
J Comput Virol Hack Tech (2014) 10:177–187
DOI 10.1007/s11416-013-0194-3

ORIGINAL PAPER

Metamorphic code generation from LLVM bytecode

Teja Tamboli · Thomas H. Austin · Mark Stamp

Received: 3 September 2013 / Accepted: 18 November 2013 / Published online: 30 November 2013
© Springer-Verlag France 2013

Abstract Metamorphic software changes its internal struc-
ture across generations with its functionality remaining
unchanged. Metamorphism has been employed by malware
writers as a means of evading signature detection and other
advanced detection strategies. However, code morphing also
has potential security benefits, since it can serve to increase
the “genetic diversity” of software. We have created a meta-
morphic code generator within the LLVM compiler frame-
work. LLVM is a three-phase compiler that supports multiple
source languages and target architectures. It uses a common
intermediate representation (IR) bytecode in its optimizer.
Consequently, any supported high-level programming lan-
guage is transformed to this IR bytecode as part of the LLVM
compilation process. Our metamorphic generator functions
at the IR bytecode level, which provides many advantages
over morphing at the assembly or source code level. The mor-
phing techniques that we employ include dead code insertion
and transposition, where the dead code is actually executed
within the morphed code, making its detection and removal
more challenging. We have verified the effectiveness of our
code morphing using hidden Markov model analysis.

1 Introduction

Software is said to be metamorphic if multiple copies are
structurally different, but functionally equivalent. Examples
of metamorphic malware generators can be found in [1–4].

To date, metamorphic code generation has primarily been
used by malware writers, since well-designed metamorphic

T. Tamboli · T. H. Austin · M. Stamp (B)
Department of Computer Science, San Jose State University,
San Jose, CA, USA
e-mail: stamp@cs.sjsu.edu

code can evade signature-based detection and other advanced
detection strategies [3–5]. However, metamorphism also has
the potential to provide security benefits by increasing the
“genetic diversity” of software, thereby making several types
of attacks more difficult and by limiting the damage of suc-
cessful attacks [6,7].

Many metamorphic malware generators are readily avail-
able at [8]. Some notable examples include

• G2 (Second Generation virus generator) [8]
• MPCGEN (Mass Code Generator) [9]
• NGVCK (Next Generation Virus Creation Kit) [9]
• VCL32 (Virus Creation Lab for Win32) [10]
• MetaPHOR [1].

In addition, research morphing engines are presented in [3]
and [4]. All of these metamorphic generators work at
the assembly language level. Code morphing of high-level
source code is far simpler, but much less effective, since such
morphing does not provide sufficient control over the result-
ing executable file.

In this research, we have implemented and analyzed a
metamorphic code generator built on the LLVM compiler
framework [11,12]. LLVM is a three-phase compiler that
supports multiple source languages and multiple target archi-
tectures. In the optimization process, code is converted to
intermediate representation (IR) bytecode. Our code morph-
ing tool functions at this IR bytecode level, which simplifies
many types of morphing (analogous to working at the source
code level), but also provides the necessary fine-grained con-
trol over the resulting executable (analogous to working at
the assembly code level).

Related research involving LLVM IR bytecode manipula-
tion includes a malware encryption technique implemented
as optimizer passes [13]. In [14], a “shadow attack” is devel-

123



178 T. Tamboli et al.

oped using LLVM. This attack hides system call behavior for
the purpose of making behavior-based detection of malware
more difficult.

We evaluate our morphing technique using a hidden
Markov model (HMM) analysis similar to that in [15], which,
in turn, is derived from the HMM-based malware detector
analyzed in [5]. This HMM technique has been used as a
baseline for comparing other proposed metamorphic detec-
tion strategies [3,4,16–19]. This body of work provides a
firm basis for analyzing the effectiveness of our morphing
approach.

The paper is organized as follows. In Sect. 2.1, we pro-
vide relevant background information. Section 3 covers the
design and implementation of our metamorphic code genera-
tor. Experimental results are analyzed in Sect. 4 while Sect. 5
contains our conclusion and suggestions for future work.

2 Background

In this section we briefly discuss the following topics:
malware, metamorphic techniques, the LLVM compiler
infrastructure, and hidden Markov models. Each of these top-
ics is relevant to the work presented in Sects. 3 and 4.

