
J Comput Virol Hack Tech (2013) 9:159–170
DOI 10.1007/s11416-013-0184-5

ORIGINAL PAPER

Simple substitution distance and metamorphic detection

Gayathri Shanmugam · Richard M. Low · Mark Stamp

Received: 19 December 2012 / Accepted: 6 February 2013 / Published online: 5 March 2013
© Springer-Verlag France 2013

Abstract To evade signature-based detection, metamor-
phic viruses transform their code before each new infection.
Software similarity measures are a potentially useful means
of detecting such malware. We can compare a given file to a
known sample of metamorphic malware and compute their
similarity—if they are sufficiently similar, we classify the
file as malware of the same family. In this paper, we ana-
lyze an opcode-based software similarity measure inspired
by simple substitution cipher cryptanalysis. We show that the
technique provides a useful means of classifying metamor-
phic malware.

1 Introduction

Viruses and worms are types of malware that can replicate
and spread from one computer to another [2]. Although the
terminology is not consistent, viruses are generally consid-
ered to be parasitic, in the sense that they embed themselves in
other executable files, while worms generally do not [25]. In
this paper, we use the terms virus and malware interchange-
ably.

The most widely used anti-virus methodology is signature
detection [25]. In its simplest form, a signature consists of a

G. Shanmugam
Department of Computer Science, San Jose State University,
San Jose, USA

R.M. Low
Department of Mathematics, San Jose State University,
San Jose, USA

M. Stamp (B)
Department of Computer Science, San Jose State University,
San Jose, USA
e-mail: stamp@cs.sjsu.edu

sequence of bytes (possibly, including wildcards) extracted
from a known virus. Various string matching techniques are
used to efficiently scan files for multiple signatures [2].

Since signature detection is the most commonly-used
detection strategy, virus writers have developed many tech-
niques to evade such detection. Arguably, metamorphic
malware represents the most sophisticated strategy yet devel-
oped for evading signature-based detection. A metamorphic
virus morphs its code at each infection. That is, the internal
structure of the code is altered, but the primary functionality
remains unchanged [27].

Previous research has focused on software similarity mea-
sures as a means of detecting metamorphic malware [4,
23,30]. A variety of other techniques, including machine
learning [1,30], statistical analysis [28], and opcode-graph
analysis [20], have also been applied to the metamor-
phic detection problem. In addition, improved metamorphic
techniques for evading these detection schemes have been
considered [16,24].

Similarity-based techniques classify an executable file as
containing a virus belonging to a given metamorphic fam-
ily, provided the viral code is sufficiently similar to a known
member (or members) of the virus family [18,30]. The goal
of this research is to analyze an opcode-based similarity mea-
sure inspired by simple substitution cipher cryptanalysis [15].
This similarity measure shares some characteristics with an
edit distance [14].

In a simple substitution cipher, each plaintext letter is
mapped to one ciphertext letter, that is, the mapping between
plaintext and ciphertext is one-to-one and fixed. This is
in contrast to a homophonic substitution, where multiple
ciphertext symbols can map to a single plaintext sym-
bol, or polyalphabetic substitutions, where the plaintext-to-
ciphertext mapping changes. The infamous “Zodiac 408”
cipher is an example of a homophonic substitution [11],

123

160 G. Shanmugam et al.

while the World War II-era Enigma cipher machine provides
a well-known example of a polyalphabetic substitution [26].
The so-called Caesar’s Cipher—where each plaintext letter
is mapped to the letter three positions ahead in the alphabet—
is a trivial example of a simple substitution. In general, any
permutation of the alphabet can serve as the key in a simple
substitution.

Suppose that we have a simple substitution ciphertext
that was generated from English. By using English language
statistics, we can expect to algorithmically recover at least
80 % of the plaintext, provided the message is of sufficient
length [11]. However, if we apply the same procedure to a
simple substitution ciphertext that was generated from, say,
French, the results will likely be poor.

Here, we develop a score based on how well we can
“decrypt” an opcode sequence, based on opcode statistics
derived from a specific metamorphic family. If this “decryp-
tion” yields a good fit with the family statistics, we classify
the virus as a member of the metamorphic family; otherwise,
we classify it as not belonging to the metamorphic family. Of
course, we do not actually decrypt opcode sequences, since
the sequences are not encrypted. However, when we apply
our score to a family virus, we are attempting to de-obfuscate
the opcode sequence in a process analogous to uncovering
English plaintext based on English statistics. On the other
hand, when we score code that is not a family virus, our
attempt at de-obfuscation is analogous to trying to decrypt
French ciphertext based on English statistics. In the former
case, we might reasonably expect good results, while in the
latter case, we expect relatively weak results.

This paper is organized as follows. Section 2 provides
background information, including an overview of malware,
and a discussion of an efficient attack on simple substitution
ciphers that forms the basis of our scoring technique. Sec-
tion 3 discusses our proposed opcode-based similarity score,
while Sect. 4 contains experimental results, including justi-
fication of our choice of parameters. Section 5 concludes the
paper.

2 Background

In this section, we provide an overview of relevant back-
ground information. First, we briefly discuss metamorphic
malware. Then be give a fairly detailed discussion of an effi-
cient attack on simple substitution ciphers. This attack forms
the basis for the similarity score that we apply to the meta-
morphic detection problem in this paper.

2.1 Metamorphic malware

Malware is a software that is designed with malicious intent.
In this section, we briefly discuss metamorphic malware, with

the emphasis on various strategies used to generate such code.
We also outline previous work on the metamorphic detection
problem.

