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Abstract Today’s security threats like malware are more
sophisticated and targeted than ever, and they are growing at
an unprecedented rate. To deal with them, various approaches
are introduced. One of them is Signature-based detection,
which is an effective method and widely used to detect mal-
ware; however, there is a substantial problem in detecting
new instances. In other words, it is solely useful for the sec-
ond malware attack. Due to the rapid proliferation of mal-
ware and the desperate need for human effort to extract some
kinds of signature, this approach is a tedious solution; thus, an
intelligent malware detection system is required to deal with
new malware threats. Most of intelligent detection systems
utilise some data mining techniques in order to distinguish
malware from sane programs. One of the pivotal phases of
these systems is extracting features from malware samples
and benign ones in order to make at least a learning model.
This phase is called “Malware Analysis” which plays a sig-
nificant role in these systems. Since API call sequence is an
effective feature for realising unknown malware, this paper
is focused on extracting this feature from executable files.
There are two major kinds of approach to analyse an exe-
cutable file. The first type of analysis is “Static Analysis”
which analyses a program in source code level. The second
one is “Dynamic Analysis” that extracts features by observ-
ing program’s activities such as system requests during its
execution time. Static analysis has to traverse the program’s
execution path in order to find called APIs. Because it does
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not have sufficient information about decision making points
in the given executable file, it is not able to extract the real
sequence of called APIs. Although dynamic analysis does
not have this drawback, it suffers from execution overhead.
Thus, the feature extraction phase takes noticeable time. In
this paper, a novel hybrid approach, HDM-Analyser, is pre-
sented which takes advantages of dynamic and static analy-
sis methods for rising speed while preserving the accuracy
in a reasonable level. HDM-Analyser is able to predict the
majority of decision making points by utilising the statistical
information which is gathered by dynamic analysis; there-
fore, there is no execution overhead. The main contribution
of this paper is taking accuracy advantage of the dynamic
analysis and incorporating it into static analysis in order to
augment the accuracy of static analysis. In fact, the execution
overhead has been tolerated in learning phase; thus, it does
not impose on feature extraction phase which is performed
in scanning operation. The experimental results demonstrate
that HDM-Analyser attains better overall accuracy and time
complexity than static and dynamic analysis methods.

1 Introduction

Malware, stands for malicious software, is a computer pro-
gram which has destructive purposes such as viruses, Trojan
horses, Spyware, Internet worms etc. Growing the Internet
significantly increases the variety and complexity of mal-
ware; hence, malware poses serious security effects on infor-
mation societies. More information about malware can be
achieved through [13,25].

In the earlier times, the most effective and accessi-
ble method for capturing malware was signature-based
detection. These days, this method is known as an industrial
standard for detecting malware which is widely utilised by
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anti-virus software [1]. Detecting a malware by this method
is consisted of several phases. The first phase is extracting at
least a signature from a malicious file. A signature can be sim-
ply a checksum or a sequence of bytes which is extracted from
content of a malicious file. The next phase is publishing sig-
nature for usage of end user’s anti-virus software. Anti-virus
updates its signature database with new signatures. After fin-
ishing the update stage, anti-virus is able to detect new mal-
ware. This approach is quite fast and effective for detecting
known malware.

There are several signature types and extraction meth-
ods for various type of malware in terms of infection and
self-protection mechanisms. For detection of those malware
which do not utilise any obfuscation method in their infec-
tion procedure, a checksum of entire file is sufficient because
their new generated sample and their ancestors are exactly
same. Unfortunately, these days, this kind of malware is
rarely found unless it is quite weak and will be stopped in
earlier minutes of its propagation. In other words, different
tricks have been invented and employed by malware writ-
ers to bypass various detection methods. One of the most
popular tricks which was utilised in earlier times is altering
some sections of an executable file in order to bypass the
signature detection scanners. This method has been being
used by many malware writers. Luckily, the majority of
these malware instances have at least one unchangeable sec-
tion and this matter can be easily exploited to extract a
signature from such malicious file. At this time, one fur-
ther signature type is introduced which is called “section
based checksum”. This type of signature is a calculated
checksum of at least one unalterable section of an malicious
executable file. It is interesting to notice that by applying
this method on anti-virus scanner engines, a vast amount of
known executable malware including most of Worms, Tro-
jans, Rootkits etc can be detected. The latest practical sig-
nature which is used in anti-virus scanners is called “clas-
sic signature” throughout this paper. A classic signature is
consisted of one or more than one byte sequences which is
extracted by a human expert from a infected or a portable
executable malicious file. This kind of signature is appro-
priate for those malware which modify all their sections. To
deal with these kinds of malware, experts have to find some
sub-sequences which are remain immutable during infection
procedure and use them as signature to detect all variants
of considered malware. These three type of signature are
the most common kinds of signature that use by most of
anti-virus scanners. There are some other varieties of signa-
tures that produced by blending these types such as “regular
expression” signature which is a classic signature that has
some variables within it in order to cover changeable parts
of malware.

Despite of effectiveness and reliableness of signature
based method, it has two major drawbacks. Signature extrac-

tion is a hand crafted and semi-automated task which brings
significant difficulties to the scanner engines based on sig-
nature database. As a matter of fact, extracting some types
of signature especially classic and regular expressions is a
tedious task and needs remarkable amount of time and exper-
tise. On the other hand, malware writers deploy diverse self
protection techniques and use them in their malware; there-
fore, it becomes increasingly hard for experts to extract sig-
nature for them. The second issue is this method detects mal-
ware based on a signature database. In other words, it is able
to catch malware which are identified before; thus, it is not a
reliable approach for preventing malware attacks in the ear-
liest occurrences.

Two interesting kinds of malware which attempt to be
hidden from detectors’ sight are Polymorphic and Metamor-
phic malware. The body of them is modified during infection
process. A polymorphic malware has an embedded encryp-
tion engine and uses that with a random key to generate a new
instance of itself. The content of the new instance is quite dif-
ferent from its original version. This content is decrypted in
execution time by a decryption engine. Obviously, it is so
hard to detect this type of malware by classic signature base
method. In some samples decryption engine has a plain code
and this is a pleasant fortune to extract signature from this
section; however, in most sophisticated polymorphic mal-
ware this part uses some obfuscation techniques in order to
avoid detection scanners. The second one is Metamorphic
malware, which is able to generate an instance of itself with
a different internal structure and probably disparate code;
however, it behaves like its ancestors. It employs various
obfuscation techniques to alter its code. These two types of
malware are big obstacles on the way of signature detection
method.

To resolve the main drawback of classic signature based
method, which is an inability in detecting unknown malware,
behaviour based (or heuristic) solutions are developed. These
methods attempt to find the pattern of malware behaviour for
further recognitions of similar malicious behaviour. They are
able to fulfil the malicious activity detection during code
execution by trying to trace any suspicious stir [29]. Even if
a code is obfuscated, its behaviour and functionalities remain
invariant.

A heuristic approach typically utilises data mining as well
as machine learning techniques; hence, it requires feature
extraction phase to extract information from executable files.
The procedure of feature extraction phase is usually called
“malware analysis”. There are three major approaches to
do that [13]. First one is “Dynamic Analysis” that extracts
features by observing program’s activities such as system
requests during its execution time. The most appropriate fea-
ture which is extracted by this analysis method is a sequence
of Application Programming Interface (API) calls. API is
an interface provided by the operating system for programs
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through which they invoke the operating system to get a ser-
vice [16]. There are other kinds of feature which are used
by intelligent malware detection approaches such as DLL
usage information, n-grams, assembly instructions sequence,
dependency graph, and control flow graph. From all of them,
a sequence of called APIs is one of the most effective feature
being able to describe the behaviour of a program almost
perfectly. The second type of analysis is “Static Analysis”,
or reverse engineering, which analyses a program in source
code level. Assembly code or binary code of a program is
investigated in order to find some useful features for distin-
guishing malware samples from benign ones. Finally, the last
type is hybrid approach combining both static and dynamic
analyses [21,26].