2.1 Malware

Malware is software that is designed to perform malicious
activity [20]. To date, most development and research into
metamorphic code has involved malware. Therefore, we
present a brief introduction to metamorphic malware before
turning our attention to the general case of metamorphic code
generation.

2.1.1 Malware evolution

In this section, we briefly consider the evolution that has led
to the development of metamorphic malware. Below, we use
the term virus generically to refer to malware.

Since signature detection is the most common anti-virus
(AV) technique, virus writers have developed a variety of
strategies for evading such detection. Perhaps the simplest
method to hide a virus body from static signature detec-
tion is to encrypt or pack the executable. For encrypted mal-
ware, simple schemes are generally used, such as an XOR
of each byte with a fixed value [21], which is equivalent to
a simple substitution cipher. The malware writer’s goal is
to obfuscate the code, so simple encryption schemes suf-
fice. However, decryption code must be included, and that
code is not encrypted, which opens the door to signature
scanning [22].

To make detection more difficult, malware writers have
developed so-called polymorphic code, where the virus body

is encrypted (or packed) and the decryption code is morphed
between generations. Consequently, there is no fixed signa-
ture for the decryptor code, making signature detection far
more difficult [21]. However, polymorphic code is subject
to detection via emulator—the code will eventually decrypt
itself at which point it is subject to standard signature detec-
tion [22].

To avoid signature detection by emulation, malware writ-
ers have developed “body polymorphic” or metamorphic
malware. Metamorphic code changes its internal structure at
each generation, without altering its function. Well-designed
metamorphic malware will exhibit no common signature and
hence there is no need for encryption [22].

2.2 Metamorphic techniques

In this section, we discuss several elementary metamorphic
techniques. To date, most hacker-produced metamorphic
malware has used only relatively simple morphing strate-
gies. We also mention a relatively sophisticated morphing
technique based on formal grammars.

2.2.1 Register swap

Register swapping is one of the simplest code morphing tech-
niques. For example, PUSH ECX can be replaced by PUSH
EAX, provided the EAX register is not in use. Note that reg-
ister swapping does not affect opcode sequences. Further-
more, a wildcard string can be used to overcome register
swapping [23].

2.2.2 Transposition

Subroutine swapping is another elementary morphing tech-
nique. If a program has n subroutines, then n! variants can
trivially be generated by simply reordering the layout of the
subroutines. As with register swapping, subroutine permuta-
tion is a relatively weak malware morphing strategy, partic-
ularly with respect to statistical-based detection.

More general transpositions can be used. For example, the
instructions

1. OPCODE [R1] [R2]
2. OPCODE [R3] [R4]

can be swapped, since they are independent of each other.
Of course, such transposition can also be applied to group of
instructions. Since the order of execution differs, transposi-
tion can be an effective means to evade signature detection.

123



Metamorphic code generation 179

Fig. 1 A simple polymorphic
decryptor and two variants [26]

2.2.3 Dead code insertion

In its simplest form, dead code is inserted into a program,
but not executed. Alternatively, dead code can be executed,
provided that it has no effect on the overall program function.
Although more difficult, this latter approach can be more
effective, since the dead code may be much more difficult to
detect.

Dead code can be a highly effective means for evading
malware detection, particularly with respect to statistical-
based techniques. The dead code can be selected to mask the
statistical properties of the underlying code. However, dead
code insertion can be challenging at the assembly code level,
since care must be taken so that addresses remain valid.

2.2.4 Instruction substitution

An instruction (or group of instructions) can be substi-
tuted for another instruction (or group of instructions) with
the same functionality. For example, MOV R1, R2 can be
replaced byPUSH R1 followed byPOP R2. As another triv-
ial example,XOR R1, R1 andSUB R1, R1 both zero the
contents of register R1. Instruction substitution is a powerful
technique for evading signature detection and altering code
statistics. However, instruction substitution is relatively dif-
ficult to implement at the assembly code level.