A metamorphic virus morphs its code before each new
infection. We assume that the mutated virus has the same
functionality as the original, but the internal structure differs.
Metamorphic virus use a variety of code morphing strategies.
Next, we outline a few elementary morphing techniques.

2.1.1 Register swapping

Register swapping is a simple obfuscation technique
employed by one of the first metamorphic viruses, namely,
Win95/Regs wap virus [27]. As the name implies, register
swapping consists of simply using different registers. For
example, POP EBX could be replaced with POP EAX, if
the EAX register is not in use. Note that register swapping
does not alter the opcode sequence.

2.1.2 Subroutine permutation

Metamorphic viruses such as Win32/Ghost employ subrou-
tine permutation. If a program has n subroutines, then n!
different copies can be generated by simply reordering the
subroutines.

2.1.3 Garbage instruction insertion

Metamorphic viruses such as Win95/ZPerm [27] insert
(and remove) garbage code, i.e., “do-nothing” instructions,
to create morphed copies. Examples of garbage instruc-
tions include NOP and ADD EAX,0, as well as series of
instructions such as INC EAX followed by DEC EAX. Such
instructions do not change the function of the program, but
care must be taken so that addresses and alignments remain
valid.

2.1.4 Instruction substitution

Morphed copies can be generated by replacing an instruction
(or group of instructions) with another equivalent instruction
(or group of instructions). For example, SUB EAX,EAX can
be replaced by XOR EAX,EAX.

2.1.5 Transposition

Reordering instructions is a powerful metamorphic tech-
nique [6]. Subroutine permutation, as discussed above,
is a special case of code transposition. More generally,
we can reorder any instructions that have no dependency.

123

Simple substitution distance and metamorphic detection 161

For example,

MOV R1,R2

ADD R3,R4

can be reordered to obtain

ADD R3,R4

MOV R1,R2

2.1.6 Formal grammar mutation

Formal grammars have been proposed as a means of formal-
izing many existing morphing techniques [12,31]. A morph-
ing engine can be viewed as a non-deterministic automata,
where transitions are possible from every symbol to every
other symbol, with the symbol set consisting of all possible
instructions. In this setting, we can apply formal grammar
rules to create viral copies with great variation; see [31] for
examples.

2.2 Metamorphic detection

It is easily proved that well-designed metamorphic code can-
not be detected using elementary signatures [6,29]. While
metamorphic detection remains a challenging research prob-
lem, various strategies have met with some success, particu-
larly with respect to hacker-produced metamorphic malware.

In [30], hidden Markov models (HMM) are trained on
opcode sequences extracted from family viruses. The trained
models are shown to be effective at detecting some examples
of highly metamorphic code. Profile hidden Markov models
(PHMM) are considered in [1], but the results are not as
promising as those obtained using HMMs in [30].

Among other techniques, a graph-based approach is ana-
lyzed in [20], while statistical analysis is considered in [28].
A score based on “structural entropy,” i.e., changes in entropy
within an executable, is applied to the metamorphic detec-
tion problem in [23] and further analyzed in [4]. Eigenvalue
analysis is considered in [10]. While many of these detection
strategies are effective against certain classes of metamor-
phic malware, practical strategies for defeating these detec-
tion techniques are discussed in [16,24].

2.3 Jackobsen’s Algorithm

In this paper, we employ techniques from simple substitu-
tion cipher cryptanalysis as a means of measuring the dis-
tance between executables. An efficient, general technique
for simple substitution cryptanalysis is given by Jackobsen
[15]. In this paper, an analog of Jackobsen’s algorithm is
used to compute our simple substitution distance between
executable files.

Table 1 Example of a simple substitution key

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Substitution ciphers are one of the earliest methods of
encryption [25]. In such a cipher, every plaintext symbol has a
ciphertext symbol substituted for it, and the original position
of the plaintext symbol is retained in the ciphertext [11,17].

As the name suggests, simple substitution ciphers are the
simplest of the substitution ciphers [25]. In a simple substi-
tution, each plaintext symbol corresponds to one ciphertext
symbol, that is, the mapping between the plaintext and the
ciphertext symbol is fixed and one-to-one.

An example of a simple substitution—the well-known
Caesar’s cipher—is given in Table 1. In this example, each
plaintext letter is replaced with the letter that is three posi-
tions ahead in the alphabet [25].

The simple substitution is known to be a very weak cipher.
Attacks on the simple substitution generally rely on elemen-
tary statistical properties of the plaintext language [11].

An efficient general algorithm to cryptanalyze simple sub-
stitution ciphers is given by Jackobsen in [15]. The algorithm
starts by making an initial guess for the key which is then
refined through a number of iterations. At each step, a scor-
ing function is used to determine whether the putative key is
an improvement over the current key; if so the putative key is
retained; otherwise it is not. This algorithm is a hill climbing
attack, since it ignores any modification to the key that does
not improve the score.

Jackobsen’s algorithm relies on the digraph distribution
of the plaintext language. The attack is extremely efficient
because the ciphertext is parsed only once to construct an
initial digraph distribution matrix. All subsequent scoring is
done by manipulating this matrix directly, and hence there is
no need to re-decrypt the ciphertext.

For this discussion of Jackobsen’s algorithm [15], we
assume that the plaintext language is English and the cipher-
text symbols consist of the 26 letters of the alphabet. We
choose an initial key that best matches English monograph
statistics. That is, we assume that the most frequent cipher-
text letter maps to the most frequent letter in English, which
is E, the second most frequent ciphertext letter maps to T,
and so on.