Static analysis offers information about control flow, data
flow and other statistical features of programs without actu-
ally running them. Several reverse engineering techniques,
including disassembling, decompiling etc., can be applied
on binary codes in order to construct an intermediate repre-
sentation model for them. The most remarkable advantage of
static analysis is being free from the execution overhead; nev-
ertheless, it gives merely an approximation of the actual exe-
cution because at any decision point, it is solely able to guess
which branch will be followed at the execution time [23].
Dynamic analysis runs the given executable file and moni-
tors it’s behaviour in a real or a virtual environment. Although
it gives the actual information about the control and data flow,
this kind of analysis needs a noticeable amount of time for
doing the analysis operation.

Since static analysis methods do not run the given pro-
grams, they are faster and safer than dynamic ones. How-
ever, it is responsible for inability to realise the correct way
in decision making points when traversing a control flow
graph. Although dynamic analysis does not have this prob-
lem, a crucial question is arisen here is in which environment
the malicious executable files should be executed. Using a
dedicated stand alone machine and restoring the operating
system to the first status after each dynamic analysis run
might be the first solution; however, it is not an efficient
solution because of heavy overhead. A popular alternative
is running executable files in a virtual machine; therefore,
only the virtual computer would be affected [2]. In the recent
times, hybrid analysis has been presented where a combina-
tion of static and dynamic information are used to analyse
malware samples. This approach tends to take advantages of
static and dynamic analysis methods which are speed and
accuracy respectively.

In this paper, a novel analysis approach is introduced for
extracting the API call sequence from executable files. This
approach, HDM-Analyser, analyses a PE-file, which is the
standard executable (EXE) file format used by the Microsoft
Windows operating system, statically and simultaneously
utilises runtime information on ambiguous points to make

them clear. HDM-Analyser is faster and safer than dynamic
analysis method and has better accuracy than static analysis
approach; thus, it can be used as feature extractor module in
practical malware detection systems.

Since it is essential for end users to work in a safe envi-
ronment while the system’s performance is not declined by
the employed malware detection system, preparing a precise
and quick malware analysis method is an inevitable matter,
which is almost a heavy procedure in the detecting process in
terms of time complexity. Consequently, these two measures
is chosen as criteria to compare performance of the presented
approach with its rivals.

The paper is organised as follows: in Sect. 2, a variety of
data-mining based malware detection approaches are pre-
sented. As mentioned, most of these approaches need an
analysis procedure to extract the required features. HDM-
Analyser system is expressed in Sect. 3. The experimental
results are described and discussed in Sect. 4. The paper is
concluded in the final section.

2 Related work

Since this paper is focused on malware analysis particu-
larly extracting API calls, in this section malware detection
approaches in which malware analysis procedure is used are
described. Malware analysis has been under investigation
since the early days of vicious activity appearance. [13] is
one of the original works that presents a great overview on
vast majority of malware kinds, their origination, their pur-
pose, and their associated detection methods.

The analysis can be performed at the source code level or
at the binary level where merely the executable file is accessi-
ble. It is unrealistic to assume the availability of source code
for every program [4]; however, there are some tools being
able to generate an approximation source code out of binary
executable files such as decompilers and disassemblers. The
required features from the executables can be extracted either
by executing them or performing static reverse engineering or
by using both techniques, which is known as hybrid analysis.

Dynamic analysis requires to run the program and moni-
tor its execution in a real or a virtual machine environment.
One of the earliest system call (API) detection engines has
been created by Sekar et al. [22]. It is able to compare APIs
which are modelled previously with the APIs called at run-
time. An intermediate representation of an executable file is
constructed in the form of an Auditing Specification Lan-
guage (ASL). The ASL is compiled into a C++ class that is
then compiled and linked to create a model of an API in the
system call detection engine. In fact, it is an anomaly-based
detector wherein the APIs required by a program are manu-
ally specified and the detector monitors API calls, flagging
any calls outside the specification as malicious. This method
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has to compile and link the ASL for each sample; thus, it
seems this approach needs considerable amount of time for
its detection process. Unfortunately, there are no reasonable
experimental results on their paper.

Roundy and Miller have introduced a pre-execution analy-
sis by combining static and dynamic methods to conduct
control and data-flow analysis [21]. These analyses form the
interface by which the analyst instruments the code. This
interface simplifies the instrumentation task and reduce the
number of instrumented program locations by a hundred-fold
relative to existing instrumentation-based methods of identi-
fying unpacked code. They showed that by applying a hybrid
of dynamic and static analysis, the probability of correctly
detecting malicious programs can be significantly increased.
Testing their algorithm on 200 malware samples, the authors
found that 33 % of malicious code analysed by the combined
methods would not have been identified by dynamic analysis
only.

Wagner and Dean [27] built non-deterministic push-down
automata (NDPDA) accepting valid sequences of APIs,
obtained through static analysis of the source code. At exe-
cution time this automata is used for evaluating the runtime
sequence of API calls. If a runtime sequence of APIs is not
accepted by automata, that might signal an intrusion. Another
approach which utilises both static and dynamic analysis
in order to find detect injected, dynamically generated and
obfuscated code is introduced by [20]. In fact, this approach
proposes an anomaly based technique where static analysis
is assisted by dynamic analysis. It is used to identify the loca-
tion of API calls within the program. The programs can be
dynamically monitored later to verify that each observed sys-
tem call is made from the same location identified using the
static analysis. These both methods are promising; however,
they need to perform dynamic analysis in order to offer a
perfect detection. Therefore, this matter leads them to suffer
from heavy processes of executing programs.

In order to rise the detection speed, it is essential to
avoid using dynamic analysis in the scanning phase (i.e.
test phase). There are some approaches which attempt
not to utilise dynamic analysis in their procedures or at
least try to perform it prior to start the scanning process.
A method attempting to analyse an executable file with-
out execution is proposed by Bergeron et al. [3]. In this
approach the given executable is first disassembled; then,
the assembly code is parsed to generate a syntax tree from
its control flow graph (CFG) which is created before. An
API-graph is constructed from this CFG where only API
calls are preserved while all other assembly instructions
are not involved. A critical-API graph is created from this
API-graph where the user determines what APIs are crit-
ical through the use of security policies which are rep-
resented as an automaton, also referred to as security
automaton.

One further approaches which extracts API calls via
static analysis is “Static Analysis for Vicious Executables
(SAVE)” [24]. It implements signatures in the form of API
calls. In this method, first, the binary file is decompressed (if
it was packed), then it is parsed in order to extract the API
call sequence. Then, the API calls are compared against the
signature calls using a similarity measure. If the similarity
was above certain threshold, then the test file is identified
as a known malicious program. Although this method works
properly on the given sample set, it has some weak points.
Most of the test samples were worms. Furthermore, the tech-
nique is mostly prone to false-positive errors, as API calling
sequence can have high similarity between different malware
as they have similar behaviour.

A pleasant collaboration between static and dynamic
analysis techniques can reduce their drawbacks. Using
dynamic analysis information on the under inspection pro-
gram’s points which are ambiguous for static analysis makes
it more precise than before. Developing such a system is an
incredibly hard task which the system must manage dynamic
analysis on an executable file while the static analysis analy-
ses its codes. It needs some braking points being identifiable
by both dynamic and static analysis techniques. These break
points are widely used by developers in order to debug their
programs which is not available in the most released version
of software particularly in malware. This paper proposed the
API calls as break point which is approachable by dynamic
and static analysis in the vast majority of executables. Since
it is required break points being on decision making state-
ments, API calls are not perfect for this task. Thus, the pre-
sented approach, HDM-Analyser, make use of some statisti-
cal information which is obtained by performing a matching
algorithm on the situations of API calls in the source code
and their position in the sequence of called APIs at runtime.
Although HDM-Analyser does not extract the sequence of
called APIs as exactly as dynamic analysis does, its analysis
speed is incredibly higher rather than dynamic method.