2.2.5 Formal grammar mutation

Formal grammar mutation is a formalization of existing mor-
phing techniques [24–26]. Morphing engines can be viewed
as non-deterministic automata, since transitions are possi-
ble from every symbol (i.e., instruction) to every other sym-
bol [26]. By formalizing mutation techniques, we can apply
formal grammar rules to create copies with wide variation.
Figure 1 shows a simple polymorphic decryptor template and
two possible mutations of the decryptor achieved using the
formal grammar in Fig. 2. With this decryptor template and

Fig. 2 Formal grammar for decryptor mutation [26]

formal grammar combination, it is possible to generate 960
distinct decryptors [26].

2.3 LLVM

LLVM1 [12] is a compiler infrastructure that has several
novel features. LLVM supports a language independent
instruction set where each instruction is a static single assign-

1 “LLVM” was initially derived as an acronym for Low Level Virtual
Machine. However, LLVM is now the official name—it is no longer an
acronym.

123



180 T. Tamboli et al.

Fig. 3 Three-phase compiler

Fig. 4 LLVM design [29]

ment (SSA), which means that each variable is assigned once
and then cannot be reassigned [11,27]. Static compilation is
supported via late compilation of intermediate representation
(IR) bytecode, analogous to the just-in-time (JIT) compiler
in Java. The LLVM infrastructure is part of “The Lifelong
Code Optimization Project” (LCO-Project) [28].

Most traditional static compilers (e.g., GCC) use three
phases, and LLVM follows this approach. These three phases
are a frontend, an optimizer, and a backend. Figure 3 illus-
trates the typical design of a three phase compiler.

The key function of the frontend is to parse the source
code, check for syntax errors, and build a language-specific
abstract syntax tree (AST). Using the AST, the optimizer
manipulates instructions so as to optimize the code. For
example, an optimizer removes duplicate code and redun-
dant computations.

The compiler backend generates the machine-dependent
representation of the code Backend operations include
instruction selection, register allocation, and instruction
scheduling [29].

The key feature of the LLVM three-phase compiler design
is that it supports multiple frontends and multiple backends,
which is greatly simplified by its use of a common interme-
diate code representation. A frontend can be written for any
language. The frontend converts the source code to LLVM
IR bytecode which is machine and language independent.
A backend can be written for any target platform by gen-
erating native code from this common intermediate repre-
sentation [29,30]. Figure 4 illustrates the LLVM compiler
design.

The use of IR bytecode in LLVM effectively separates the
frontend and backend components from each other. In addi-
tion, the use of IR bytecode supports lightweight runtime
optimizations, cross-function or inter-procedural optimiza-

Fig. 5 LLVM bytecode file format [31]

tions, program analysis, and aggressive restructuring trans-
formations.

Figure 5 illustrates the structure of LLVM IR bytecode.
The following sections are supported [31]:

1. Module—a container that holds functions and global
variables

2. Functions—named, callable units of instructions
3. Global variables—variables that can be accessed by any

function

Figure 6 shows a simple C function and its corresponding IR
representation [32,33].

123



Metamorphic code generation 181

Fig. 6 C code and corresponding IR bytecode

Fig. 7 Program life cycle in LLVM compiler

The program life cycle from source program to executable
in LLVM compiler is illustrated in Fig. 7.

In LLVM IR bytecode, the logic is represented in the form
of functions, and each function consists of a set of basic
blocks. Each basic block consists of a set of instructions and
all instructions in a basic block are executed sequentially. A
variety of tools are available in the LLVM infrastructure to
manipulate IR bytecode.

2.4 Hidden Markov models

In this paper, we use hidden Markov models (HMM) as a
tool to measure the effectiveness of our morphing strategy. In
this section, we provide a very brief introduction to HMMs;
see [34] for additional details.

Hidden Markov models can be viewed as a machine learn-
ing technique. We can train an HMM to fit a given observation
sequence. The resulting model can then be used to score an
unknown sequence to measure its similarity to the training
data.

As the name suggests, a hidden Markov model includes
a “hidden” Markov chain. Although this Markov chain is
not directly observable, it is probabilistically related to a
sequence of observed symbols. Figure 8 provides a generic
illustration of an HMM, where the Oi are the observations,
the matrix A drives the hidden Markov process, and the
matrix B contains probability distributions that relate the hid-
den states to the observations.