The algorithm modifies the current key by swapping ele-
ments. We then compute a score to determine whether the
resulting putative plaintext is closer to English language sta-
tistics. The swap is retained provided that the score improves.

Let K = k1, k2, . . . , k26 be the putative key. Then K is a
permutation of the 26 letters. The basic letter swapping pro-
cedure is as follows. First, all adjacent elements are swapped,
that is, k1 is swapped with k2, then k2 is swapped with k3 and

123

162 G. Shanmugam et al.

so on. Then the elements at distance two are swapped, that is,
k1 is swapped with k3, and so on. Then elements at distance
three are swapped, and so on. Finally, at the nth step, k1 is
swapped with kn+1. This basic procedure is illustrated in (1),
where “|” represents the swapping operation.

round 1 : k1|k2 k2|k3 k3|k4 . . . k23|k24 k24|k25 k25|k26

round 2 : k1|k3 k2|k4 k3|k5 . . . k23|k25 k24|k26

round 3 : k1|k4 k2|k5 k3|k6 . . . k23|k26
...

... . .
.

round 23 : k1|k24 k2|k25 k3|k26

round 24 : k1|k25 k2|k26

round 25 : k1|k26

(1)

In Jackobsen’s algorithm, we restart from the beginning of
the swapping schedule in (1) each time the score improves.
Consequently, the minimum number of score computations
is

(25
2

)
, or, more generally,

(n
2

)
if there are n symbols. The

average-case performance will depend on the statistics and
the length of the ciphertext. In [11], empirical results are
given for the average number of score computations. As
expected, as the length of the ciphertext increases, the aver-
age number of score computations decreases; for example,
for a ciphertext of length 500, an average of 1,050 score com-
putations are needed, while for ciphertext of length 8,000, on
average only 630 score computations are used. In Sect. 4, we
consider variations on this swapping schedule in the context
of metamorphic detection.

Next, we present the scoring function that is used in Jack-
obsen’s algorithm. Let D = {di j } be the digraph distribution
matrix for the putative plaintext corresponding to the putative
key K and let E = {ei j } be the expected digraph distribution
matrix for English. Then the score is given by the sum of
absolute differences, that is,

score(K) = d(D, E) =
∑

i, j

|di j − ei j |. (2)

Note that score(K) ≥ 0, with equality obtained for a per-
fect match. In Sect. 4, we evaluate variations on this scoring
function in the context of metamorphic detection.

To illustrate the process used to update the D matrix,
we consider a simple substitution example on a restricted
10-letter alphabet. For this example, the plaintext symbols
are

E, T, A, O, I, N, S, R, H, D

where we have listed the letters in descending order of their
expected frequency in English. Based on this limited alpha-
bet, suppose we are given the simple substitution ciphertext

TNDEODRHISOADDRTEDOAHENSINEOARDTTDT

INDDRNEDNTTTDDISRETEEEEEAA. (3)

For the ciphertext in (3), the frequency counts are

ciphertext E T A O I N S R H D
frequency 11 9 5 4 4 6 3 5 2 12

Consequently, our initial guess for the key is

plaintext E T A O I N S R H D
ciphertext D E T N A R I O S H

(4)

Using the initial putative key in (4), we find the initial
putative plaintext corresponding to the ciphertext in (3) is
given by

AOETRENDSHRIEENATERIDTOHSOTRINEAAEASO

EENOTEOAAAEESHNTATTTTTII. (5)

Therefore, the digraph distribution matrix corresponding to
the initial key is

E T A O I N S R H D
E 3 1 2 1 0 3 1 1 0 0
T 2 4 1 1 1 0 0 2 0 0
A 2 2 2 1 0 0 1 0 0 0
O 2 2 1 0 0 0 0 0 1 0
I 1 0 0 0 1 1 0 0 0 1
N 1 1 1 1 0 0 0 0 0 1
S 0 0 0 2 0 0 0 0 2 0
R 1 0 0 0 3 0 0 0 0 0
H 0 0 0 0 0 1 1 1 0 0
D 0 1 0 0 0 0 1 0 0 0

(6)

The first step in the hill climb is to swap the first two
elements of the key. Swapping the first two elements in (4)
yields the putative key

plaintext E T A O I N S R H D
ciphertext E D T N A R I O S H

(7)

Applying the key in (7) to the ciphertext in (3), we obtain the
putative plaintext

AOTERTNDSHRITTNAETRIDEOHSOERINTAATASO

TTNOETOAAATTSHNEAEEEEEII. (8)

The digraph distribution matrix corresponding to the key
in (7) is

E T A O I N S R H D
E 4 2 1 1 1 0 0 2 0 0
T 1 3 2 1 0 3 1 1 0 0
A 2 2 2 1 0 0 1 0 0 0
O 2 2 1 0 0 0 0 0 1 0
I 0 1 0 0 1 1 0 0 0 1
N 1 1 1 1 0 0 0 0 0 1
S 0 0 0 2 0 0 0 0 2 0
R 0 1 0 0 3 0 0 0 0 0
H 0 0 0 0 0 1 1 1 0 0
D 1 0 0 0 0 0 1 0 0 0

(9)

123

Simple substitution distance and metamorphic detection 163

Table 2 Jackobsen’s Algorithm [11,15]

//
//Solve simple substitution cipher:
// E = digraph frequency matrix of the expected English language
// C = ciphertext
// K = k1, k2, . . . , kn = initial putative key in descending
// order of expected frequency
// P = putative plaintext from C using K
// D = digraph frequency matrix for P
// d(D, E) = ∑

i, j |di j − ei j |
///
score = d(D, E)

for i = 1 to n − 1
for j = 1 to n − i

D′ = D
swap rows j and j + i of D′
swap columns j and j + i of D′
if d(D′, E) < score then

D = D′ //retain the swap
swap(k j , k j+i) //swap the elements in the key
score = d(D′, E) //update the least score

end if
next j

next i
return K

It is evident from the matrices in (6) and (9) that swapping
the elements in the key and recomputing the putative plaintext
is equivalent to simply swapping the corresponding rows and
columns of the digraph distribution matrix (6). Consequently,
there is no need to decrypt the ciphertext for each putative
key; instead we can simply swap the appropriate row and
column of the D matrix.