3 Proposed method: HDM-Analyser

Applying data mining techniques on API call sequences is a
popular and effective approach to detect unknown malware.
In fact, an API call sequence can represent the behaviour
of a program; therefore, it is an appropriate feature which
can be used to classify unknown executable files accord-
ing to their behaviour. Typically, an API call sequence is
extracted by analysing the under inspected executable. As
mentioned before, malware analysis methods are categorised
to static, dynamic, and hybrid analyses. Static analysis inves-
tigates the source codes of the given executables in order
to provide some information such as API calls, assembly
instructions etc. which are able to describe them. On the
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Fig. 1 An overall view of HDM-Analyser. It makes a use of a learning
model in order to overcome the ambiguity of static analysis in condi-
tional jump statements. This learning model, which is constructed by
combining the outcomes of static and dynamic analysis methods, helps
static analysis to choose the way which would be selected if the program
will be executed. This type of selection is not based on guess and works
for most of the times properly

other hand, dynamic analysis executes the input file and
monitors its behaviour to capture required information. This
type of analysis mostly logs the called APIs. There are
some difficulties with both of considered analysis techniques.
Although static analysis is quite faster than dynamic, it has a
problem with conditional statements in the input code. The
major issues of dynamic analysis are execution overhead
and risky environment which needs to be isolated to pre-
vent damaging the system. Hybrid analysis combines both
static and dynamic analyses to perform a perfect analyse
on executable files. This paper presents a novel approach
that utilises machine learning techniques with taking advan-
tages of considered analysis methods in order to improve the
accuracy of malware analysis procedure while preserving its
speed at a point reasonable. We call this approach as HDM-
Analyser that stands for a Hybrid Analyser based on Data
Mining techniques.

An overall view of HDM-Analyser is outlined in Fig. 1.
Since this system needs a sequence of called APIs for each
executable file which gathered by dynamic analysis, API call
sequence of input file is extracted by dynamic analysis mod-
ule; meanwhile, static analysis is performed on the input file
in order to construct an ECFG model incorporated with API
calls. ECFG is an Enriched Control Flow Graph represent-
ing control flow structure of a program. In fact, it gives more
information about the program than classic CFG. A control
flow graph, in short terms CFG, is a directed graph in which
each node represents any kind of jump instruction or pro-
cedure call in the code sequence and each edge point to the
jump destination. ECFG and its incorporation with API calls
are described in Sect. 3.2. The matching engine combines the

information obtained by dynamic analysis with correspond-
ing ECFG; and then, each conditional jump receives a label
according to dynamic information. At this point, a machine
learning algorithm is employed to build a learning model
with the labelled nodes of ECFG. This learning model will
be used by HDM-Analyser at scanning time for analysing
unknown executable files.

3.1 Normalising original assembly codes

HDM-Analyser applies a code normalisation on the original
assembly codes in order to obtain a canonical form. This form
is simpler than the original code in terms of set of instruc-
tions and syntax with a reasonable generalisation level. For
instance, there are various kinds of jumps in assembly code
while in the normalised version there are solely three jump
instructions which are mapped to three different groups of
jump statements. In addition, stack elimination is used to
clarify the assembly code by replacing stack instructions
with MOV statement. Furthermore, the operators with sim-
ilar mechanism and final effects are unified by mapping to a
single instruction, for example, any kind of addition or sub-
traction are mapped toADD, multiplications and divisions are
mapped to MUL and shifts are unified. The given assembly
file is abstracted as a small set of notations. Table 1 introduces
this abstraction mapping.

Procedure call and return instructions have a different
story; therefore, it needs to take another method to make them
normalised. That is why that CALL and RET instructions are
not mentioned in Table 1. Because of their nature, all pro-
cedure calls and return instructions should be transformed
to unconditional jumps and it is managed by Algorithm 1.
There is one further call instruction which is used to invoke
API functions. In the normalisation process, an API call
instruction is mapped to API <number> notation, where
this number corresponds the API-Id. An API-Id is an integer
number that mapped to an API to facilitate the whole process.

3.2 Creating an intermediate representation by
incorporating called APIs in ECFG model

When the normalised code is available, the enriched CFG
construction can be followed.

The term “Enriched” refers to a node having a significant
information about its neighbour codes. As mentioned before,
a CFG is an abstraction model for the program’s structure.
The first pace of CFG construction is traversing normalised
assembly code. Starting from the first line of the program,
the node construction will continue till any type of jump is
met. According to conditions of the jump, any possible hap-
pening will lead to a new node through an edge; hence, every
node begins to form when a jump occurs. This trend makes
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Table 1 Instruction mapping table

Assembly instructions Normalised
notations

JE, JZ, JNE, JNZ, LOOP, LOOPZ,
LOOPE, LOOPNZ, LOOPNE, JCXZ

JE

JA, JG, JAE, JGE, JNB, JNL, JNBE,
JNLE, JB, JL, JLE, JBE, JNG, JNA,
JNGE, JNLE, JO, JC, JNO, JNC, JP,
JNP

JC

JMP JMP

ADD, SUB, INC, DEC, CMP, NEG ADD

MUL, IMUL, DIV, IDIV, SHR, SAR,
SHL, SAL

MUL

TEST, AND, OR, NOT, XOR AND

ROR, ROL ROT

PUSH, POP, MOV, LEA, MOVZX MOV

All register operands REG

All variable operands VAR

The normalisation algorithm makes use of this mapping table to
normalise instructions of the given assembly code

Algorithm 1: CnvProcCallToJmp( code, Line)
Input: code is the input assembly code,

Line is an object which contains some information about
the line that procedure is called.

1 Called Line = Line;
2 tmpJmp = new JMP instruction;
3 tmpJmp.target = Line.instruction.addressOfProc;
4 Line.instruction = tmpJmp;
5 while ( typeof( Line.instruction) != ProcEnd) do
6 if ( typeof( Line.instruction) == ProcCall) then
7 // Handle nested procedure calls
8 CnvProcCallToJmp( code, Line);
9 code.add( copyOfProc( Line));

10 end
11 if ( typeof( Line.instruction) == ProcReturn) then
12 tmpJmp = new JMP instruction;
13 tmpJmp.target = Called Line.number + 1;
14 Line.instruction = tmpJmp;
15 end
16 Line.number++;
17 end

a simple control flow graph. To enrich this graph, an inspec-
tion phase evaluates the usage of frequency for normalised
operations from certain number of instructions before current
instruction and the final results are saved in the current node.
The number of instructions taken into account for analysis
is known as Enrichment Factor, denoted by ξ through the
paper. ECFG construction is represented by Algorithm 2.
This algorithm receives the following inputs: ξ (enrichment
factor) and the C FG, and then enriches the input C FG. This
algorithm moves a window of size ξ on the input C FG and
stores the statistical information of the instructions within the
window into the branch nodes as the enrichment vector. Once

Algorithm 2: enrichCFG( ξ , C FG)
Input: ξ is the enrichment factor (window size),

C FG is the input control flow graph.
Output: An enriched control flow graph.

1 EC FG = C FG;
2 foreach ( node in EC FG);
3 do
4 List = A list of ξ predecessor nodes;
5 EV = new empty vector; // Enrichment vector
6 foreach ( i tem in List);
7 do
8 EV [ i tem.instT ype ]++;
9 EV [ i tem. f ist OperandT ype ]++;

10 EV [ i tem.second OperandT ype ]++;
11 end
12 node.EV = EV ;
13 end
14 return EC FG;

the algorithm has built the EC FG using the given inputs, the
ECFG model is constructed.

