. It is also worth
noting that a strategy of simply guessing the category based
on relative frequencies would, according to Table 4, have a
probability of success of only
(
4,361

7,803

)2

+
(
2,136

7,803

)2

+
(
1,306

7,803

)2

≈ 0.4150.

Consequently, the HMM clustering technique considered
here can provide a significant improvement over the random
case.

6.2.2 Discussion

Since the HMMs we used were not specific to the malware
under consideration, the results in this section show that it
is possible to automatically classify some classes of previ-
ously unseen malware in an effective way using this HMM
analysis. There are several potential benefits to such cluster-
ing. For example, rapid clustering of malware could enable
faster response to new threats—if new malware samples fit
into an existing cluster, it is likely that they are similar to
those that predominate in that cluster. Hence, this new mal-
ware might be analyzed more quickly, and possibly handled
with previously developed detection and/or removal strate-
gies. In addition, malware clustering could serve as a use-
ful tool in the categorization of malware. In spite of previ-
ous attempts to develop malware classification and naming
schemes [20,27,31], each anti-virus vendor seems to have
its own classification system, and these appear to have lit-
tle or no logical connection to malware structure or func-
tion. A rapid and automated method, such as that considered
here, could serve to bring some order to this classification
chaos.

7 Conclusion and future work

In this paper, we provided experimental results for malware
clustering based on hiddenMarkovmodel scores.Our dataset
contained more than 8,000 malware samples, with three
large, distinct families making up the bulk of the data. We
scored the malware samples using HMMs based on a variety

of compilers and metamorphic generators, as well as hand-
written assembly code. Here, we provided experimental
results for k = 2, 3, 4, . . . , 15 clusters; see [1] for some
additional details.

The primary insight here is that a relatively straight-
forward HMM-based scoring system is able to automati-
cally discriminate between malware classes with reasonable
accuracy—in spite of the fact that no training occurred rela-
tive to the specific families in the dataset. While our results
are not sufficiently sensitive for malware detection, this rela-
tively simple test could be used to stratify samples into broad
categories, which could serve as an aid in malware analysis
and classification.

There are several enhancements to—and extensions of—
this work that could prove interesting. For example, varia-
tions on the k-means algorithm could be tested, including
k-medians, k-medoids, and fuzzy c-means. In addition, dif-
ferent approaches to clustering such as the EM algorithm [8]
could prove useful.

In this paper, we only considered scores based on hidden
Markov models, and of the seven scores considered, five are
based on standard compilers. It is highly likely that more
malware-specific HMMs would yield significantly stronger
results. It is also likely that the inclusion of some additional
scoringmethods would add strength to the results. In particu-
lar, scoring techniques that are not based on statistical analy-
sis of opcodes would likely complement the strengths of the
HMM technique used here. Examples of such scores include
the eigenvector-based score developed in [26] the structural
entropy score in [4,28], and call graph based strategies, such
as those in [19,23].
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