Note that the algorithm is nearly independent of the length
of the ciphertext, since we only decrypt once. Pseudocode for
Jackobsen’s algorithm appears in Table 2.

3 Proposed similarity score

In this section, we develop a technique analogous to Jackob-
sen’s algorithm [15] for measuring the similarity of executa-
bles based on extracted opcode sequences. The purpose is to
obtain a similarity score that is applicable to the metamorphic
detection problem.

In Jackobsen’s algorithm, the score measures the degree to
which the putative plaintext matches the plaintext language
statistics. The score we give here can be viewed as a measure
of the distance between the opcode sequence of a given exe-
cutable, and the opcode statistics of a metamorphic family.
In the remainder of this section, we discuss the application
of Jackobsen’s algorithm in this context.

First, we extract opcode sequences from a large number of
viruses, all of which were produced by the same metamorphic
generator. We use these opcodes to construct the analog of
the E matrix in Jackobsen’s algorithm, that is, we construct

the digraph distribution matrix. Then, given an executable
that we want to classify, we extract its opcode sequence and
generate the analog of the D matrix, as discussed below.

We limit these matrices to the most frequent n opcodes,
with symbol n + 1 used to denote any opcodes that is not
among the n most common. We discuss the choice of n in
Sect. 4. Then E = {ei j } and D = {di j } are both of dimen-
sion (n + 1) × (n + 1). For additional information on the
relative frequencies of opcodes in malware, see [3,5,9]

We choose an initial “key” K that best matches the mono-
graph opcode statistics of the family viruses. That is, we
assume that the most frequent opcode in the family viruses
maps to the most frequent opcode in the suspect code, the
second most frequent opcode in the family maps to the sec-
ond most frequent opcode in the suspect code, and so on.
We determine the matrix D based on “decrypting” with this
initial key K . That is, we follow the same procedure as used
to construct the D matrix in Jackobsen’s algorithm.

We normalize both the E and D matrices so that our
scores are independent of the length of the opcode sequence.1

We experimented with different normalization strategies; this
topic is discussed in Sect. 4.

As in Jackobsen’s algorithm, the score is computed as the
Manhattan distance between D and E , as in (2). We exper-
imented with variations on this standard scoring function.
These experiments are discussed in Sect. 4.

The swapping schedule for Jackobsen’s algorithm appears
in (1) and is discussed in Sect. 2.3. For our scoring algorithm,
we experimented with variations on the standard swapping
strategy. Again, these experimental results are presented in
Sect. 4.

Next, we consider an example to illustrate the process used
to choose the initial “key” and to update the D matrix. This
example parallels the example used to illustrate Jakobsen’s
algorithm in Sect. 2.3.

For simplicity, suppose that only five distinct opcodes
appear in the family viruses. Then the D and E matrices
will be 5 × 5. Further, suppose that these five opcodes are

MOV, CALL, ADD, XOR, CMP (10)

where the opcodes are arranged in descending order of fre-
quency.

Assume that the extracted opcode sequence that we want
to score is

JMP,MOV,MOV,ADD,INC,INC,INC (11)

1 For Jackobsen’s simple substitution attack, it is not necessary to nor-
malize the matrices, since the scores are only used internally for a hill
climb and the desired result is the key K . However, when scoring meta-
morphic malware, the desired result is the score, and we want to com-
pare scores for different viruses. Consequently, it is necessary that these
scores be independent of the input length.

123

164 G. Shanmugam et al.

For the opcode sequence in (11), the frequency counts are

opcode INC MOV ADD JMP
frequency 3 2 1 1

(12)

Consequently, our initial guess for K is

Metamorphic family MOV CALL ADD XOR CMP

File to score INC MOV ADD JMP

(13)

Note that the first row in (13) comes from the metamorphic
family statistics in (10) and the second row is from the statis-
tics of the sequence to be scored, as summarized in (12).
The putative “key” in (13) implies that we “decrypt” the
sequence (11) by substituting MOV for each occurrence of
INC in (11), and substituting CALL for each MOV in (11),
and so on. The resulting “decrypted” sequence is

XOR, CALL, CALL, ADD, MOV, MOV, MOV (14)

which gives us the initial D matrix, i.e., the digraph distrib-
ution matrix

MOV CALL ADD XOR CMP OTHER
MOV 2 0 0 0 0 0
CALL 0 1 1 0 0 0
ADD 1 0 0 0 0 0
XOR 0 1 0 0 0 0
CMP 0 0 0 0 0 0

OTHER 0 0 0 0 0 0

(15)

After scoring this D matrix versus the E matrix, the next
step is to swap the first two opcodes in the putative key, that
is, we swap MOV and CALL in the first row of (13). This
is accomplished by simply swapping the first two rows and
columns of (15). This modified matrix is given by

MOV CALL ADD XOR CMP OTHER
MOV 1 0 0 0 0 0
CALL 0 2 0 0 0 0
ADD 0 1 0 0 0 0
XOR 1 0 0 0 0 0
CMP 0 0 0 0 0 0

OTHER 0 0 0 0 0 0

(16)

From this point, the algorithm proceeds exactly as in Jack-
obsen’s algorithm. That is, we score the matrix in (16) using
the E matrix obtained from the metamorphic family, swap
elements, and so on. The score for the opcode sequence
is given by the score for the final D matrix. Table 3 gives
pseudocode for our scoring and classification technique.