According to the amount of enrichment factor, the algo-
rithm saves the normalised operators’ frequencies of ξ earlier
instructions in the current node. Due to the importance of the
API calls, the associated number of called API is kept in
each node. An example of two enriched nodes is depicted in
Fig. 2. Here ξ = 3 and two nodes are enriched with their
three previous instruction logs. The optimum value for ξ is
obtained by experiment. It is worth mentioning that each API
call is placed on the edge which the API is called between its
start node and its final node. HDM-Analyser uses these APIs
as break points to match the information gathered by static
and dynamic analyses. This matching is like debugging an
under development software. This trend is described in next
sections of the paper.

An interesting question that might arise here is that in
Fig. 2, the statement in line 126 is assigned a specific node
in CFG, whereas, there exists no node for line 127. As a
matter of fact, a node in CFG representation scheme depicts
either a jump instruction or that of its target. According to
this definition, line 126 in Fig. 2 needs to be shown in CFG,
however, this is not the case for line 127.

3.3 Building learning model based on hybrid analysis

As mentioned before, static analysis has a drawback in
handling conditional jump statements. In the classic static
analysis the decisions are made randomly because there is
no knowledge about each alternatives. HDM-Analyser con-
structs a learning model in order to describe the behaviour
of branch instructions of a program at runtime; and then,
it offers the correct alternative on conditional jumps with a
reasonable accuracy. Each branch behaviour is indicated with
a positive or a negative label. A positive label signifies the
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(a) (b)

(c)

Fig. 2 An example of two enriched nodes of the ECFG.
In this example, ξ is set to 3; therefore, each node in ECFG is enriched
with statistical information extracted from 3 instructions prior to the
statement in question. The best value for ξ will be obtained by experi-

ment and the current value is just an example to show how the system
works. a A set of normalised codes. b Its graphical model. c Enrichment
vector of this set of codes in ECFG model

Analysis Module

PE-File

API Sequence

Analysis Module

PE-File

Learning Model
(Dynamic

information)

API Sequence

information)

(a) (b)

Fig. 3 Extracting API call sequence from a PE-file. HDM-Analyser
augments the static analysis by making use of a learning model on
ambiguous points of code. In fact, it extracts the API call sequence of
an executable file by a kind of static analysis instead of executing it;
thus, it is safer and faster than dynamic analysis. a Dynamic analysis.
b HDM-Analyser

branch statement has jumped at runtime and a negative label
shows that there was no jumping at this point. According to
Fig. 3b, a learning model, which is constructed in the prior
phases, is utilised to extract API sequence from a PE-file (i.e.
portable executable file). This API sequence is similar to the
API sequence acquired by dynamic analysis for the same
input PE-file.

Since HDM-Analyser uses a learning model for predict
the correct alternative on decision making points, in order to
have ability of analysing unseen executable files, it has to be
trained by known samples in advance. Training set is com-
posed of considerable number of data-items. Each data-item
is a conditional jump with its own label. In fact, a data-item
in HDM-Analyser is an enrichment vector which contains
some statistical information about normalised statements and
a positive or negative label. Each executable file might have

many enrichment vectors; therefore, there must be lots of
data-items in the training set.

The labelling procedure is handled by Algorithm 3. This
algorithm takes two parameters which are F , S. F is the first
node of unlabelled ECFG graph which constructed out of an
executable file codes and S is the API call sequence obtained
by dynamic analysis for that file. i is a parameter which is
used by algorithm in order to traverse the graph recursively.
This algorithm traverses the given ECFG and investigates all
enrichment vectors situated in it; and then, by making use of
API call sequence, which is generated by dynamic analysis,
specifies the label of each enrichment vector. Note that if
the algorithm visits an empty edge, without any API on it,
ignores this edge and goes to next node.

There are two known limitations for HDM-Analyser. The
first one is in training set construction process. There are
some branch nodes in ECFG model that might have no API
on their edges. This matter means in some conditional state-
ments such as loops and if instructions, there is no API
which is called at runtime. Therefore, according to Algo-
rithm 3 it is not possible to consider a label for such a node.
Since the nodes in this situation do not receive any label,
they are removed from enrichment table; thus, if the num-
ber of samples would be considerably large, this kind of
node has no impact on efficiency of the training set. Fig-
ure 4 depicts an example of this type of branch node, which
is highlighted by a question mark. On further restriction of
HDM-Analyser is dealing with jumps which their targets are
computed at runtime. It is impossible or quite hard to spec-
ify their targets by static analysis; hence, HDM-Analyser
ignores them. Given the fact that this limitation belongs to
CFG model, HDM-Analyser inherited it by CFG in static
analysis phase.
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Algorithm 3: SetLabel( F , S, i = 0)
Input: F is first node of an ECFG model constructed for a

PE-file,
S is API call sequence of same PE-file extracted by

dynamic analysis,
i an Integer variable for accessing to S cells.

Output: A labelled ECFG model.

1 //F.next Edge is an edge pointing to next node of F
2 //F. jumpEdge is an edge pointing to target of jump instruction

in F

3 if ( F.next Edge.AP I == S[i]);
4 then
5 F.label = ‘-’; // Negative label
6 SetLabel( F.next Edge.target Node, S, i + 1);
7 end
8 if ( F. jumpEdge is exist and F. jumpEdge.AP I == S[i]);
9 then

10 F.label = ‘+’; // Positive label
11 SetLabel( F. jumpEdge.target Node, S, i + 1);
12 end
13 if ( F.next Edge.AP I is not exist);
14 then
15 SetLabel( F.next Edge.target Node, S, i);
16 end
17 if ( F. jumpEdge.AP I is not exist);
18 then
19 SetLabel( F. jumpEdge.target Node, S, i);
20 end

API 7

?

Fig. 4 An example of HDM-Analyser limitation. This approach is not
able to realise the label of nodes with no API calls on their edges like
the node indicated with a question mark in this figure. These nodes are
ignored in learning phase and because of data-items’ plurality, these
nodes do not have bad impacts on analysis process

As Fig. 5 shows, there is a set of normalised assem-
bly codes for N input PE-files, which is denoted by C =
{c1, c2, . . . , cN }. The set of ECFG models, built by C set,
is indicated with G = {g1, g2, . . . , gN }. The nodes of all G
members receive their labels according to Eq. (1). All labelled
ECFG graphs, which their nodes have received their labels,
are put in a set, indicated by GL = {gl1, gl2, . . . , glN }.

L(vk) =
{+ if vk jumped at runtime

− if vk did not jump at runtime
(1)

Fig. 5 Training set construction with a sample data. An ECFG rep-
resentation model, gi is created with a normalised code, Ci . Label of
each branch node of gi is resolved and put on it by Algorithm 3. This
algorithm traverses the given ECFG and investigates all branches; and
then, by utilising of API call sequence, extracted by dynamic analysis,
specifies the label of each conditional jump node. gli notation is used
for gi which is received its labels. Finally, enrichment table is con-
structed by traversing gli . Each row of this table with its label indicates
a labelled vertex in ECFG. HDM-Analyser uses a set of enrichment
tables to collect the training set

where vk indicates the kth vertex in gi . An enrichment table,
et , is a table which stores all of enrichment vectors of a
labelled ECFG graph like gli . In other words, each row in eti
can be mapped to a branch node in gli . All enrichment tables
are collected in this set: ET = {et1, et2, . . . , etN }. Training
set is constructed by merging the members of ET . which is
shown by T = {d1, d2, . . . , dk}, where di denotes a labelled
enrichment vector of a graph and k is acquired by Eq. (2).

K =
N∑

i=1

|eti | (2)

where N is the number of ECFGs. Figure 6 illustrates a graph-
ical view of the training set.