Let π be the initial state probability distribution of the
underlying Markov process. Then we denote an HMM as λ =

123



182 T. Tamboli et al.

Fig. 8 Generic HMM [34]

(A, B, π). The utility of HMMs derives largely from the
fact that there are efficient algorithms to solve each of the
following three problems [34].

• Problem 1: Given a model λ = (A, B, π) and an obser-
vation sequence O, we can compute P(O | λ). That is, we
can score a sequence against a model.

• Problem 2: Given a model λ = (A, B, π), we can deter-
mine an optimal state sequence for the Markov process.
That is, we can “uncover” the hidden state sequence.

• Problem 3: Given an observation sequence O, we can
determine the model λ = (A, B, π) that maximizes
P(O). That is, we can train a model to fit a given sequence
of observations.

In this paper, we first train a model (Problem 3) on opcode
sequences derived from a base piece of software. Then we
use the trained model to score (Problem 1) morphed ver-
sions of this base software. Previous research has shown
that HMMs are effective at detecting most metamorphic mal-
ware, and that HMMs can also be used to detect certain types
of software piracy [15]. That is, HMMs have proven useful
at detecting morphed or disguised versions of code. Conse-
quently, HMM analysis provides a challenging test for any
code morphing technique.

3 Design and implementation

We have implemented two elementary metamorphic tech-
niques at the LLVM IR bytecode level. Specifically, we use
dead code insertion and function permutation. This morphing
is available as an LLVM compile-time option.

Code morphing at the IR level offers the following advan-
tages.

• A wide variety of front ends are available in LLVM.
The supported languages include Objective-C, FOR-
TRAN, Ada, Haskell, Java bytecode, Python, Ruby,
Action Script, GLSL, D, and Rust. Using our tool, code
written in any of these language can be morphed.

• The IR form is platform independent.
• At the IR level, virtual addresses are not assigned—

addresses are first assigned at the bitcode (i.e., binary
executable) level. Therefore, by morphing at the IR level,

we avoid one of the major difficulties associated with
morphing at the assembly level, namely, dealing with
addresses.

Morphed copies of a program must have the same function-
ality as the base code. In addition, the higher the percent-
age of inserted or modified code, the more the morphed
files should differ (on average) from the base file. In this
research, we employ HMM analysis to measure the differ-
ences between files. As previously mentioned, HMMs have
a proven record of being able to effectively “see through”
metamorphic code. Consequently, if we can morph code
sufficiently to defeat HMM-based analysis this will pro-
vide a strong indication of the success of our morphing
strategy.

3.1 Morphing technique

As we are morphing at IR bytecode level, it is difficult to
adopt some of the techniques described in Sect. 2.2. For
example, register swapping is relatively difficult to imple-
ment at the IR level. Therefore, to provide a proof of concept,
we have restricted our code morphing to a combination of
dead code insertion and subroutine permutation. We accom-
plish both of these morphing strategies by inserting randomly
selected complete subroutines of dead code selected from
other program files. In addition, the order of these dead sub-
routines is randomized. In this way, we create a significant
amount of transposition and code variation between different
morphed copies. In addition, we insert call statements to all
dead code subroutines so that they are not trivially identifi-
able as dead code.

We have used core-util [35] Linux command files as the
source of our dead code subroutines. These files include sys-
tem level code to do operations that we would expect to be
somewhat similar to our selected base code. By selecting
morphing code that is similar to our base file, we are creating
a more challenging task for our morphing engine, since the
goal is to make the morphed code as different as possible
from the base code.

The high-level architecture of our morphing engine
appears in Fig. 9. Next, we provide a detailed description
of each of the three main phases of our morphing engine.

123



Metamorphic code generation 183

Fig. 9 Metamorphic code generator architecture diagram

3.1.1 Dead code insertion

A base file, a morphing file (i.e., a source of dead code), and
a dead code percentage are specified. Based on the dead code
percentage, we determine the total number of lines we want
to insert into the base file. We then select complete functions
from the morphing file so that the total size approximates the
number of lines we want to insert into the base file. These
subroutines are integrated into the base file at the linking
stage. The details of this first phase of our code morphing
technique are given below.

1. Compile selected morphing file using the llvm-gcc
command to generate its IR bytecode.

2. From this IR bytecode, determine function dependencies.
3. For each function, calculate its number of lines.
4. Based on the total number of dead code lines, use a greedy

strategy to determine a subset of functions which best
approximates the number of lines to be inserted.