Table 3 Metamorphic malware scoring and detection

//
//Detect Metamorphic Malware:
// Extract opcodes from family viruses and a given code
// Determine top n most frequent opcodes
// E = digraph distribution matrix of a specific metamorphic family
// K = (opcode0, opcode1, . . . , opcoden−1, opcodeother)
// = initial putative key in descending order of expected frequency
// D = digraph frequency matrix of the given code
// d(D, E) = ∑

i, j |di j − ei j |
///
score = d(D, E)

for k = 1 to n
for i = 0 to n − 1

and j = i + k to n − 1
swap rows i and j of D
swap columns i and j of D
if d(D, E) < score then

swap(opcodei , opcode j) //swap the elements in the key
score = d(D, E) //update the least score
k = 0 //start over from the first iteration
next k //start over from the first iteration

end if
else

swap rows i and j of D //revert back to the old key
swap columns i and j of D //revert back to the old key

end else
next i

next j
next k
if score ≤ threshold

classify code as family virus
else

classify code as not a family virus

4 Experimental results

This section contains our experimental results. First, we pro-
vide results to justify our choice of parameters and scoring
function. Then we give results for our scoring technique when
applied to metamorphic malware. Finally, we compare our
results to previous work.

4.1 Parameter selection

There are several parameters in our algorithm. Here, we con-
sider variations on the scoring function, the size of the opcode
matrix, the matrix normalization, and the swapping sched-
ule. Some of these are shown to have a significant effect on
performance.

When comparing parameters, we measure effectiveness
by computing the area under the curve (AUC) of receiver
operating characteristic (ROC) curves [7]. For an ROC
curve, the AUC gives the probability that a randomly chosen
positive instance will score higher than a randomly chosen
negative one. Consequently, an AUC of 1 implies perfect
classification, while an AUC of 0.5 implies that classifica-
tion is no better than flipping a coin.

123

Simple substitution distance and metamorphic detection 165

Table 4 Comparison of matrix sizes

n AUC Standard error

15 0.9670 0.0147

20 0.9807 0.0099

25 0.9824 0.0094

30 0.9794 0.0105

35 0.9789 0.0106

50 0.9796 0.0104

60 0.9796 0.0104

100 0.9796 0.0104

For all of the experiments in this section, we used the same
set of malware files, namely, MWOR metamorphic worms
with a padding ratio of 4.0 [24]. The benign files and our
experimental design are discussed below in Sect. 4.2. Also,
for the sake of brevity, we omit the ROC curves in this section
and just give the AUC statistics. The ROC curves for all of
the cases considered here can be found in [21].

4.1.1 Opcode matrix size

An important parameter is the number of opcodes we use in
the E and D matrices. Recall that we distinguish the n most
frequent opcodes, with all remaining opcodes combined into
category n +1. We conducted experiments for values for n in
the range of 15–100. The results are summarized in Table 4
where we see that n = 25 gives the best results from the
values tested. Hence, for all experiments discussed below,
the D and E matrices are 26 × 26.

It is not surprising that a relatively small number of
opcodes provides better results than a larger number. Pre-
vious research has shown that the 14 most frequent opcodes
account for more than 92 % of all opcodes in malware sam-
ples [5,9]. Consequently, for the scoring technique consid-
ered in this paper, uncommon opcodes will tend to act as
noise, as opposed to providing useful information. How-
ever, the mere presence of rare opcodes can serve as a use-
ful heuristic for malware detection [5]. For example, certain
opcodes do not occur in compiled code [3]. Since malware is
much more likely to be written in assembly than benign code,
the presence of any such opcodes would indicate suspect
code.

4.1.2 Scoring function

Among others, we experimented with the following three
scoring functions:

score1(K) =
∑

i, j

|di j − ei j |

score2(K) =
∑

i, j

|di j − ei j |2

Table 5 Comparison of scoring functions

Function AUC Standard error

score1 0.9785 0.0107

score2 0.9339 0.0229

score3 0.8807 0.0350

score3(K) =
∑

i, j

|d2
i j − e2

i j |

Note that score1 is the Manhattan distance between D and E ,
which is the standard scoring function used in Jackobsen’s
algorithm [15], while score2 differs by a constant factor from
the square of the Euclidean distance, and score3 computes the
sum-of-squares error.

Our experimental results are given in Table 5. From these
results, we see that score1 outperforms the other two scores,
so we have used this score in all experiments discussed below,
where we drop the subscript and simply refer to it as score.

4.1.3 Normalization

Since multiple family viruses contribute to the matrix E , we
experimented with two different normalization techniques.
In the first method, we accumulate totals from all files that
contribute to E , and then we simply divide each cell by the
sum of all of the cells. For the second method, we create a
matrix for each file, normalizing each by dividing the count
in each cell by the total for that matrix. Then we average
these individual matrices to obtain the E matrix. Note that
this second approach weights each file equally, while the first
approach weights each opcode equally.

The AUC and standard error for both normalization meth-
ods is shown in Table 6. These results indicate that there is
little difference between the tested normalization methods,
but the second technique performs marginally better, so we
use the second method to construct the E matrix in our exper-
iments.