Testing set is a set which is used for evaluating the pro-
posed approach in terms of accuracy and time. Each testing
item can be considered as an unknown executable file in the
wild. An unknown executable has to be formed as an under-
standable model for HDM-Analyser. Testing set construction
is as exactly same as training set preparation with an excep-
tion in labelling procedure. As a matter of fact, a testing item
has no label and the system predicts its label, by utilising a
classifier, in testing phase. Once the testing set items are clas-
sified, their received labels are used to measure performance
of the system.

Since HDM-Analyser is focused on speed with reasonable
accuracy, it needs a learning model with low complexity. One
of the learning models which satisfies both of these aims is
Bayesian network.
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Fig. 6 Training set in tabular form. Each row of this table represents an
enrichment vector which is constructed by collaborating static analysis
with dynamic one on a specific executable file. Training set consists of
all enrichment tables extracted from all ECFGs

3.4 Bayesian network as classification module
of HDM-Analyser

One of the most efficient classifiers, in terms of predictive
performance is competitive with state-of-the-art classifiers,
is naive Bayesian classifier [8,14]. This classifier is trained
the conditional probability of each attribute Ai given the
class label C by make use of training data. Classification
task is then done by applying Bayes rule to compute the
probability of C given the particular instance of A1, . . . , An ;
and then predicting the class label with the highest posterior
probability. This computation is rendered feasible by mak-
ing a strong independence assumption: all the attributes Ai

are conditionally independent which are given the value of
the class C . This independency means probabilistic inde-
pendence, that is, A is independent of B given C whenever
Pr(A|B, C) = Pr(A|C) for all possible values of A, B and
C , whenever Pr(C) > 0. Since this assumption is clearly
unrealistic, the performance of naive Bayes is somewhat sur-
prising. In real world issues, the attributes are depended to
each other.

In order to overcome the dependency problem, an appro-
priate language and efficient machinery to represent and
manipulate independence assertions is required which both
are provided by Bayesian networks [17]. These networks are
directed acyclic graphs which allow efficient and effective
representation of the joint probability distribution over a set
of random variables.

Each node is associated with a probability function that
takes a particular set of values as input for the node’s parent
variables and gives the probability of the variable represented

C

A A A1 2 n

Fig. 7 Structure of naïve Bayes network

by the node. This function is illustrated in Eq. (3). Let G =
(V, E)be a directed acyclic graph where V stands for vertices
and E for edges and let X = (Xv), v ∈ V be a set of random
variables indexed by V , then X is a Bayesian network with
respect to G if its joint probability density function (with
respect to a product measure) can be written as a product of
the individual density functions, conditioned on their parent
variables.

p(x) =
∏
v∈V

p(xv|x pa(v)) (3)

where x pa(v) is the set of parents of v (i.e. those vertices
pointing directly to v via a single edge). Typically, node’s
predecessors are referred as parents in the graph.

In addition, the network encodes the following conditional
independence statements: each variable is independent of its
non-descendants in the graph given the state of its parents.
These independencies are then exploited to reduce the num-
ber of parameters needed to characterise a probability dis-
tribution, and to efficiently compute posterior probabilities
given evidence. Probabilistic parameters are encoded in a set
of tables, one for each variable, in the form of local condi-
tional distributions of a variable given its parents. Using the
independence statements encoded in the network, the joint
distribution is uniquely determined by these local conditional
distributions [10].

If represented as a Bayesian network, a naive Bayesian
classifier has the simple structure depicted in Fig. 7. This
network captures the main assumption behind the naive
Bayesian classifier, namely, that every attribute (every leaf
in the network) is independent from the rest of the attributes,
given the state of the class variable (the root in the network).

HDM-Analyser builds the learning model as the form of a
Bayesian Network. This model is used to clarify the branch
nodes of new ECFGs, extracted from new executables, for
static analysis module. By utilising this learning model, the
static analysis module is able to choose the correct way in
conditional statements with a desirable level of satisfactory.
Once the execution path is specified, the system is simply
able to extract the API call sequence by traversing this path.
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Fig. 8 API call sequence extraction. HDM-Analyser utilises a learning
model in order to predict the labels of each branch node of the input
executable. Once their labels are realised, the system knows that which
branches will be jumped if the program is executed; thus, it is able to
follow a reasonable approximation path of the real execution path and
extract the API calls. This path is highlighted on each ECFG model; and
then, the system traverses the given ECFG through this path in order to
find the API calls. This trend is shown in Algorithm 4

Algorithm 4: extractAPISequence( F)
Input: F is the first node of an ECFG model constructed for a

PE-file.
Output: S is an API call sequence of the same PE-file.

1 S is an empty set to store the API calls.

2 //F.next Edge is an edge pointing to the next node of F
3 //F. jumpEdge is an edge pointing to the target of jump

statement in F

4 if (F.label is exist and F.label == ‘+’) then
5 S← S ∪ F. jumpEdge.AP I ;
6 return S ∪ extractAPISequence(

F. jumpEdge.target Node);
7 else
8 S← S ∪ F.next Edge.AP I ;
9 return S ∪ extractAPISequence( F.next Edge.target Node);

10 end
11 return S;

3.5 Extracting API sequences by HDM-Analyser

Extracting an API call sequence from an ECFG model needs
to traverse it from its first node to end node on correct exe-
cution path, which is followed by a program at its exe-
cution time. HDM-Analyser by making use of a learning
model and a classification algorithm is able to predict this
path for a given input executable file without running it.
Figure 8 depicts overall structure of the API sequence extrac-
tion procedure.

Each branch node in a new ECFG receives its label from
the classification module. This process is done for all branch
nodes of the ECFG in labelling phase; following that by util-
ising Algorithm 4 the API call sequence is extracted. This
algorithm takes the first node of an ECFG and traverses it
recursively in order to pick up the API calls which are sit-
uated on edges in its path. When this algorithm faced to a
branch node, it chooses the correct way according to the
node’s label. If the label is positive, it realises that the pro-
gram will be jumped at this point if it is executed; there-
fore, it takes the jumping edge to continue its way. On the
other hand, if the edge have no label or its label is negative,
the algorithm simply ignores it and continue the previous
trend.

4 Experimental setup

Ability of extracting the real sequence of API calls is a pivotal
matter for malware detection systems which their detection
procedure are working based on mining API calls. These sys-
tems are different in terms of accuracy and detection speed.
As matter of fact, dynamic analysis is more accurate than sta-
tic analysis in extracting API calls sequence; however, static
analysis is faster and safer than dynamic one because it does
not need to execute executable files. Static analysis is able
to offer an approximation sequence of the actual API call
sequence; in contrast, dynamic analysis extracts the real API
call sequence. This is a trade-off between speed and accu-
racy. The presented approach, HDM-Analyser, attempts to
raise both of them simultaneously by combining static and
dynamic analysis. HDM-Analyser takes advantages of both
analysis methods.

In order to evaluate HDM-Analyser capabilities, two cate-
gories of experiments are performed. The first one compares
HDM-Analyser with static and dynamic analysis methods
in terms of speed and accuracy. This comparison is done
by matching API call sequences extracted by these analysis
techniques with each other. The next category of experiments
makes use of the extracted API call sequences in a data min-
ing based detection technique in order to measure the detec-
tion accuracy in realising unknown malware. As this paper
is focused on malware analysis, the first experiment is more
important than the second one.

In the following, the dataset which is used in the experi-
ments is described briefly.

4.1 Experimental results for evaluating the analysis ability
of HDM-Analyser

Since HDM-Analyser is proposed for malware analysis, it is
vital to evaluate its analysis ability. This evaluation is done
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by calculating the similarity of API call sequences gener-
ated by each approach with real API call sequences. This
experiment is performed on a set of executable files which
are analysed by static analysis, dynamic analysis, and HDM-
Analyser. Some times API call sequences extracted by sev-
eral analysis methods are different and not aligned respect to
each other; therefore, it is essential to have an algorithm to
measure the similarity of these sequences. This algorithm is
presented in this section.