5. Copy selected functions to a temporary IR bytecode file.
6. Create bitcode files for the base code and temporary IR

bytecode file.
7. Merge these two files (using llvm-link).
8. If there are any subroutine naming conflicts, replace each

offending name in the temporary IR bytecode file with a
random string.

9. Delete the temporary IR bytecode file.

3.1.2 Call dead functions

In this pass, we use the LLVM optimizer to insert a call
instruction for each dead code subroutine. The optimizer
takes a function name as input. It then finds the main
function definition in the IR bytecode and inserts a call
type of instruction after every load type of instruction. The
current implementation does not support structure type of
parameters.

For each dead code subroutine, we perform the following
steps.

1. Find the “function” object of the main.
2. Iterate over instructions in the function object.
3. If an instruction is of type load then insert a call instruc-

tion. To insert call instruction for dead function, iterate
over its parameters and for each parameter, allocate mem-
ory and initialize with a random value.

4. Finally, insert a call instruction.

3.1.3 Function permutation

The third pass performs function permutation by simply
reordering functions in the IR bytecode file. This pass is
straightforward and we omit the details. Additional details
on the entire process can be found in [36].

123



184 T. Tamboli et al.

4 Experimental results

In this section, we use the HMM technique developed in [5]
to test the effectiveness of our LLVM-based metamorphic
code generator. We add increasing percentages of dead code
to find the threshold at which HMM detector starts to fail.
We show that after adding about 20 % (or more) dead code,
our metamorphic code is not reliably distinguished using
this HMM technique. These results indicate that our LLVM-
based morphing strategy is more effective than the hacker-
produced metamorphic malware generators considered in
previous research [5], and is at least as effective as an exper-
imental metamorphic malware generator that was designed
specifically to evade HMM-based detection [4].

For the experiments given here, we use spike fuzzer [37]
as our base software. Fuzzing is a process of sending

malformed data to an application to generate failures or
errors in the application [38]. This base code was mor-
phed using our LLVM metamorphic generator and the mor-
phed versions were then analyzed using HMM-based analy-
sis. Spike fuzzer consists of about 6000 lines of assembly
code.

For each experiment, we generate 50 morphed copies by
inserting dead code from different morphing files. As previ-
ously mentioned, the morphing files are randomly selected
from coreutil Linux commands files [23].

Once the morphed files are generated, we use an HMM
scoring technique similar to that in [15]. Previous research
has consistently shown that the number of hidden states in
the HMM does not significantly impact the quality of the file
classification. Consequently, we only consider HMMs with
N = 2 hidden states.

Fig. 10 HMM scores for various morphing percentages. (a) 10 % morphing, (b) 20 % morphing, (c) 30 % morphing, (d) 50 % morphing

123



Metamorphic code generation 185

Fig. 11 ROC curves for various morphing percentages. (a) 10 % morphing, (b) 20 % morphing, (c) 30 % morphing, (d) 50 % morphing

First, we train an HMM to model the base file. To obtain
sufficient observations for training, we generated 50 copies
of the base file, each having a 5 % rate of morphing. We then
trained an HMM on these 50 morphed files. We refer to this
model as the “base HMM.” As discussed in [15], the purpose
of the slight morphing at this stage is simply to prevent the
base HMM from overfitting the available data in the base file.
Consequently, we use a minimal amount of morphing at this
step.

Next, we use this trained HMM to score 50 morphing files.
Specifically, we score the coreutil Linux commands files that
we use as our source of morphing code in the experiments
described below.

We then conducted experiments where we morph the base
file at each of the following rates: 10 %, 20 %, 30 %, and,
finally, 50 %. In each case, we generated 50 morphed ver-
sions of the base file, with each file morphed at the given
rate. These morphed copies were then scored using the base

HMM and these scores were compared to the scores obtained
for the morphing files as mentioned in the previous para-
graph. As the morphing percentage increases, we expect the
scores of the morphed files to converge towards the scores
of the morphing files. Note that all scores are normalized
to a per opcode basis so that file size does not affect the
results.