4.1.4 Swapping strategies

We experimented with the following six swapping strategies:
Swapping strategy 1: Swap all adjacent pairs of opcodes,

then all pairs at distance 2, then all pairs at distance 3 and so
on until we have done exactly

(n
2

)
swaps.

Table 6 Comparison of normalization techniques

Normalization AUC Standard error

Method 1 0.9785 0.0107
Method 2 0.9789 0.0106

123

166 G. Shanmugam et al.

Table 7 Comparison of swapping strategies

Swapping strategy AUC Standard error

1 0.9709 0.0137

2 0.9824 0.0094

3 0.9791 0.0108

4 0.9557 0.0188

5 0.9576 0.0178

6 0.9539 0.0185

Swapping strategy 2: Swap as in strategy 1, but any time
the score improves, start again from the beginning. Note that
this is the strategy employed in Jackobsen algorithm [15].

Swapping strategy 3: Swap all adjacent pairs of opcodes,
then all pairs at distance 2, then all pairs at distance 3, and
so on. Once we complete these

(n
2

)
steps, we iterate the

entire process, repeating until we complete one entire itera-
tion without any swap improving the score.

Swapping strategy 4: Only swap adjacent pairs of
opcodes, that is, we make only n swaps.

Swapping strategy 5: This is similar to strategy 4, except
that whenever a swap improves the score, we continue swap-
ping that element until the score no longer improves, at which
point we revert to the position where the series of swaps
began.

Swapping strategy 6: As in strategy 4, we do n swaps
of adjacent pairs. We then repeat, until we go through one
entire iteration without any swap improving the score.

The results in Table 7 show that swapping strategy 2 yields
the best results, so we employ strategy 2 in our experiments.
It is interesting to note that the fast swapping strategy 1,
and the even faster strategy 4, are surprisingly competitive.
Hence, for the sake of efficiency, it might be worth consider-
ing sacrificing a small degree of accuracy for this improved
performance, at least in some applications.

4.2 Test data

The metamorphic families considered here are the Next Gen-
eration Virus Generation Kit (NGVCK) [22], Second Gener-
ation Virus Generator (G2) [30], and the metamorphic worm
developed and analyzed in [24], which we refer to as MWOR.

The corresponding ROC curves appear in Fig. 4, with the
AUC and standard error for each tabulated in the “Simple
Substitution Score” columns of Table 8.

The MWOR worms [24] use various “padding ratios,”
where the padding ratio is given by the ratio of dead code
instructions to the number of instructions that constitute the
core functionality of the worm. So, for example, a padding
ratio of 0.5 indicates that the virus has half as much dead
code as worm instructions.

Our test set of metamorphic viruses consists of 50
NGVCK files, 50 G2 files. In addition, for the MWOR worm,
we test 100 files for each of the padding ratios of 0.5, 1.0,
1.5, 2.0, 2.5, 3.0, 3.5 and 4.0. The various padding ratios for
MWOR files are denoted

MWOR_0_5, MWOR_1_0, . . . , MWOR_4_0.

So that our results are comparable to previous research
[16,20,28,30], for NGVCK and G2, we use Cygwin utility
files [8] as representative examples of benign files. For testing
MWOR, which is a Linux worm, we use Linux library files.
Since the MWOR metamorphic generator [24] uses Linux
library files as its source of dead code, these library files
should provide a more challenging test case, as compared to
randomly selected files.

For each experiment, we employed five-fold cross-
validation. In this approach, the data is partitioned into five
sets and five separate experiments are performed. In each
experiment, 80 % of the data is used for training, with the
remaining 20 % reserved for testing, and in each of the five
“folds” a different subset is reserved for testing. Advantages
of this approach include a reduction in data bias, as well as
an increase in the number of data points generated from a
given dataset [28].

4.3 Test results

We present our classification results in this section. We use
ROC curves to evaluate the effectiveness of the scores as
a detection system [7]. Each ROC curve is represented as a
two-dimensional plot, in which the x-axis represents the false
positive rate and the y-axis represents the corresponding true
positive rate. The overall accuracy is quantified by computing
the area under the curve (AUC). As discussed above, an AUC
of 1 represents perfect scoring, while an area of 0.5 represents
random scoring.

4.3.1 NGVCK and G2 viruses

The graphs in Fig. 1a and b show the results obtained for
NGVCK and G2 family viruses, respectively. These results
indicate that NGVCK and G2 family of viruses are easily dis-
tinguishable from benign files using our scoring technique.
While these results are strong, comparably good results for
these metamorphic families can be found in [20,28,30], for
example.

4.3.2 MWOR worms

The similarity scores obtained by applying our detection sys-
tem to MWOR files with various padding ratios are shown
in Figs. 2 and 3. The corresponding ROC curves appear in

123

Simple substitution distance and metamorphic detection 167

Fig. 1 NGVCK and G2 Scores

Fig. 2 MWOR Scores for padding ratios from 0.5 to 2.0

123

168 G. Shanmugam et al.

Fig. 3 MWOR Scores for padding ratios from 2.5 to 4.0

Fig. 4, with the AUC and standard error for each tabulated in
the “Simple Substitution Score” columns of Table 8.

As expected, detection success for the MWOR worms
declines at higher padding ratios. However, the decline is
surprisingly modest. In [24] a scoring system based on hid-
den Markov models (HMM) is tested against the MWOR
metamorphic families. The results from [24] are reproduced
here in “HMM Score” columns of Table 8. For the MWOR
worms, our results offer a significant improvement over this
HMM-based detection strategy. Note that the HMM-based
approach has proven difficult to surpass in previous meta-
morphic detection research [16,20,28,30].