4.1.1 Dataset description

Since this study is focused on analysing PE-files, this exper-
iment is carried out on 1,000 Windows based 32-bits net-
work worms. These portable executable malware samples
are selected randomly from malware repository of APA, the
security research laboratory at Shiraz University. In fact, this
repository has been collecting since 2010 and updating with
new malware instances daily. Each day over 3,000 executable
malicious files are added to this repository from online mal-
ware repositories such as VirusSign (http://www.virussign.
com). VirusSign offers a huge collection of high quality sam-
ples, it is a valuable resource for anti-virus industry, it has
opened the samples to help security corporations to improve
their products.

4.1.2 Performance measure

Since the real API call sequence is extracted by dynamic
analysis, the output sequence of this analysis method can
be used as a criterion for evaluating the accuracy of other
API call extraction techniques. Thus, in order to evaluate
the accuracy of HDM-Analyser, it is required to measure
similarity between API sequences extracted by this approach
and dynamic analysis.

Typically, various API call extraction approaches produce
different API call sequences for a specific PE-file. These
approaches sometimes miss some API calls or put some APIs
in their output sequence while the program never call those
APIs in such positions in its real execution. Therefore, there
are several sequences, extracted by these approaches, with
different sizes and different alignments. In order to compare
two extracted sequences of API calls, first, they have to be
aligned to right position respect to each other; and then, com-
puting the similarity measure between them become an easy
task. A pleasant technique is employed to resolve this issue.
Figure 9 illustrates an example of alignment matrix for two
API call sequences. In fact, this matrix is a cross table in
which the matched points of two sequences are marked in
their corresponding cells.

Algorithm 5 utilises the alignment matrix in order to
align the input sequences, and then calculates their simi-
larity. This algorithm takes two sequences as input para-

Fig. 9 An example of alignment matrix. This matrix demonstrates the
matched points of these sequences. Alignment matrix is employed by
Algorithm 5 in order to compare two given API call sequences with
each other

Algorithm 5: SeqSim( SE , SO )
Input: SE is the Expected sequence;

SO is the Observed sequence;
Output: The similarity of two sequences

1 SPathScore is an empty vector;
2 MA = Construct the alignment matrix for SE and SO ;

3 foreach element i in SO do
4 SPathScore[i] = 0;
5 Stmp = SE ;

6 foreach element k in SO do
7 p = Find position of k in Stmp by using MA;

8 if (p == 0 /* Not found */);
9 then

10 SPathScore[i] += − 1
2 ;

11 continue;
12 end

13 SPathScore[i] += 1− log(p);
14 remove elements of Stmp from index 0 to p;
15 end
16 remove element i from SO ;
17 end
18 best PathScore = max(SPathScore);
19 return best PathScore

|SE | ;

meters which are SE as the expected sequence and SO as
the observed sequence. At the first stage, the alignment
matrix is constructed and stored in MA. Next, the algo-
rithm investigates all possible paths and give each path a
specific score which is obtained by counting matches and
mismatches. A path demonstrates that how many shifts in
which direction are required in order to match SO with
SE . Those shifts have to be continued to reach maximum
match in two sequences. As a matter of fact, this is an opti-
misation problem; therefore, the algorithm calculates score
of each path, and finally returns the maximum score as
result.

Algorithm 5 computes the similarity value merely between
two sequences. In order to compare two approaches, it
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needs to calculate similarity value amongst all correspond-
ing sequences extracted by them. Hence, an average of these
similarities is used, which is obtained by Eq. (4).

AvgSim(MSE , MSO) = 1

N

N∑
i=1

Seq Sim(SEi , SOi ) (4)

where MSE is a set of expected API call sequences extracted
from a set of input PE-files. MSO is observed API call
sequence set which is extracted by another approach from
same set of input executable files. In this paper, expected
sequences are produced by dynamic analysis technique and
observed sequences are extracted by considered approach
such as static analysis and HDM-Analyser. The total number
of input files is denoted by N .

As mentioned ago, the speed of analysis process is another
important evaluation measure. Obviously, running a program
in order to analyse its behaviour takes considerable execu-
tion time. This time consumption is related to input program’s
codes. A program with a few instructions may take more exe-
cution time than a longer one. Typically, high iterative loops
are responsible for heavy execution overheads. Obviously,
several programs which provide single functionality written
by various developers can be dissimilar in code structure and
compiler. Therefore, they have different time complexities
and it is impossible to ignore effects of programmer coding
style and compiler while comparing the dynamic analysis by
make use of time complexity equations. According to this dif-
ficulty, one of the interesting alternatives is using the elapsed
time as measure. Thus, we employ this measure to evaluate
the analysis speed of the presented approach.

4.1.3 Discussion

Accuracy and speed of analysis is measured to compare per-
formance of rival analysis approaches. Since higher accuracy
leads to have a powerful analysis ability, malware detection
methods based on better analysis become more accurate. A
malware detection system provides a safe environment for
user’s programs and data. It is essential to provide the secu-
rity while do not imposing a heavy overhead on the system.
Thus, providing an accurate and fast malware analysis sys-
tem, which is used in malware detection systems, is the goal
of HDM-Analyser.

When a program is executed, it requests its required ser-
vices by calling APIs. Monitoring a program at runtime and
picking up the called APIs generates a realistic API sequence.
This procedure is followed by dynamic analysis; therefore,
the output of this method can be used as a benchmark for
other analysis techniques in terms of accuracy. In this exper-
iment, API Logger tool is employed to extract a sequence of
called API’s from a PE-file for dynamic analysis part. API
Logger is able to log any exported API’s and display wide
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100%
Accuracy

Dynamic Analysis Static Analysis HDM− Analyzer

Fig. 10 Accuracy comparison in API sequence extraction amongst sta-
tic, dynamic analysis and HDM-Analyser. According to this experi-
ment, HDM-Analyser has achieved a higher accuracy than static analy-
sis method, which are 95.27 and 89.43 % respectively, and has obtained
a slightly lower accuracy than dynamic technique

range of information, including API name, call sequence and
more [9].

Figure 10 indicates some results used for comparing the
accuracy of various analysis approaches with each other.
Since dynamic analysis is considered as benchmark, it has the
highest accuracy rate in this chart. According to this results,
static analysis obtains the lowest accuracy rate against its
rival approaches in this experiment. This approach, makes
random decisions to select its path in branch nodes in tra-
versing control flow graph; therefore, it produces an API
sequence which is much differ from the benchmark API call
sequence; and consequently, it looses its accuracy. In this
experiment, HDM-Analyser has achieved a higher accuracy
than static analysis method and has obtained a slightly lower
accuracy than dynamic technique.

An interesting question might arise here is that, in Fig. 10,
since static analysis uses random choice in branch nodes, it
seems its accuracy must be approximately 50 or 60 %, while
it has significantly gained higher value than this amount for
accuracy measure. As a matter of fact, in a program all of the
instructions are not involved in decision making statements
which have impacts on API call sequence. In addition, there
are some other decision making statements such as “loops” or
“if” instruction without any API call occurrence within them.
Therefore, the accuracy of API call sequence extraction can
be affected merely by “if” statements which have at least one
API call in their code bocks.

As mentioned ago, HDM-Analyser is based on a hybrid
analysis technique which combines the information gathered
by static and dynamic analyses. A learning model is con-
structed by API call sequences that extracted by dynamic
analysis and a set of ECFG models generated by static analy-
sis. This learning model guides the system to make a better
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Fig. 11 A comparison among static, dynamic analysis and HDM-
Analyser in terms of analysis speed. These results show an average
time consumption in seconds for analysing an executable file which
analysed by each analysis method

decision in branch nodes. In other words, in HDM-Analyser,
the static analysis section is augmented by dynamic analy-
sis information. By employing this mechanism, the pre-
sented approach receives higher accuracy rate than static
analysis method. In fact, decision making in HDM-Analyser
is intelligent; however, in the static analysis its is mostly
based on guess. By the way, the accuracy of the proposed
approach is slightly less than dynamic approach, follow-
ing from its limitations which are mentioned before; in
contrast, it is quite faster and safer than dynamic analysis
method.