Figure 10 (a) through (d) contain our score results for
10 % 20 %, 30 %, and 50 % morphing, respectively. From
these results, we see that after inserting 20 % dead code, the
scores are starting to merge, which indicates that the morphed
base files are difficult for the HMM to distinguish from the
morphing files. This is precisely the effect that we hope to
achieve through code morphing.

The results in Fig. 10 are summarized in the form of ROC
curves in Fig. 11. These ROC curves plot the false positive
rate versus the true positive rate as the threshold is varied
throughout the score range.

123



186 T. Tamboli et al.

Table 1 ROC AUC statistic

Dead code insertion % AUC

10 1.0000

20 0.8708

30 0.7724

50 0.5924

The area under the ROC curve (AUC) is equal to the
probability that a classifier ranks a randomly chosen positive
instance higher than a randomly chosen negative one [39].
The AUC values for the ROC curves in Fig. 11 are given in
the Table 1. Note that an AUC of 1.0 indicates ideal sepa-
ration (i.e., no false positives or false negatives), while an
AUC of 0.5 indicates that the classifier yields results that
are no better than flipping a coin. After inserting 20 % dead
code, our HMM classifier does poorly, and at higher morph-
ing rates, the rate of classification failure increases dramati-
cally. Again, these results show that our code morphing tech-
nique is highly effective, at least with respect to this HMM
classifier.

5 Conclusion and future work

In this paper, we presented and analyzed a novel code mor-
phing technique based on LLVM IR bytecode. Our approach
makes strong code morphing available as a compile-time
option, and requires no special effort on the part of the soft-
ware developer. As far as the authors are aware, this is the
first general purpose code morphing tool of its kind.

Our metamorphic generator uses dead code insertion and
function permutation. The dead code is in the form of func-
tions copied from other programs. These dead functions are
called within the program, which makes their detection and
removal more challenging.

We tested the effectiveness of our code morphing using
an HMM technique that has proven successful in metamor-
phic malware detection and for detection of certain types of
software piracy. We verified that our morphing technique is
highly effective, in the sense that an HMM cannot effectively
distinguish our morphed code from other code, even at rela-
tively low morphing rates.

There are many possible improvements to the metamor-
phic generator presented here. The dead code insertion could
be improved by removing the dependence on complete
subroutines—it would be possible to do such insertion at the
level of basic blocks. Other powerful morphing techniques,
such as instruction substitution, could be included. It would
also be interesting to employ formal grammar mutation as a
framework for implementing the morphing. Additional user
control of morphing (via compile-time flags) would be valu-

able. Finally, improvements in the LLVM infrastructure itself
would serve to make our code morphing techniques more
robust. For example, in our current implementation, tools
available within the LLVM framework could be used to ana-
lyze the morphed bitcode. However, if the LLVM bitcode is
converted to, say, a Windows PE file, then the tools within
LLVM are no longer directly applicable to such analysis.

References

1. The Mental Driller, Metamorphism in practice or “How I made
MetaPHOR and what I’ve learnt” (2002). http://download.adamas.
ai/dlbase/Stuff/VX%20Heavens%20Library/vmd01.html

2. An example of metamorphic virus. http://spth.virii.lu/main.html
3. Lin, D., Stamp, M.: Hunting for undetectable metamorphic viruses.

J. Comput. Virol. 7(3), 201–214 (2011)
4. Sridhara, S., Stamp, M.: Metamorphic worm that carries its own

morphing engine. J. Comput. Virol. Hacking Tech. 9(2), 49–58
(2013)

5. Wong, W., Stamp, M.: Hunting for metamorphic engines.
J. Comput. Virol. 2(3), 211–229 (2006)

6. Gao, X., Stamp, M.: Metamorphic software for buffer overflow
mitigation. In: Dey, P.P., Amin, M.N. (eds.) Proceedings of 3rd
Conference on Computer Science and its Applications. San Diego,
California (2005)

7. Stamp, M.: Risks of monoculture, Inside Risks 165. Commun.
ACM 47(3):120 (2004). http://www.csl.sri.com/users/neumann/
insiderisks04.html#165

8. Open Malware. http://www.offensivecomputing.net/
9. Virus Construction Kits. http://computervirus.uw.hu/ch07lev1sec

7.html
10. Attaluri, S., McGhee, S., Stamp, M.: Profile hidden markov models

and metamorphic virus detection. J. Comput. Virol. 5(2), 151–169
(2009)