4.4 Efficiency

In this section, we present results on the efficiency of our
simple substitution scoring technique. Note that the results

here only apply to the scoring phase, that is, we ignore the
(costly) step of extracting opcodes.

In Table 9 we give results for number of score computa-
tions and number of swaps, along with timings, for various
test cases when scoring family viruses. Analogous results for
benign files appear in Table 10.

In these tables, the “comparisons” columns refer to the
number of steps of the key schedule algorithm (1) that are
executed. Equivalently, “comparisons” is the number of times
that we compute score(K). The “swaps” columns refer to
the number of the score computations for which the score
improves, in which case the elements of K are actually
swapped. Note that the number of “swaps” is also the number
of times that we restart from the beginning of the swapping
schedule in (1).

The results in Tables 9 and 10 indicate that our simple
substitution score is reasonably efficient, with an average

123

Simple substitution distance and metamorphic detection 169

Fig. 4 ROC Curves for
MWOR worms

Table 8 Simple substitution scoring vs HMM scoring (MWOR worms)

Padding Simple sub. Score HMM Score

Ratio AUC Error AUC Error

0.5 1.0000 0.0000 1.0000 0.0000

1.0 1.0000 0.0000 0.9900 0.0105

1.5 0.9980 0.0021 0.9625 0.0350

2.0 0.9985 0.0013 0.9725 0.0211

2.5 0.9859 0.0061 0.8325 0.0656

3.0 0.9725 0.0097 0.8575 0.0623

4.0 0.9565 0.0128 0.8225 0.0666

Table 9 Scoring family viruses

Padding Comparisons Swaps Time Avg size

Ratio Avg Min Max Avg Min Max (in ms) (in KB)

0.5 1,584 603 3,704 23 6 63 29.5 21.0

1.0 1,251 492 2,145 23 5 35 26.5 27.3

1.5 1,114 585 1,824 23 11 46 24.0 34.3

2.0 924 660 1,597 19 10 37 23.9 41.0

2.5 1,023 591 1,679 21 11 33 31.2 48.1

3.0 1,118 744 1,646 24 16 35 27.2 55.0

3.5 1,114 674 1,920 24 11 51 25.3 58.9

4.0 1,020 533 1,524 21 8 32 23.3 68.7

processing time between 0.02 and 0.04 s, neglecting the
cost of extracting opcode sequences. Of course, improved
efficiency is always desirable for virus scanning, and the

Table 10 Scoring benign files

Padding Comparisons Swaps Time Avg size

Ratio Avg Min Max Avg Min Max (in ms) (in KB)

0.5 1,831 1,067 2,592 32 20 48 36.2 84.6

1.0 1,827 1,167 2,785 37 19 55 37.5 84.6

1.5 1,387 922 1,929 31 19 42 36.0 84.6

2.0 1,493 942 2,220 34 22 55 34.6 84.6

2.5 1,586 868 2,940 37 18 65 35.6 84.6

3.0 1,529 988 2,799 35 25 48 34.3 84.6

3.5 1,612 830 3,055 38 24 67 35.9 84.6

4.0 1,588 955 2,426 36 23 53 35.2 84.6

results in Sect. 4.1.4 indicate that faster swapping strategies
may yield comparable results.

5 Conclusions and future work

We designed and implemented an opcode-based software
similarity technique and applied it to the metamorphic mal-
ware detection problem. The algorithm utilizes a scoring
approach based on an efficient attack on simple substitution
ciphers [15].

Our algorithm was implemented and extensively tested.
The technique achieves a high degree of accuracy when
tested on some challenging cases. In particular, this technique
outperformed a previously developed approach based on

123

170 G. Shanmugam et al.

hidden Markov models [30], which has served as a bench-
mark in several recent studies [16,20,24,28].

Future work could include efforts to improve on the
digraph frequency analysis that forms the basis of our
simple substitution score. Efforts to improve scoring effi-
ciency might also be worth considering. For example, exper-
iments using faster or randomized swapping strategies might
decrease score computation times without diminishing the
results. Ideally, we would like to avoid the costly disassem-
bly step and instead generate scores directly from binary
files. A comparison of our simple substitution score—both in
terms of performance and efficiency—to an analogous score
based on Levenshtein distance [14] could also be consid-
ered. Finally, it would be interesting to analyze the relative
strengths and weaknesses of the simple substitution score in
comparison to other scoring techniques.

References

1. Attaluri, S., McGhee, S., Stamp, M.: Profile hidden Markov models
and metamorphic virus detection. J. Comput. Virol. 5(2), 151–169
(2009)

2. Aycock, J.: Computer Viruses and Malware. Springer, Berlin
(2006)

3. Austin, T.H. et al.: Exploring hidden Markov models for virus
analysis: A semantic approach, Proceedings of 46th Hawaii Inter-
national Conference on System Sciences (HICSS 46), January 7–10
(2013)

4. Baysa, D., Low, R.M., Stamp, M.: Structural entropy and meta-
morphic malware, submitted

5. Bilar, D.: Opcodes as predictor for malware. Int. J. Electron. Secur.
Digit. Forensics 1(2), 156–168 (2007)

6. Borello, J., Me, L.: Code obfuscation techniques for metamorphic
viruses. J. Comput. Virol. 4(3), 30–40 (2008)

7. Bradley, A.P.: The use of the area under the roc curve in the evalu-
ation of machine learning algorithms. Pattern Recognit. 30, 1145–
1159 (1997)