Figure 11 illustrates a speed comparison amongst dynamic
analysis, static analysis, and the presented approach. Accord-
ing to these experimental results, static analysis is the fastest
approach. This speed is due to its algorithm which moves
fast through the executable file’s codes. It does not need to
check anything or wait for some results during the process
of its analysis procedure; therefore, it is the fastest analysis
approach. In contrast, HDM-Analyser has to predict a class
label for each branch node before making a decision about
choosing the correct way; hence, it is slightly slower than
static analysis. However, it has better accuracy than static
analysis in API call extraction.

Nevertheless HDM-Analyser is slightly slower than sta-
tic analysis, it achieves an incredibly accuracy rather than
static one. This increase is a significant prosperity rather
than decreasing a little speed in analysis process. On
the other hand, its quickness cannot be compared with
speed dynamic analysis. There is an unbelievable differ-
ence between their analysis speeds. Thus, generally HDM-
Analyser has achieved better results than its rivals and it can

be used instead of them in some applications; however, it has
some limitations which should be resolved.

4.2 Experimental results for detection system

Since the major functionality of the presented approach is
extracting API call sequences from programs, it can be used
as a part of feature extraction module in malware detec-
tion systems which are designed based on data mining tech-
niques. There are incredible number of malware detection
systems which make use of API calls as an effective fea-
ture in order to realise unknown malware [24,29,28]. Typi-
cally, these systems extract API calls from known executable
files and put them in their training set. Next, they employ
at least a classification algorithm and learn it over training
set. Then, they use those classifier(s) to distinguish mal-
ware samples from sane ones. In this experiment several
classifier are employed and same trend is followed to make
a comparison between HDM-Analyser and traditional API
extraction solutions in terms of accuracy. First of all, API
call sequences are extracted by static, dynamic, and the pre-
sented analysis approach; and then, they are put in sepa-
rated sets. Then each classifier is trained and evaluated on
each set individually. In the following a brief description
about the classifiers, which are used in the experiments, is
explained.

A decision stump is a machine learning model consisting
of a one-level decision tree [12]. It is a decision tree with
one internal node (the root) which is immediately connected
to the terminal nodes. A decision stump makes a prediction
based on the value of just a single input feature.

Sequential minimal optimisation (SMO) is an algorithm
for solving large quadratic programming (QP) optimisation
problems, which is widely used for the training of support
vector machines. SMO breaks up large QP problems into a
series of smallest possible QP ones, which are then solved
analytically [19].

A naïve Bayes classifier assumes that the presence (or
absence) of a particular feature of a class is unrelated to the
presence (or absence) of any other feature. It is a kind of
dependent constraint modelling [15].

A random tree is a tree or arborescence that is formed by a
stochastic process. There are different types of random trees
including uniform spanning tree, random minimal spanning
tree, random binary tree, random recursive tree, randomised
binary search tree, rapidly exploring random tree, Brownian
tree, random forest, and branching process [7].

K-Star is an instance-based classifier, which is the class
of a test instance is based upon the class of those training
instances similar to it, as determined by some similarity func-
tion. It differs from other instance-based learners in that it
uses an entropy based distance function [6].
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Random forest is an ensemble classifier that contains
many decision trees and outputs the class that is the mode
of the class’s output by individual trees [5].

These classifiers are performed on the given dataset by
WEKA. Weka workbench [11] contains a collection of visu-
alisation tools and algorithms for data analysis and predictive
modelling, together with graphical user interfaces for easy
access to this functionality.

4.2.1 Dataset description

In order to prepare an experimental dataset, 2,000 executable
files consisting of 1,000 benign programs and 1,000 mal-
ware are collected. Note that all samples are non-packed
because this paper is not focused on packed executable files.
Those benign programs are gathered from a fresh installed
Microsoft Windows XP SP2 on a virtual machine. More-
over, some popular user applications are installed on that
machine such as Microsoft Office, Adobe Photoshop, Music
players and so on. As mentioned before, malware samples
are selected randomly from malware repository of APA, the
security research laboratory at Shiraz University.

4.2.2 Performance measure

In this section some typical measures, which are used for
evaluating the detection accuracy of malware detection sys-
tems, are introduced. For classification tasks, the terms true
positive, true negative, false positive, and false negative are
utilised to make a comparison of different classifiers accord-
ing to their results under test. The terms positive and nega-
tive refer to the classifier’s prediction (usually known as the
observation), and the terms true and false refer to whether
that prediction corresponds to the external judgement (typ-
ically known as the expectation). Therefore, the term “True
Positive” (TP) shows the number of correctly recognised
items which were belonging to the goal set and “True Nega-
tive” (TN) indicates the number of correctly recognised items
which were not belonging to the goal set. On the other hand,
“False Positive” (FP) represents the number of incorrectly
recognised item which were belonging to the goal set and
“False Negative” (FN) illustrates the number of incorrectly
recognised item which were not belonging to the goal set.
We define “Detection Rate” as the percentage of all PE-files
labelled “malicious” that can receive correct label by the sys-
tem, as illustrated in Eq. (5).

Detection Rate = T P

T P + F N
(5)

“False Alarm Rate” is the percentage of labelled normal that
likewise receive the wrong label by the system, as shown in
Eq. (6).

FalseAlam Rate = T P

T P + F N
(6)

“Accuracy” is the overall accuracy of the system in detection
of malware and benign files, as illustrated in Eq. (7).

Accuracy = T P + T N

T P + T N + F P + F N
(7)

To evaluate each classifier, 10-folded cross-validation method
is used and the results are obtained over 10 independent runs
of 10-folded cross-validation. “Cross validation”, is a tech-
nique for assessing how the results of a statistical analysis
will generalise to an independent data set. This technique
is mainly used in settings where the goal is prediction, and
one wants to estimate how accurately a predictive model will
perform in practice. One round of cross validation involves
partitioning a sample of data into complementary subsets,
performing the analysis on one subset called the training set,
and validating the analysis on the other subset called the
testing set. To decline variability, multiple rounds of cross
validation are performed using different partitions, and the
validation results are averaged over the rounds, each round
is called as a fold [18].

4.2.3 Discussion

As mentioned before, the objective of these experiments, the
second section, is demonstrating the efficiency and usability
of the API sequences which are extracted by HDM-Analyser.
Since HDM-Analyser presents a new analysis approach, in
this experiment, its application in detecting unknown mal-
ware is discussed. Obviously, one of the best features utilised
by many data mining based detection approaches is API call.
On the other hand, since a sequence of called APIs shows
the program’s behaviour, if the extraction procedure is done
accurately, the detection accuracy will be soared. Thus, in
order to show the API call extraction ability and accuracy of
HDM-Analyser, the API call sequences extracted by HDM-
Analyser and its rivals, static and dynamic analyses, are eval-
uated by same classifier and to increase the certainty this
experiment is done on six classifiers.

Before employing a classifier to learn an evaluate the
extracted features, it is essential to prepare them in an appro-
priate format. A popular form for representing data-items
and their features is tabular form in which the features of
each data-item are packed in a specific row and each column
refers to a particular feature. In this form, the values of the
features are written in the contributing cells. An example of
this representation is illustrated in Fig. 12. In this table, each
entity indicates the presence or absence of an API function
called or not called by its relevant PE-file. This table is sim-
ply converted to a format being suitable for WEKA in order
to be easy to use.

123



HDM-Analyser: a hybrid analysis approach 91

LabelAPImAPI3API2API1

+0110

-0111

PE-File1

PE-File2

.

.

.

.

+1001PE-FileN

.