11. Lattner, C., Adve, V.: Architecture for a next generation GCC. In:
First GCC Annual Developer’s Summit (2003). http://llvm.org/
pubs/2003-05-01-GCCSummit2003pres.pdf

12. The LLVM Compiler Infrastructure Project. http://llvm.org/
13. Sharif, M. et al.: Impending Malware Analysis Using Conditional

Code Obfuscation. College of Computing, Georgia Institute
of Technology. http://cyber4.us/sites/default/files/Impeding%
20Malware%20Analysis%20Using%20Conditional%20Code%
20Obfuscation-NDSS2008.pdf

14. Ma, W., et al.: Shadow attacks: automatically evading system-call
behavior. J. Comput. Virol. 8(1–2), 1–13 (2012)

15. Kazi, S., Stamp, M.: Hidden Markov models for software piracy
detection. Inf. Secur. J. A Glob. Perspect. 22(3), 140–149 (2013)

16. Baysa, D., Low, R.M., Stamp, M.: Structural entropy and meta-
morphic malware. J. Comput. Virol. Hacking Tech. 9(4), 179–192
(2013) (to appear)

17. Runwal, N., Low, R.M., Stamp, M.: Opcode graph similarity and
metamorphic detection. J. Comput. Virol. 8(1–2), 37–52 (2012)

18. Shanmugam, G., Low, R.M., Stamp, M.: Simple substitution dis-
tance and metamorphic detection. J. Comput. Virol. Hacking Tech.
9(3), 159–170 (2013)

19. Toderici, A.H., Stamp, M.: Chi-squared distance and metamorphic
virus detection. J. Comput. Virol. Hacking Tech. 9(1), 1–14 (2013)

20. Panda Security, Virus, worms, trojans and backdoors: other harm-
ful relatives of viruses (2011). http://www.pandasecurity.com/
homeusers-cms3/security-info/about-malware/generalconcepts/
concept-2.html

21. Aycock, J.: Computer Viruses and Malware. Springer, New York
(2006)

123

http://download.adamas.ai/dlbase/Stuff/VX%20Heavens%20Library/vmd01.html
http://download.adamas.ai/dlbase/Stuff/VX%20Heavens%20Library/vmd01.html
http://spth.virii.lu/main.html
http://www.csl.sri.com/users/neumann/insiderisks04.html#165
http://www.csl.sri.com/users/neumann/insiderisks04.html#165
http://www.offensivecomputing.net/
http://computervirus.uw.hu/ch07lev1sec7.html
http://computervirus.uw.hu/ch07lev1sec7.html
http://llvm.org/pubs/2003-05-01-GCCSummit2003pres.pdf
http://llvm.org/pubs/2003-05-01-GCCSummit2003pres.pdf
http://llvm.org/
http://cyber4.us/sites/default/files/Impeding%20Malware%20Analysis%20Using%20Conditional%20Code%20Obfuscation-NDSS2008.pdf
http://cyber4.us/sites/default/files/Impeding%20Malware%20Analysis%20Using%20Conditional%20Code%20Obfuscation-NDSS2008.pdf
http://cyber4.us/sites/default/files/Impeding%20Malware%20Analysis%20Using%20Conditional%20Code%20Obfuscation-NDSS2008.pdf
http://www.pandasecurity.com/homeusers-cms3/security-info/about-malware/generalconcepts/concept-2.html
http://www.pandasecurity.com/homeusers-cms3/security-info/about-malware/generalconcepts/concept-2.html
http://www.pandasecurity.com/homeusers-cms3/security-info/about-malware/generalconcepts/concept-2.html


Metamorphic code generation 187

22. Filiol, E.: Computer Viruses: From Theory to Applications, vol. 1,
pp. 19–38. Birkhäuser (2005)

23. Computer virus creation kit. http://www.informit.com/articles/
article.aspx?p=366890&seqNum=6

24. Beaucamps, P.: Advanced metamorphic techniques in computer
viruses. In: International Conference on Computer, Electrical,
and Systems Science, and Engineering, CESSE’07. Venice, Italy
(2007)