8. Cygwin, Cygwin Utility Files, http://www.cygwin.com/
9. Desai, P.: Towards an undetectable computer virus, Master’s

report, Department of Computer Science, San Jose State University
(2008). http://scholarworks.sjsu.edu/etd_projects/90/

10. Deshpande, S.: Eigenvalue Analysis for Metamorphic Detection,
Master’s report, Department of Computer Science, San Jose State
University (2012). http://scholarworks.sjsu.edu/etd_projects/279/

11. Dhavare, A., Low, R.M., Stamp, M.: Efficient cryptanalysis of
homophonic substitution ciphers. to appear in Cryptologia

12. Filiol, E.: Metamorphism, formal grammars and undecidable code
mutation. Int. J. Comput. Sci. 2, 70–75 (2007)

13. Idika, N., Mathur, A.: A Survey of Malware Detection Techniques,
Technical report, Department of Computer Science, Purdue Univer-
sity (2007). http://www.serc.net/system/files/SERC-TR-286.pdf

14. Islita, M.: Levenshtein Edit Distance (2006). http://www.miislita.
com/searchito/levenshtein-edit-distance.html

15. Jakobsen, T.: A fast method for the cryptanalysis of substitution
ciphers. Cryptologia 19, 265–274 (1995)

16. Lin, D., Stamp, M.: Hunting for undetectable metamorphic viruses.
J. Comput. Virol. 7(3), 201–214 (2011)

17. Mathai, J.: History of Computer Cryptography and Secrecy System.
http://www.dsm.fordham.edu/mathai/crypto.html

18. Patel, M.: Similarity Tests for Metamorphic Virus Detection, Mas-
ter’s report, Department of Computer Science, San Jose State Uni-
versity, (2011). http://scholarworks.sjsu.edu/etd_projects/175/

19. Rad, B.B., Masrom, M., Ibrahim, S.: Evolution of computer virus
concealment and anti-virus techniques: a short survey. IJCSI Int.
J. Comput. Sci. Issues 8(1) (2011). http://arxiv.org/pdf/1104.1070.
pdf

20. Runwal, N., Low, R.M., Stamp, M.: Opcode graph similarity and
metamorphic detection. J. Comput. Virol. 8(1–2), 37–52 (2012)

21. Shanmugam, G.: Simple Substitution Distance and Metamorphic
Detection, Master’s report, Department of Computer Science,
San Jose State University (2012). http://scholarworks.sjsu.edu/
etd_projects/270/

22. Snakebyte. Next Generation Virus Construction Kit (NGVCK)
(2000). http://vx.netlux.org/vx.php?id=tn02

23. Sorokin, I.: Comparing files using structural entropy. J. Comput.
Virol. 7(4), 259–265 (2011)

24. Sridhara, S.M., Stamp, M.: Metamorphic worm that carries its own
morphing engine. to appear in J. Comput. Virol.

25. Stamp, M.: Information Security: Principles and Practice, 2nd edn.
Wiley, Hoboken (2011)

26. Stamp, M., Low, R.M.: Applied Cryptanalysis: Breaking Ciphers
in the Real World. Wiley-IEEE Press, Chichester (2007)

27. Szor, P., Ferrie, P.: Hunting for Metamorphic, Symantec Security
Response. http://www.symantec.com/avcenter/reference/hunting.
for.metamorphic.pdf

28. Toderici, A.H., Stamp, M.: Chi-squared distance and metamorphic
virus detection. to appear in J. Comput. Virol.

29. Venkatachalam, S., Stamp, M.: Detecting undetectable computer
viruses. Proceedings of 2011 International Conference on Security
& Management (SAM ’11), pp. 340–345

30. Wong, W., Stamp, M.: Hunting for metamorphic engines. J. Com-
put. Virol. 2(3), 211–229 (2006)

31. Zbitskiy, P.: Code mutation techniques by means of formal gram-
mars and automatons. J. Comput. Virol. 5(3), 199–207 (2009)

123

http://www.cygwin.com/
http://scholarworks.sjsu.edu/etd_projects/90/
http://scholarworks.sjsu.edu/etd_projects/279/
http://www.serc.net/system/files/SERC-TR-286.pdf
http://www.miislita.com/searchito/levenshtein-edit-distance.html
http://www.miislita.com/searchito/levenshtein-edit-distance.html
http://www.dsm.fordham.edu/mathai/crypto.html
http://scholarworks.sjsu.edu/etd_projects/175/
http://arxiv.org/pdf/1104.1070.pdf
http://arxiv.org/pdf/1104.1070.pdf
http://scholarworks.sjsu.edu/etd_projects/270/
http://scholarworks.sjsu.edu/etd_projects/270/
http://vx.netlux.org/vx.php?id=tn02
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

	Simple substitution distance and metamorphic detection
	Abstract
	1 Introduction
	2 Background
	2.1 Metamorphic malware
	2.1.1 Register swapping
	2.1.2 Subroutine permutation
	2.1.3 Garbage instruction insertion
	2.1.4 Instruction substitution
	2.1.5 Transposition
	2.1.6 Formal grammar mutation

	2.2 Metamorphic detection
	2.3 Jackobsen's Algorithm

	3 Proposed similarity score
	4 Experimental results
	4.1 Parameter selection
	4.1.1 Opcode matrix size
	4.1.2 Scoring function
	4.1.3 Normalization
	4.1.4 Swapping strategies

	4.2 Test data
	4.3 Test results
	4.3.1 NGVCK and G2 viruses
	4.3.2 MWOR worms

	4.4 Efficiency

	5 Conclusions and future work
	References