Fig. 12 A dataset consisted of both malware and benign executable
samples. The features of this dataset are API calls where called or not
called by each PE-file. Each row of this table depicts which APIs are
called by PE-filei . The value 0 indicates that such API is not called
by PE-filei and 1 means that API is called by the ith PE-file. The last
column is devoted to the label of each PE-file, positive value is referred
to maliciousness and negative label shows the saneness of the PE-file

Figure 12 shows a dataset generated for classification pur-
pose in order to evaluate the extracted feature set. A clas-
sifier is trained by training set and performs a prediction
according to its learnings on testing set items. It classify
these items by putting positive and negative labels on them
which indicate that a sample is malware or benign respec-
tively. Table 2 illustrates the detection accuracy amongst
various analysis approaches for each introduced classifier.
The results depicted in this table demonstrate that HDM-
Analyser has achieved a desirable accuracy which is 92.68 %
on average. It means it is suitable in order to be used as fea-
ture extractor module for malware detection systems which
are based on data mining techniques. It is worth mention-
ing that in a malware detection system, the analysis speed is
as important as the accuracy. In other words, gaining max-
imum accuracy of malware analysis imposes a heavy over-
head on the system which causes a huge decline in speed,
for instance, dynamic analysis has received maximum accu-
racy in these experiments which is 94.76 % on average, but
it takes lots of time to analyse the input PE-files. Although
HDM-Analyser is slightly less accurate than dynamic analy-
sis method, it is very faster than this method according to ear-
lier experimental results depicted in Fig. 11. Moreover, the
results show that HDM-Analyser is more accurate than static
analysis (88.57 % on average) which is discussed before.

The false alarm, false positive, rate is an effective measure
that gives useful information in order to compare and mea-
sure the failure of variant classification operations. Table 3
illustrates a comparison of variant analysis methods per dif-
ferent classifier in terms of false alarm rate. False alarm rate of
HDM-Analyser is lower than static analysis, 6.09 and 6.51 %
on average respectively. Nonetheless dynamic analysis has
the lowest false positive rate among the other approaches
which is 5.91 % on average, it suffers from execution over-
head which is discussed in the previous sections.

Tables 2 and 3 demonstrate that HDM-Analyser is not bias
to a particular classifier as a malware detector. Thus, it can be

Table 2 Accuracy of malware detection ability among several analysis
methods

Dynamic (%) Static (%) HDM-Analyser (%)

Decision stump 89.76 83.89 87.79

SMO 93.01 86.93 90.97

Naive Bayes 92.47 86.42 90.44

Random tree 96.54 90.23 94.42

Lazy KStar 99.26 92.77 97.08

Random forest 97.53 91.15 95.39

Average 94.76 88.57 92.68

There are three datasets which generated by each analysis approach.
Different classifiers perform classification on the executable files by
making use of a same dataset. This trend is followed for each dataset.
The evaluation results are depicted in this table separately. As it can
be clearly seen, HDM-Analyser has attained an accuracy between the
accuracy of dynamic and static analyses. These results demonstrate that
HDM-Analyser is appropriate to be used as feature extractor module for
malware detection systems which are based on data mining techniques

Table 3 The false alarm rate of a malware detection method which uses
various analysis methods in order to extract the required features from
executable files

Dynamic (%) Static (%) HDM-Analyser (%)

Decision stump 8.53 9.47 8.85

SMO 8.01 8.90 8.32

Naive Bayes 8.43 9.17 8.55

Random tree 4.66 5.08 4.84

Lazy KStar 2.08 2.32 2.15

Random forest 3.72 4.12 3.87

Average 5.91 6.51 6.09

In this table, the false alarm rate of HDM-Analyser is compared with
its rivals’ results which are static and dynamic analyses. According
to these results, HDM-Analyser has achieved to a lower false alarm
rate rather than static analysis. This achievement is a consequence of
using dynamic information in its analysing procedure in order to rise
the accuracy

used in variety systems with wide range of classifiers. One
further fact which is revealed by these results is the effective-
ness of the presented approach in analysing executable files.
It indicates that HDM-Analyser can be accepted as an analy-
sis approach for extracting API calls. According to reported
results this approach has earned a pleasant performance than
its rival approaches. Note that, in this situation, performance
refers to both accuracy and speed of analysis and detection.

5 Conclusions and future work

API calls are important features being able to describe the
behaviour of programs; therefore, they are appropriate fea-
tures which can be used by a classifier in order to categorise
executable files based on their behaviour. This categorisation
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is widely used for detecting unknown malware. The feature
set, which describes executable files, conducts a crucial role
in detection; in other words, this is one of the most effec-
tive parameters being able to increase the detection accuracy.
Typically, API calls are extracted by analysis methods, which
investigate the codes of the under inspection programs or
monitor their behaviour at runtime in order to find API calls.
Thus, the performance of analysis method is a pivotal matter.

There are two major practical analysis techniques which
are dynamic and static. Dynamic analysis, which executes
the given executable file and extracts its API calls at run-
time, suffers from execution overhead because it has to wait
for the input file’s responds. On the other hand, static analy-
sis, which parses the codes of input file in order to extract
needed information, does not have this problem, however its
accuracy is lower than dynamic one in extracting API calls
because it does not know which branch statement jumps at
runtime.

In this paper, an approach is proposed which uses
the advantages of both mentioned analysis techniques in
order to reduce the effects of their drawbacks on analy-
sis performance. This approach, HDM-Analyser, utilises the
information obtained by dynamic analysis on static analysis
ambiguous points and makes them clear for static analyser. In
order to overcome the execution overhead, HDM-Analyser
does the dynamic analysis on an enough large set of sam-
ples in advance and stores required information in form of
learning model. This learning model is used by a classifier
to illuminate the decision points, which are opaque for sta-
tic analysis, and raise the static analysis accuracy. Since this
approach uses both dynamic and static analysis techniques
to extract API calls from executables, it can be involved into
hybrid analysis approaches.

In order to evaluate HDM-Analyser abilities, two cate-
gories of experiments are performed. The first one compares
HDM-Analyser with static and dynamic analysis methods
in terms of analysis speed and accuracy. This compari-
son is done by matching API call sequences extracted by
these analysis techniques with each other. According to this
experiment, HDM-Analyser has achieved a higher accuracy
than static analysis method, which are 95.27 and 89.43 %
respectively, and has obtained a slightly lower accuracy than
dynamic technique; in contrast, it is quite faster and safer than
dynamic analysis method. In fact, this is a trade-off between
speed and accuracy.

The next category of experiments makes use of the
extracted API call sequences in a data mining based detection
technique in order to measure the detection accuracy in real-
ising unknown malware. The results demonstrate that HDM-
Analyser has achieved a desirable accuracy which is 92.68 %
on average. It means it is suitable in order to be used as feature
extractor module for malware detection systems which are
based on data mining techniques. Gaining maximum accu-

racy of malware analysis, extracting the exact APIs called
at runtime, imposes a heavy overhead on the system which
causes a huge decline in speed, for instance, dynamic analysis
has received maximum accuracy in these experiments which
is 94.76 % on average, but it takes lots of time to analyse
the input PE-files. Although HDM-Analyser is slightly less
accurate than dynamic analysis method, it is very faster than
this method according to experimental results mentioned ear-
lier. Moreover, the results show that HDM-Analyser is more
accurate than static analysis (88.57 % on average).

This study opens new research directions to malware
analysis methods in which incorporates data-mining tech-
niques in order to boost the static analysis ability. We intend
to expand this approach to handle the jump instructions relied
on addresses which are computed at runtime. In addition,
since some malware instances obfuscate their jump state-
ments by replacing other instructions which do exactly these
jumps’ functionalities, it is a hard task to analyse them by
current version of HDM-Analyser. These kinds of malware
need different algorithms to analyse; thus, as future work, we
are going to work on them.
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