25. Filiol, E.: Metamorphism, formal grammars and undecidable code
mutation. Int. J. Comput. Sci. 2, 70–75 (2007)

26. Zbitskiy, P.: Code mutation techniques by means of formal gram-
mars and automatons. J. Comput. Virol. 5(3), 199–207 (2009)

27. LLVM Programming Manual. http://llvm.org/docs/Programmers
Manual.html

28. The Lifelong Code Optimization Project. http://www-faculty.cs.
uiuc.edu/vadve/lcoproject.html

29. LLVM Architecture. http://www.aosabook.org/en/llvm.html
30. Lattner, C., Adve, V.: A compilation framework for lifelong pro-

gram analysis and transformation. In: Proceedings of the 2004
International Symposium on Code Generation and Optimization
(2004). http://www.cgo.org/cgo2004/papers/06_76_lattner_c.pdf

31. Praher, J.: A Change Framework Based on the Low Level Vir-
tual Machine Compiler Infrastructure. Thesis Report, Johannes
Kepler University (2007). http://llvm.cs.uiuc.edu/pubs/2007-04-
PraherMSThesis.pdf

32. LLVM, IR Bytecode Format. http://llvm.org/releases/1.3/docs/
BytecodeFormat.html

33. LLVM Helloworld in C. http://projects.prabir.me/compiler/wiki/
LLVMHelloworldInC.ashx

34. Stamp, M.: A revealing introduction to hidden Markov models
(2012). http://www.cs.sjsu.edu/stamp/RUA/HMM.pdf

35. Linux coreutils source code. http://ftp.gnu.org/gnu/coreutil
36. Tamboli, T.: Metamorphic code generation from LLVM IR byte-

code, Master’s Project 301 (2013). http://scholarworks.sjsu.edu/
etd_projects/301/

37. Spike Fuzzer Source Code. http://www.immunitysec.com/
resources-freesoftware.shtml

38. Introduction to fuzzing using spike fuzzer. http://resources.
infosecinstitute.com/intro-to-fuzzing/

39. Bradley, A.P.: The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognit. 30,
1145–1159 (1997)

123

http://www.informit.com/articles/article.aspx?p=366890&seqNum=6
http://www.informit.com/articles/article.aspx?p=366890&seqNum=6
http://llvm.org/docs/ProgrammersManual.html
http://llvm.org/docs/ProgrammersManual.html
http://www-faculty.cs.uiuc.edu/vadve/lcoproject.html
http://www-faculty.cs.uiuc.edu/vadve/lcoproject.html
http://www.aosabook.org/en/llvm.html
http://www.cgo.org/cgo2004/papers/06_76_lattner_c.pdf
http://llvm.cs.uiuc.edu/pubs/2007-04-PraherMSThesis.pdf
http://llvm.cs.uiuc.edu/pubs/2007-04-PraherMSThesis.pdf
http://llvm.org/releases/1.3/docs/BytecodeFormat.html
http://llvm.org/releases/1.3/docs/BytecodeFormat.html
http://projects.prabir.me/compiler/wiki/LLVMHelloworldInC.ashx
http://projects.prabir.me/compiler/wiki/LLVMHelloworldInC.ashx
http://www.cs.sjsu.edu/stamp/RUA/HMM.pdf
http://ftp.gnu.org/gnu/coreutil
http://scholarworks.sjsu.edu/etd_projects/301/
http://scholarworks.sjsu.edu/etd_projects/301/
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.immunitysec.com/resources-freesoftware.shtml
http://resources.infosecinstitute.com/intro-to-fuzzing/
http://resources.infosecinstitute.com/intro-to-fuzzing/

	Metamorphic code generation from LLVM bytecode
	Abstract 
	1 Introduction
	2 Background
	2.1 Malware
	2.1.1 Malware evolution

	2.2 Metamorphic techniques
	2.2.1 Register swap
	2.2.2 Transposition
	2.2.3 Dead code insertion
	2.2.4 Instruction substitution
	2.2.5 Formal grammar mutation

	2.3 LLVM
	2.4 Hidden Markov models

	3 Design and implementation
	3.1 Morphing technique
	3.1.1 Dead code insertion
	3.1.2 Call dead functions
	3.1.3 Function permutation


	4 Experimental results
	5 Conclusion and future work
	References


